
Kemeny’s constant for Markov chains and random
walks on graphs

Jane Breen

Ontario Tech University

Algebraic Graph Theory Seminar: November 6th

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



Overview of the talk

▶ Kemeny’s constant is a measure of how well-connected the
states of a Markov chain are.

▶ There’s an explosion of work studying Kemeny’s constant for a
graph, via the random walk on the graph.

▶ What kinds of generalizations can we make of K(G)?
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Markov chains

▶ A Markov chain (finite, discrete-time, time-homogeneous) can be thought of as a
system transitioning between states over some finite state space
{s1, s2, . . . , sn} in discrete time-steps.

s1 s2

s3s4
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Markov chains

▶ For each pair of states si and sj , there is some transition
probability ti,j representing the probability that the system moves
from si to sj in a single time-step.
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Markov chains

▶ In this way, the chain is memoryless; the movement of the chain
depends only on the current state of the system.
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Markov chains

▶ In this way, the chain is memoryless; the movement of the chain
depends only on the current state of the system.

s1 s2

s3s4

0.5

0.25
0.25
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The Transition Matrix

▶ A Markov chain can be represented entirely by its transition
matrix T = [ti,j ], which is necessarily a row-stochastic matrix T ;
that is, T1 = 1.

T =


0 1 0 0

0.5 0 0.25 0.25
0 0.25 0 0.75
0 0 0.25 0.75


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Long-term behaviour of a Markov chain

▶ The left eigenvector w = [w1 w2 · · · wn] corresponding to the
eigenvalue 1, such that w⊤T = w⊤ and w1 + w2 + · · ·+ wn = 1,
is called the stationary vector of the Markov chain.

▶ The stationary vector w describes the long-term behaviour of
the system—the i th entry wi gives the long-term probability that
the system occupies state si .
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Long-term behaviour of a Markov chain

For example, the stationary vector of

T =


0 1 0 0

0.5 0 0.25 0.25
0 0.25 0 0.75
0 0 0.25 0.75


is

w⊤ =
[ 1

21
2
21

4
21

14
21

]
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Short-term behaviour of a Markov chain

Definition
The mean first passage time from i to j is the expected number of
time-steps elapsed before the system reaches state j , given that it
begins in state i . It is denoted mi,j .

mi,j =


e⊤

i (I − T(j))
−1
1, i < j ;

e⊤
i−1(I − T(j))

−1
1, i > j ,
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Short-term behaviour of a Markov chain

For

T =


0 1 0 0

0.5 0 0.25 0.25
0 0.25 0 0.75
0 0 0.25 0.75


we can calculate

m1,2 = 1
m2,1 = 20
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Motivating example - Random walks on graphs

Let G be a simple undirected graph, with adjacency matrix A and
vertex degrees d1, . . . ,dn. Let D be the diagonal matrix
diag(d1, . . . ,dn). Then T = D−1A is the probability transition matrix
of the random walk on G.

1 2

34

1 2

34

T =


0 1 0 0
1
3 0 1

3
1
3

0 1
2 0 1

2
0 1

2
1
2 0


w⊤ =

[1
8

3
8

2
8

2
8

]

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



Motivating example - Random walks on graphs

Let G be a simple undirected graph, with adjacency matrix A and
vertex degrees d1, . . . ,dn. Let D be the diagonal matrix
diag(d1, . . . ,dn). Then T = D−1A is the probability transition matrix
of the random walk on G.

1 2

34

1 2

34

T =


0 1 0 0
1
3 0 1

3
1
3

0 1
2 0 1

2
0 1

2
1
2 0



w⊤ =
[1

8
3
8

2
8

2
8

]

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



Motivating example - Random walks on graphs

Let G be a simple undirected graph, with adjacency matrix A and
vertex degrees d1, . . . ,dn. Let D be the diagonal matrix
diag(d1, . . . ,dn). Then T = D−1A is the probability transition matrix
of the random walk on G.

