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Overview of the talk

» Kemeny’s constant is a measure of how well-connected the
states of a Markov chain are.
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Q Kemeny’s constant for random walks on graphs
Q Weighted random walks

Q Non-backtracking random walks
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o Introduction to Markov chains
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» A Markov chain (finite, discrete-time, time-homogeneous) Cal be thought of as a
system transitioning between states over some finite state space
{81, 82,...,8n} in discrete time-steps.
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» A Markov chain (finite, discrete-time, time-homogeneous) Cal be thought of as a
system transitioning between states over some finite state space
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» For each pair of states s; and s;, there is some transition
probability t; ; representing the probability that the system moves
from s; to s; in a single time-step.

Sq So
(L @
54. .33

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



» For each pair of states s; and s;, there is some transition
probability t; ; representing the probability that the system moves
from s; to s; in a single time-step.

Sq So
@—@
0.5
54. .33

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



» For each pair of states s; and s;, there is some transition
probability t; ; representing the probability that the system moves
from s; to s; in a single time-step.

Sq So
®—@
0.5
54. .33

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



» In this way, the chain is memoryless; the movement of the chain
depends only on the current state of the system.
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Markov chains

» In this way, the chain is memoryless; the movement of the chain
depends only on the current state of the system.
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The Transition Matrix

» A Markov chain can be represented entirely by its transition
matrix T = [t;;], which is necessarily a row-stochastic matrix T;
thatis, T1 = 1.
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Long-term behaviour of a Markov chain

» The left eigenvector w = [wy ws --- wp] corresponding to the
eigenvalue 1, suchthat w' T=w"and wy + wo +--- + wp, =1,
is called the stationary vector of the Markov chain.
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Long-term behaviour of a Markov chain

» The left eigenvector w = [wy ws --- wp] corresponding to the
eigenvalue 1, suchthat w' T=w"and wy + wo +--- + wp, =1,
is called the stationary vector of the Markov chain.

» The stationary vector w describes the long-term behaviour of
the system—the i entry w; gives the long-term probability that
the system occupies state s;.
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Long-term behaviour of a Markov chain

For example, the stationary vector of

0 1 0 0

05 0 025 0.25
0 025 0 0.75
0 0 025 0.75
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Short-term behaviour of a Markov chain

Definition

The mean first passage time from / to j is the expected number of
time-steps elapsed before the system reaches state j, given that it
begins in state /. It is denoted m; ;.
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Short-term behaviour of a Markov chain

Definition

The mean first passage time from / to j is the expected number of
time-steps elapsed before the system reaches state j, given that it
begins in state /. It is denoted m; ;.

e,-T(l— T(j))_1]l, i<j;
m,-’j =

e,-T_1(I— T(j))_1]l, i>j,
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Short-term behaviour of a Markov chain

For
0 1 0 0

05 0 025 025
0 025 0 0.75
0 0 025 0.75

we can calculate
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Motivating example - Random walks on graphs

Let G be a simple undirected graph, with adjacency matrix A and
vertex degrees dy, ..., d,. Let D be the diagonal matrix
diag(d;,...,dy). Then T = D~'A s the probability transition matrix

of the random walk on G.
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Motivating example - Random walks on graphs

Let G be a simple undirected graph, with adjacency matrix A and
vertex degrees dy, ..., d,. Let D be the diagonal matrix
diag(d;,...,dy). Then T = D~'A s the probability transition matrix
of the random walk on G.
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Q Kemeny'’s constant
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Kemeny’s constant

Let T be the transition matrix for a Markov chain with n states, with
stationary vector w and mean first passage times m; ;.
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Kemeny’s constant

Let T be the transition matrix for a Markov chain with n states, with
stationary vector w and mean first passage times m; ;.

Define
n
Rj = Z wimj ;.
J=1

J#i
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Kemeny’s constant

Let T be the transition matrix for a Markov chain with n states, with
stationary vector w and mean first passage times m; ;.

Define
n
Rj = Z wimj ;.
J=1

J#i

This can be interpreted as the expected time it takes to reach a
randomly-chosen state j, beginning in state /.
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Kemeny’s constant

Let T be the transition matrix for a Markov chain with n states, with
stationary vector w and mean first passage times m; ;.