1 2

34

1 2

34

T =


0 1 0 0
1
3 0 1

3
1
3

0 1
2 0 1

2
0 1

2
1
2 0


w⊤ =

[1
8

3
8

2
8

2
8

]

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



Outline

1 Introduction to Markov chains

2 Kemeny’s constant

3 A brief history of Kemeny’s constant

4 Kemeny’s constant for random walks on graphs

5 Weighted random walks

6 Non-backtracking random walks

7 Concluding comments

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



Kemeny’s constant

Let T be the transition matrix for a Markov chain with n states, with
stationary vector w and mean first passage times mi,j .

Define

κi :=
n∑

j=1
j ̸=i

wjmi,j .

This can be interpreted as the expected time it takes to reach a
randomly-chosen state j , beginning in state i .

This is a constant - it doesn’t depend on the starting state!
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Kemeny’s constant

So we call it Kemeny’s constant, and denote it as K(T ).

We can also write

K(T ) =
n∑

i=1

n∑
j=1
j ̸=i

wimi,jwj ,

and interpret K(T ) as the expected length of a random trip in the
Markov chain.
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Finite Markov Chains, Kemeny & Snell (1960)

▶ The fundamental matrix of a Markov chain with transition matrix
T and stationary vector w is

Z = (I − T + 1w⊤)−1.

▶ Many things can be calculated using Z .
▶ For example, the matrix of mean first passage times is

M = (I − Z + JZdg)W−1.
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Finite Markov Chains, Kemeny & Snell (1960)
Kemeny’s constant

This statement (translated) says that Mw = K(T )1; i.e.∑
j mi,jwj = K(T ) for all i .

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



Finite Markov Chains, Kemeny & Snell (1960)
Kemeny’s constant

This statement (translated) says that Mw = K(T )1; i.e.∑
j mi,jwj = K(T ) for all i .

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



Introduction to Probability with Computing, Snell
(1975)
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Levene & Loizou (2002)

▶ M. Levene, G. Loizou, 2002. Kemeny’s constant and the random
surfer. The American Mathematical Monthly, 109(8),
pp.741-745.

Theorem
Let T be the transition matrix of a Markov chain, with eigenvalues
1, λ2, . . . , λn. Then

K(T ) =
n∑

j=2

1
1 − λj

.
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Bounds on Kemeny’s constant

Proposition
For any Markov chain with transition matrix T ,

K(T ) ≥ n − 1
2

.

Proof
▶ Let the eigenvalues of T be 1, λ2, . . . , λn.
▶ For each j , |λj | ≤ 1.

▶ If λj is real, then 1
1−λj

≥ 1
2 .

▶ What if λj = a + bi?
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Proof
▶ Complex eigenvalues must occur in conjugate pairs,

and

1
1 − λj

+
1

1 − λ̄j
=

2 − (λj + λ̄j)

(1 − λj)(1 − λ̄j)

=
2 − 2a

1 − 2a + a2 + b2

≥ 1.

▶ So clearly,

K(T ) =
n∑

j=2

1
1 − λj

≥ n − 1
2

.
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Extremal example - directed cycle

v10

v11

v12

v1
v2

v3

v4

v5

v6
v7

v8

v9
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Extremal example - directed cycle

T =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 .
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Methods of computation I
Eigenvalues and related expressions

The transition matrix for a random walk on a graph is T = D−1A, so

K(G) =
n∑

j=2

1
1 − λj

.

We also have the normalized Laplacian:

L = D− 1
2 (D − A)D− 1

2

▶ It’s not hard to show that L is similar to I − D−1A.
▶ If L has eigenvalues 0 = µ0 < µ1 ≤ · · · ≤ µn−1 ≤ 2, then we can

define

K(G) =
n−1∑
j=1

1
µj
.
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Methods of computation I
Eigenvalues and related expressions

▶ If L is the normalized Laplacian of a graph G, with characteristic
polynomial

cnxn + cn−1xn−1 + . . . c2x2 + c1x

then
K(G) = −c2

c1
.
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Minimum value for K(G)

K(Kn) = n − 2 +
1
n
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Minimum value for K(G)

K(Kn) = n − 2 +
1
n

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



Maximum value for K(G)
(Conjectured)

K(G) = 1
54

n3 + O(n2)

▶ Aksoy, Chung, Tait, Tobin (2018): 1
µ1

= (1 + o(1)) 1
54n3

▶ Breen, Butler, Day, DeArmond, Lorenzen, Qian, Riesen (2019):
K(G) = 1

54n3 + O(n2)

(Conjectured by Aldous-Fill to be the extremal graph for both)
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Methods of computation II
Spanning 2-forests

Theorem (Kirkland, Zeng, 2014)
Let G be a simple undirected graph.
▶ Let d =

[
d1 d2 · · · dn

]
be the degree vector of G.

▶ Let m be the number of edges.
▶ Let τ be the number of spanning trees of G.
▶ Let fi,j be the number of spanning forests of G, consisting of

exactly two trees, one containing vi and one containing vj .
Then:

K(G) = d⊤Fd
4mτ

=
1

4mτ

∑
i,j

didj fi,j .
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Formulas for graphs with cut-vertices or bridges

▶ A 1-separation formula for the graph Kemeny constant and
Braess edges.
Nolan Faught, Mark Kempton, Adam Knudson.
Journal of Mathematical Chemistry 60:1 (2022), 49–69.

▶ Kemeny’s constant for a graph with bridges.
Jane Breen, Emanuele Crisostomi, Sooyeong Kim.
Discrete Applied Mathematics 322 (2022), 20–35.
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What’s known?

Here is a list of graph classes for which Kemeny’s constant has been
studied:
▶ Trees
▶ Multipartite graphs
▶ Barbell-type graphs
▶ Cycle barbells
▶ Flower graphs
▶ Threshold graphs
▶ Split graphs
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Overview of the rest of the talk

Question
What are the interesting questions to ask for extensions of simple,
undirected, unweighted graphs?

▶ Random walks on weighted graphs
▶ Many good questions coming from applications

▶ Non-backtracking random walks on graphs
▶ tied in with interesting results in mixing times
▶ more interesting questions about the influence of graph structure

on Kemeny’s constant
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Outline

1 Introduction to Markov chains

2 Kemeny’s constant

3 A brief history of Kemeny’s constant

4 Kemeny’s constant for random walks on graphs

5 Weighted random walks

6 Non-backtracking random walks

7 Concluding comments
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What is a weighted random walk?

1 2

34

4

1 2

3

1 2

34

T =


0 1 0 0
4
7 0 2

7
1
7

0 2
5 0 3

5
0 1

4
3
4 0


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Real-world applications of Kemeny’s constant

▶ Road networks
▶ Globalization of the economy
▶ Robotic surveillance
▶ Social networks and clustering
▶ Contact networks and disease spread
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Robotic surveillance paper
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Robotic surveillance problem
Summary

▶ Suppose there is a persistent intruder in a fixed location of our
environment, and our environment is divided into regions that
can be surveilled in one time-step.

▶ Represent the environment by a graph, with nodes representing
surveillance regions, and edges between nodes if the robotic
surveillance agent can move from one to the other in one
time-step.

▶ Consider Kemeny’s constant for a random walk on a weighted
graph as a measure of the expected length of time to capture the
intruder.

▶ How should the weights of the edges of the graph be chosen so
as to minimize Kemeny’s constant?
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Robotic surveillance results

▶ Determine an expression for K(T ) as the trace of an appropriate
matrix.

▶ Show that the set of all matrices achieving the minimum K(T ) is
a convex set.

▶ Formulate the problem as a convex optimization problem.
▶ Solve it using semi-definite programming.
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Kemeny-based testing for COVID-19
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Kemeny’s constant and COVID-19
Summary

▶ Suppose there is a contact network for how individuals might
spread a communicable disease to other people in their
community.