Define
n
Rj = Z wimj ;.
j=1

J#i

This can be interpreted as the expected time it takes to reach a
randomly-chosen state j, beginning in state /.

This is a constant - it doesn’t depend on the starting state!
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Kemeny’s constant

So we call it Kemeny’s constant, and denote it as K(T).
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Kemeny’s constant

So we call it Kemeny’s constant, and denote it as K(T).

We can also write

n n
K(T)=>") " wimjw,
i=1 j=1
J#i
and interpret I(T) as the expected length of a random trip in the
Markov chain.
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Q A Dbrief history of Kemeny’s constant
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Finite Markov Chains, Kemeny & Snell (1960)
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Finite Markov Chains, Kemeny & Snell (1960)

» The fundamental matrix of a Markov chain with transition matrix
T and stationary vector w is

Z=(-T+1w") .
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Finite Markov Chains, Kemeny & Snell (1960)

» The fundamental matrix of a Markov chain with transition matrix
T and stationary vector w is

Z=(-T+1w") .

» Many things can be calculated using Z.
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Finite Markov Chains, Kemeny & Snell (1960)

» The fundamental matrix of a Markov chain with transition matrix
T and stationary vector w is

Z=(-T+1w") .
» Many things can be calculated using Z.

» For example, the matrix of mean first passage times is

M= (l-Z+JZgg)W'.
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Finite Markov Chains, Kemeny & Snell (1960)

Kemeny’s constant

4.4.10 TrgorEM. Letc= D 2y Then MaT =c.
i

PROOF.
Mot = (I—Z+EZsg) Do
= ([-Z+EZg)¢
= £(nZagk) = ct.
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Finite Markov Chains, Kemeny & Snell (1960)

Kemeny’s constant

4.4.10 TrgorEM. Letc= D 2y Then MaT =c.
i

PROOF.
MoT = (I —Z+ EZyg)Da?
= (I-Z+EBZg)
= §(nZagk) = ct.

This statement (translated) says that Mw = KC(T)1; i.e.
>_jmijw; = K(T) for all i.
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Introduction to Probability with Computing, Snell

(1975)
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Introduction to Probability with Computing, Snell
(1975)

290 MARKOV CHAINS

Sam, sWis=sTazt camid =mRe
PR i 1 j]]

The constant K 1is called "Kemeny's constant."
offered for the first pe;ja

plausible reason for the
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Levene & Loizou (2002)

» M. Levene, G. Loizou, 2002. Kemeny’s constant and the random
surfer. The American Mathematical Monthly, 109(8),
pp.741-745.
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Levene & Loizou (2002)

» M. Levene, G. Loizou, 2002. Kemeny’s constant and the random
surfer. The American Mathematical Monthly, 109(8),
pp.741-745.

Let T be the transition matrix of a Markov chain, with eigenvalues
1, Mo, ..., An. Then

n
’
K(T) = 271 —
j=2 !
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Bounds on Kemeny’s constant

Proposition
For any Markov chain with transition matrix T,

n—1
K(T) > 5
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Bounds on Kemeny’s constant

For any Markov chain with transition matrix T,

n—1
> )
K(T) > 5
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Bounds on Kemeny’s constant

For any Markov chain with transition matrix T,

n—1
> )
K(T) 2 =

» Let the eigenvalues of T be 1, Ao, ..., Ap.
» Foreachj, |\] < 1.
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Bounds on Kemeny’s constant

For any Markov chain with transition matrix T,

n—1
> )
K(T) 2 =

» Let the eigenvalues of T be 1, Ao, ..., Ap.
» Foreachj, |\] < 1.

i 1
> If Ajis real, then - >

N —
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Bounds on Kemeny’s constant

For any Markov chain with transition matrix T,

n—1
> )
K(T) 2 =

» Let the eigenvalues of T be 1, Ao, ..., Ap.
» Foreachj, |\] < 1.

» If ) is real, then 1_‘—A] > 1.