▶ Compute Kemeny’s constant for a random walk on this graph.
▶ For each vertex (individual) in the graph, compute Kemeny’s

constant for the random walk on the graph with that vertex
removed.

▶ Which vertex causes the biggest increase in Kemeny’s constant
after its removal?

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



Kemeny’s constant and COVID-19
Summary

▶ Suppose there is a contact network for how individuals might
spread a communicable disease to other people in their
community.

▶ Compute Kemeny’s constant for a random walk on this graph.

▶ For each vertex (individual) in the graph, compute Kemeny’s
constant for the random walk on the graph with that vertex
removed.

▶ Which vertex causes the biggest increase in Kemeny’s constant
after its removal?

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



Kemeny’s constant and COVID-19
Summary

▶ Suppose there is a contact network for how individuals might
spread a communicable disease to other people in their
community.

▶ Compute Kemeny’s constant for a random walk on this graph.
▶ For each vertex (individual) in the graph, compute Kemeny’s

constant for the random walk on the graph with that vertex
removed.

▶ Which vertex causes the biggest increase in Kemeny’s constant
after its removal?

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



Kemeny’s constant and COVID-19
Summary

▶ Suppose there is a contact network for how individuals might
spread a communicable disease to other people in their
community.

▶ Compute Kemeny’s constant for a random walk on this graph.
▶ For each vertex (individual) in the graph, compute Kemeny’s

constant for the random walk on the graph with that vertex
removed.

▶ Which vertex causes the biggest increase in Kemeny’s constant
after its removal?

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



Kemeny’s constant and COVID-19

▶ Kemeny-based testing for COVID-19. Serife Yilmaz, Ekaterina
Dudkina, Michelangelo Bin, Emanuele Crisostomi, Pietro
Ferraro, Roderick Murray-Smith, Thomas Parisini, Lewi Stone,
Robert Shorten. PLoS ONE (2020), 15:11.

▶ A comparison of centrality measures and their role in
controlling the spread in epidemic networks. Ekaterina
Dudkina, Michelangelo Bin, Jane Breen, Emanuele Crisostomi,
Pietro Ferraro, Steve Kirkland, Jakub Maraček, Roderick
Murray-Smith, Thomas Parisini, Lewi Stone, Serife Yilmaz,
Robert Shorten. International Journal of Control (2023), in
press.
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Kemeny’s constant and road networks

▶ An Edge Centrality Measure Based on the Kemeny
Constant. Diego Altafini, Dario A Bini, Valerio Cutini, Beatrice
Meini, Federico Poloni. SIAM Journal on Matrix Analysis and
Applications 44:2 (2023), 648–669.

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



Altafini, Bini, Cutini, Meini, Poloni

Idea:
▶ Determine which road plays the biggest role in a road network.

▶ Given a weighted, undirected graph G, Kemeny’s constant for
the weighted random walk on G indicates how well-connected
the road network is.

▶ If removing an edge from the graph causes K(T ) to increase by
a lot, then it is important to the connectivity of the graph.

▶ Determine, for each edge e in G, the value of

c(e) = K(G − e)−K(G).

▶ This gives you a centrality ‘score’ for each road in the network.
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Altafini, Bini, Cutini, Meini, Poloni
Example

1

2

3

4

5

61

2

3

4

5

6

A =



0 1 1 0 0 0
1 0 1 1 0 0
1 1 0 0 1 0
0 1 0 0 1 1
0 0 1 1 0 1
0 0 0 1 1 0

 Ã =



0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 1 0
0 0 0 0 1 1
0 0 1 1 0 1
0 0 0 1 1 0

 E =



0 0 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


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Altafini, Bini, Cutini, Meini, Poloni
Example

1

2

3

4

5

61

2

3

4

5

6

T =



0 1
2

1
2 0 0 0

1
3 0 1

3
1
3 0 0

1
3

1
3 0 0 1

3 0
0 1

3 0 0 1
3

1
3

0 0 1
3

1
3 0 1

3
0 0 0 1

2
1
2 0


T̃ =



0 1
2

1
2 0 0 0

1
2 0 1

2 0 0 0
1
3

1
3 0 0 1

3 0
0 0 0 0 1

2
1
2

0 0 1
3

1
3 0 1

3
0 0 0 1

2
1
2 0


E =



0 0 0 0 0 0
1
6 0 1

6 −1
3 0 0

0 0 0 0 0 0
0 −1

3 0 0 1
6

1
6

0 0 0 0 0 0
0 0 0 0 0 0


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Altafini, Bini, Cutini, Meini, Poloni
Results

Let A be the (weighted) adjacency matrix of the graph, and suppose
we remove edge {i , j}.

▶ Ã = A − ai,jU
[
0 1
1 0

]
UT , where U =

[
ei ej

]
.

▶ Then T̃ = T + UV T where

V T =

[
si 0
0 sj

]
UT A − ai,j

[
0 (di − ai,j)

−1

(dj − ai,j)
−1 0

]
UT .

▶ Theorem: c(e) = trace((I − V T ZU)−1V T Z 2U)

▶ The main pursuit in this article, though, is finding efficient ways
to do this for every edge in the network.
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Altafini, Bini, Cutini, Meini, Poloni
Results (continued)

▶ Judgment call: when deleting an edge {i , j}, add the lost weight
aij to a loop at i and a loop at j .

▶ This means c(e) is always nonnegative (no Braess edges)
▶ This also means the new formula for c(e) involves a positive

semidefinite matrix, and the Cholesky decomposition of this
allows for efficient computation of all centrality scores c(e)
(O(n3 + m))

T =



0 1
2

1
2 0 0 0

1
3 0 1

3
1
3 0 0

1
3

1
3 0 0 1

3 0
0 1

3 0 0 1
3

1
3

0 0 1
3

1
3 0 1

3
0 0 0 1

2
1
2 0


T̃ =



0 1
2

1
2 0 0 0

1
3

1
3

1
3 0 0 0

1
3

1
3 0 0 1

3 0
0 0 0 1

3
1
3

1
3

0 0 1
3

1
3 0 1

3
0 0 0 1

2
1
2 0


E =



0 0 0 0 0 0
0 1

3 0 −1
3 0 0

0 0 0 0 0 0
0 −1

3 0 1
3 0 0

0 0 0 0 0 0
0 0 0 0 0 0


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▶ This also means the new formula for c(e) involves a positive

semidefinite matrix, and the Cholesky decomposition of this
allows for efficient computation of all centrality scores c(e)
(O(n3 + m))

T =



0 1
2

1
2 0 0 0

1
3 0 1

3
1
3 0 0

1
3

1
3 0 0 1

3 0
0 1

3 0 0 1
3

1
3

0 0 1
3

1
3 0 1

3
0 0 0 1

2
1
2 0


T̃ =



0 1
2

1
2 0 0 0

1
3

1
3

1
3 0 0 0

1
3

1
3 0 0 1

3 0
0 0 0 1

3
1
3

1
3

0 0 1
3

1
3 0 1

3
0 0 0 1

2
1
2 0


E =



0 0 0 0 0 0
0 1

3 0 −1
3 0 0

0 0 0 0 0 0
0 −1

3 0 1
3 0 0

0 0 0 0 0 0
0 0 0 0 0 0


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Questions about weighted random walks from
applications

▶ Can we find good expressions and bounds for the difference in
Kemeny’s constant after removing an edge, or removing a
vertex?

▶ Under what circumstances does the structure of the graph
impose that K(G − e) < K(G)? (i.e. when is an edge a Braess
edge?)
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Outline

1 Introduction to Markov chains

2 Kemeny’s constant

3 A brief history of Kemeny’s constant

4 Kemeny’s constant for random walks on graphs

5 Weighted random walks

6 Non-backtracking random walks

7 Concluding comments
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Kemeny’s constant for nonbacktracking random walks

▶ Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin.
Non-backtracking random walks mix faster. Communications in
Contemporary Mathematics 9, no. 04 (2007): 585-603.