» Whatif \; = a+ bi?
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» Complex eigenvalues must occur in conjugate pairs,
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» Complex eigenvalues must occur in conjugate pairs, and

1 1 2—(\+N)

VR I VN (W Y
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» Complex eigenvalues must occur in conjugate pairs, and

1 +1 B 2—(\+N)
=X 1-%  (1=-2)01-X
223

1-2a+ a2+ b2
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» Complex eigenvalues must occur in conjugate pairs, and

1 1T 2—=(N+X)
1—A,+1—X,- (=0 =X)
B 2_2a
- 1—-2a+ a2+ b2
> 1.
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R

» Complex eigenvalues must occu

r in conjugate pairs, and

1 N 1 2N+ N)
T—x 14 (1=X)(1-XN)
B 223
- 1-2a+a&+b?
> 1.
» So clearly,
(=S 1t
1—)\j_ 2
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Extremal example - directed cycle
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Extremal example - directed cycle

010 0
0 0 1 0
T = Pl

o0 --- 1
|1 00 --- 0|
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Q Kemeny’s constant for random walks on graphs
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Methods of computation |
Eigenvalues and related expressions

The transition matrix for a random walk on a graphis T = D~'A, so

n
’
K(G) =) —
j=2 !
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Methods of computation |
Eigenvalues and related expressions

The transition matrix for a random walk on a graphis T = D~'A, so

n
’
K(G) =) —
j=2 /

We also have the normalized Laplacian:

L=Dz2D-A)D 2
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Methods of computation |
Eigenvalues and related expressions

The transition matrix for a random walk on a graphis T = D~'A, so

n
’
K(G) =) —
j=2 /

We also have the normalized Laplacian:

L=Dz2D-A)D 2

» It's not hard to show that £ is similarto | — D—1A.

» If £ has eigenvalues 0 = pg < 1 < -+ < up_1 < 2, then we can
define
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Methods of computation |

Eigenvalues and related expressions

» If £ is the normalized Laplacian of a graph G, with characteristic

polynomial

1

CoX" 4+ Cr1 X" 4+ . cox® + 1
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Methods of computation |
Eigenvalues and related expressions

» If £ is the normalized Laplacian of a graph G, with characteristic

polynomial

1

CoX" 4+ Cr1 X" 4+ . cox® + 1

then o

K(©G) =~
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Minimum value for IC(G)




Minimum value for IC(G)

K(Kn)=n—2+—




Maximum value for IC(G)

(Conjectured)

.m\. © @ @ © © ./m.
Y Y

Ny Ny

K(G) = 514n3 + O(r?)

» Aksoy, Chung, Tait, Tobin (2018): i = (14 0(1))gzn°
» Breen, Butler, Day, DeArmond, Lorenzen, Qian, Riesen (2019):
K(G) = g5 + O(n?)
(Conjectured by Aldous-Fill to be the extremal graph for both)
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Methods of computation |l

Spanning 2-forests

Theorem (Kirkland, Zeng, 2014)

Let G be a simple undirected graph.
» Letd=[di d» --- dy| be the degree vector of G.
» Let m be the number of edges.
» Let T be the number of spanning trees of G.

» Let f;; be the number of spanning forests of G, consisting of
exactly two trees, one containing v; and one containing v;.
Then: -
d' Fd 1
K(G) = Amr  4mr %: didf; .
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Formulas for graphs with cut-vertices or bridges

» A 1-separation formula for the graph Kemeny constant and
Braess edges.
Nolan Faught, Mark Kempton, Adam Knudson.
Journal of Mathematical Chemistry 60:1 (2022), 49—69.

» Kemeny’s constant for a graph with bridges.
Jane Breen, Emanuele Crisostomi, Sooyeong Kim.
Discrete Applied Mathematics 322 (2022), 20—-35.
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What’s known?

Here is a list of graph classes for which Kemeny’s constant has been
studied:

» Trees

» Multipartite graphs
» Barbell-type graphs
» Cycle barbells

» Flower graphs

» Threshold graphs
» Split graphs
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Overview of the rest of the talk

What are the interesting questions to ask for extensions of simple,
undirected, unweighted graphs?
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Overview of the rest of the talk

What are the interesting questions to ask for extensions of simple,
undirected, unweighted graphs?

» Random walks on weighted graphs
» Many good questions coming from applications

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



Overview of the rest of the talk

What are the interesting questions to ask for extensions of simple,
undirected, unweighted graphs?

» Random walks on weighted graphs
» Many good questions coming from applications
» Non-backtracking random walks on graphs

» tied in with interesting results in mixing times
» more interesting questions about the influence of graph structure
on Kemeny’s constant
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Q Weighted random walks

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



What is a weighted random walk?