▶ Mixing time ∼ size of the second largest eigenvalue ρ2 of the
transition matrix.

▶ Kemeny’s constant ∼ ‘expected time to mixing’ (Hunter)
▶ . . .

▶ Do non-backtracking random walks have smaller Kemeny’s
constant than simple random walks?
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Kemeny’s constant for nonbacktracking random walks

▶ Kemeny’s constant for nonbacktracking random walks.
Jane Breen, Nolan Faught, Cory Glover, Mark Kempton, Adam
Knudson, Alice Oveson.
Random Structures & Algorithms 63:2 (2023), 343–363.
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Example of non-backtracking random walk

1 2
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Example of non-backtracking random walk
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Random walks on the edge-space of a graph
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Definition of edge-space random walks

Definition
The transition matrix Pe for the simple random walk on the edge
space of G is a 2m × 2m matrix defined entrywise as

p(e)
(i,j),(k ,ℓ) =

{
1

deg(j) , if j = k ;
0, otherwise.

Definition
The transition matrix Pnb for the simple random walk on the edge
space of G is a 2m × 2m matrix defined entrywise as

p(nb)
(i,j),(k ,ℓ) =

{
1

deg(j)−1 , if j = k AND ℓ ̸= i ;
0, otherwise.
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Example

1 2
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1 2
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

(1,2) (1,3) (1,4) (2,1) (2,3) (3,1) (3,2) (3,4) (4,1) (4,3)
(1,2) 0 0 0 1

2
1
2 0 0 0 0 0

(1,3) 0 0 0 0 0 1
3

1
3

1
3 0 0

(1,4) 0 0 0 0 0 0 0 0 1
2

1
2

(2,1) 1
3

1
3

1
3 0 0 0 0 0 0 0

(2,3) 0 0 0 0 0 1
3

1
3

1
3 0 0

(3,1) 1
3

1
3

1
3 0 0 0 0 0 0 0

(3,2) 0 0 0 1
2

1
2 0 0 0 0 0

(3,4) 0 0 0 0 0 0 0 0 1
2

1
2

(4,1) 1
3

1
3

1
3 0 0 0 0 0 0 0

(4,3) 0 0 0 0 0 1
3

1
3

1
3 0 0


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(1,2) (1,3) (1,4) (2,1) (2,3) (3,1) (3,2) (3,4) (4,1) (4,3)
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2 0 0 0 0 0
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3
1
3 0 0

(1,4) 0 0 0 0 0 0 0 0 0 1
2

(2,1) 0 1
3

1
3 0 0 0 0 0 0 0

(2,3) 0 0 0 0 0 1
3 0 1

3 0 0
(3,1) 1

3 0 1
3 0 0 0 0 0 0 0

(3,2) 0 0 0 1
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2 0
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(1,2) (1,3) (1,4) (2,1) (2,3) (3,1) (3,2) (3,4) (4,1) (4,3)
(1,2) 0 0 0 0 1 0 0 0 0 0
(1,3) 0 0 0 0 0 0 1

2
1
2 0 0

(1,4) 0 0 0 0 0 0 0 0 0 1
(2,1) 0 1

2
1
2 0 0 0 0 0 0 0

(2,3) 0 0 0 0 0 1
2 0 1

2 0 0
(3,1) 1

2 0 1
2 0 0 0 0 0 0 0

(3,2) 0 0 0 1 0 0 0 0 0 0
(3,4) 0 0 0 0 0 0 0 0 1 0
(4,1) 1

2
1
2 0 0 0 0 0 0 0 0

(4,3) 0 0 0 0 0 1
2

1
2 0 0 0


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Some notation and notes

▶ We define K(Pe) =: Ke(G), and K(Pnb) =: Knb(G).
▶ Non-backtracking Kemeny’s constant cannot be defined for

graphs with pendent vertices, or for cycles.

▶ We will only look at graphs with minimum degree two.
▶ To compare the behaviour of the simple random walk and the

non-backtracking walk, it makes more sense to compare Knb(G)
with Ke(G), not Kv (G).
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Kemeny’s constant for Pe

Theorem
Let G be a connected graph with |V (G)| = n and |E(G)| = m. Then

Ke(G) = Kv (G) + 2m − n.

Proof: Uses a neat matrix factorization.
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Matrix factorization

Definition
The startpoint incidence operator of G is the n × 2m matrix T with
rows indexed by the vertices and columns indexed by the directed
edges, such that

T (u, (v ,w)) =

{
1, if u = v ;
0, otherwise.

T =


(1,2) (1,3) (1,4) (2,1) (2,3) (3,1) (3,2) (3,4) (4,1) (4,3)

1 1 1 1 0 0 0 0 0 0 0
2 0 0 0 1 1 0 0 0 0 0
3 0 0 0 0 0 1 1 1 0 0
4 0 0 0 0 0 0 0 0 1 1


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Matrix factorization

Definition
The endpoint incidence operator of G is the 2m × n matrix S with
rows indexed by the directed edges and columns indexed by the
vertices, such that

S((u, v),w) =

{
1, if v = w ;

0, otherwise.

S⊤ =


(1,2) (1,3) (1,4) (2,1) (2,3) (3,1) (3,2) (3,4) (4,1) (4,3)

1 0 0 0 1 0 1 0 0 1 0
2 1 0 0 0 0 0 1 0 0 0
3 0 1 0 0 1 0 0 0 0 1
4 0 0 1 0 0 0 0 1 0 0


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Matrix factorization

▶ The edge-space adjacency matrix Ae can be factored

Ae = ST .

▶ The ordinary adjacency matrix A can be factored

A = TS.

▶ Let τ be the edge reversal operator - the 2m × 2m matrix with
rows and columns both indexed by E ′ that switches a directed
edge with its opposite.

▶ Then Anb = ST − τ.

▶ Pe = D−1
e (ST )

▶ Pnb = (De − I)−1(TS − τ).
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Kemeny’s constant for Pe

Theorem
Let G be a connected graph with |V (G)| = n and |E(G)| = m. Then

Ke(G) = Kv (G) + 2m − n.

Proof:

▶ Pe = D−1
e ST = (D−1

e S)T
▶ The eigenvalues of (D−1

e S)T are those of T (D−1
e S), with enough

extra zeros. (2m − n of them)
▶ T (D−1

e S) = TSD−1 = AD−1

▶ AD−1 ∼ D−1A = P.

Therefore the eigenvalues of Pe are the eigenvalues of P with an
additional 2m − n zero eigenvalues.
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Non-backtracking random walks on regular graphs
Previous work

▶ Cory Glover and Mark Kempton. Some spectral properties of the
non-backtracking matrix of a graph. Linear Algebra and its
Applications 618 (2021): 37-57.

Do nonbacktracking random walks on regular graphs mix faster, and
how much faster can it be?
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Edge-space random walks on regular graphs

Lemma
Let G be a connected d-regular graph of order n, where d ≥ 3, with
adjacency spectrum d = λ1 > λ2 ≥ · · · ≥ λn. Then

Ke(G) = n(d − 1) +
n∑

i=2

d
d − λi

.
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Edge-space random walks on regular graphs

Theorem
Let G be a connected d-regular graph of order n, where d ≥ 3. Then

Knb(G) =
(d − 2)Ke(G)

d
+ 2n +

1
d − 2

− n
d
.

Proof:

▶ The spectrum of the non-backtracking transition probability
matrix of a d-regular graph is

(
1

d − 1

)m−n

,

(
−1

d − 1

)m−n

,
λi ±

√
λ2

i − 4(d − 1)

2(d − 1)

 ,
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How does Knb(G) compare?

Theorem
Let G be a d-regular graph, d ≥ 3, which is not K4,K5, or K3,3. Then

Ke(G) > Knb(G).

Theorem
Let G be a d-regular graph, d ≥ 3, which is not K4, K5 or K3,3. Then

1 − 2
d

<
Knb(G)

Ke(G)
< 1.
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When are these tight?

▶ For K4,K5, and K3,3, Knb(G) ≥ Ke(G).

▶ For complete graphs, we have limn→∞
Knb(Kn)
Ke(Kn)

= 1.

▶ What about equality in the lower bound?

Ke(G) =
4n3 + 35n2 − 122n + 216

16n
Knb(G) =

4n3 + 115n2 − 74n + 216
48n

.

From these expressions it is then readily seen that limn→∞
Knb(G)
Ke(G) = 1

3 .
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4n3 + 115n2 − 74n + 216
48n

.

From these expressions it is then readily seen that limn→∞
Knb(G)
Ke(G) = 1

3 .
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Improvement on the upper bound

Fix the degree d .

Theorem
For a family {Gk} of d-regular graphs with d fixed, d ≥ 3, and
|V (Gk )| → ∞ as k → ∞, we have

lim
k→∞

Knb(Gk )

Ke(Gk )
≤ 1 − 1

d2 .

Example
▶ Given a d-regular Ramanujan graph, the ratio of the

non-backtracking Kemeny’s constant to the edge Kemeny’s
constant will be close to the upper bound.

▶ Recall that a graph is a Ramanujan graph if its adjacency
eigenvalues have λ2, |λn| ≤ 2

√
d − 1.
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What next?

▶ What is the range of values for Knb(G), where G is a graph of
order n?

▶ How does Knb(G) compare with Ke(G)?
▶ Comparing Knb(G) with Knb(H) is weird if G and H have a

different number of edges.
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Cycle barbell graph

These graphs appear to maximise both Knb(G) and Ke(G) in an
exhaustive search over all graphs of order n with n + 1 edges, up to
n = 20.

Figure: The graph CB(3,4,6).

Definition
The cycle barbell G = CB(k ,a,b) = Ca ⊕ Pk ⊕ Cb is the 1-sum of an
a-cycle, a path on k vertices, and a b-cycle. Note
|V (G)| = a + b + k − 2 and |E(G)| = a + b + k − 1.
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Expressions for Knb and Ke for the cycle barbell

For a cycle barbell G = CB(k ,a,b), the edge Kemeny’s constant is
given by

Ke(G) =
1

a + b + k − 1
·
[
(a + 1)(a − 1)

6
(a + 2(b + k − 1)) +

(b + 1)(b − 1)
6

(b + 2(a + k − 1))

+(a + b)(k − 1)2 +
(k − 1)(2k2 − 4k + 3)

6
+ 2ab(k − 1)

]
+ a + b + k .

and the non-backtracking Kemeny’s constant by

Knb(G) =
2(a + b + k − 1)2 + 3(a + b)2 + 2ab + 4(a + b)(k − 1)− (a + b + k − 1)

2(a + b + k − 1)
.
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Extremal graphs

▶ The graph maximizing Ke(G) is CB(n − 4,3,3):

. . .

▶ The graph maximizing Knb(G) is CB(2,n/2,n/2):
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Questions

▶ Do non-backtracking random walks have lower Kemeny’s
constant than simple random walks?

Conjecture
For all graphs of sufficiently large order, Knb(G) < Ke(G).

n # graphs with Knb(G) ≥ Ke(G)

4 2
5 10
6 18
7 7
8 3
9 0
10 0
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Questions

▶ Can we develop more techniques to calculate eigenvalues of Pnb
or Knb(G)?

▶ For what graphs are the orders of magnitude of Knb(G) and
Ke(G) the same, and for what graphs they are different? By how
much they can differ?

▶ What is the largest order of magnitude of Knb(G)? All examples
here are O(n2).

▶ What graph properties lead to large or small simple walk
Kemeny’s constant versus a large non-backtracking walk
Kemeny’s constant?

▶ What about weighted graphs?
▶ What about applications?
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Thank you!

Go raibh míle maith agaibh!
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