\'
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O OO
Al=gind © =
Aw ONND O
O vlwNI= O
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Real-world applications of Kemeny’s constant

» Road networks

» Globalization of the economy

» Robotic surveillance

» Social networks and clustering

» Contact networks and disease spread
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Robotic surveillance paper

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 60, NO. 12, DECEMBER 2015

Robotic Surveillance and Markov Chains With
Minimal Weighted Kemeny Constant

Rushabh Patel, Student Member, IEEE, Pushkarini Agharkar, Student Member, IEEE, and
Francesco Bullo, Fellow, IEEE

Abstract—This article provides analysis and optimization re-
sults for the mean first passage time, also known as the Kemeny
constant, of a Markov chain. First, we generalize the notion of the
Kemeny constant to environments with heterogeneous travel and
service times, denote this generalization as the weighted Kemeny
constant, and we characterize its properties. Second, for reversible
Markov chains, we show that the minimization of the Kemeny
constant and its weighted counterpart can be formulated as convex
optimization problems and, moreover, as semidefinite programs.
Third, we apply these results to the design of stochastic surveil-
lance strategies for quickest detection of anomalies in network
environments. We numerically illustrate the proposed design:
compared with other well-known Markov chains, the performance
of our Kemeny-based strategies are always better and in many
cases substantially so.

Index Terms—Fastest mixine Markov chain (FMMC). Kemenv

Kemeny’s consta

vated by the desire to design surveillance strategies with pre-
specified stationary distributions. that are easily implementable
and inherently unpredictable. In areas of research outside of
robotics, the study of the mean first passage time is potentially
useful in determining how quickly information propagates in an
online network [4] or how quickly an epidemic spreads through
a contact network [40].

B. Literature Review

For a random walk associated with a Markov chain, the mean
first passage time, also known as the Kemeny constant. of the
chain is the expected time taken by a random walker to travel
from an arbitrarv start node to a second randomlv-selected

AGT Seminar



Robotic surveillance problem
Summary

» Suppose there is a persistent intruder in a fixed location of our
environment, and our environment is divided into regions that
can be surveilled in one time-step.
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Robotic surveillance problem
Summary

» Suppose there is a persistent intruder in a fixed location of our
environment, and our environment is divided into regions that
can be surveilled in one time-step.

» Represent the environment by a graph, with nodes representing
surveillance regions, and edges between nodes if the robotic
surveillance agent can move from one to the other in one
time-step.
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Robotic surveillance problem
Summary

» Suppose there is a persistent intruder in a fixed location of our
environment, and our environment is divided into regions that
can be surveilled in one time-step.

» Represent the environment by a graph, with nodes representing
surveillance regions, and edges between nodes if the robotic
surveillance agent can move from one to the other in one
time-step.

» Consider Kemeny’s constant for a random walk on a weighted
graph as a measure of the expected length of time to capture the
intruder.
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Robotic surveillance problem
Summary

» Suppose there is a persistent intruder in a fixed location of our
environment, and our environment is divided into regions that
can be surveilled in one time-step.

» Represent the environment by a graph, with nodes representing
surveillance regions, and edges between nodes if the robotic
surveillance agent can move from one to the other in one
time-step.

» Consider Kemeny’s constant for a random walk on a weighted
graph as a measure of the expected length of time to capture the
intruder.

» How should the weights of the edges of the graph be chosen so
as to minimize Kemeny’s constant?
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Robotic surveillance results

» Determine an expression for C(T) as the trace of an appropriate
matrix.
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Robotic surveillance results

» Determine an expression for C(T) as the trace of an appropriate
matrix.

» Show that the set of all matrices achieving the minimum IC(T) is
a convex set.
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Robotic surveillance results

» Determine an expression for C(T) as the trace of an appropriate
matrix.

» Show that the set of all matrices achieving the minimum IC(T) is
a convex set.

» Formulate the problem as a convex optimization problem.
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Robotic surveillance results

» Determine an expression for C(T) as the trace of an appropriate
matrix.

» Show that the set of all matrices achieving the minimum IC(T) is
a convex set.

» Formulate the problem as a convex optimization problem.
» Solve it using semi-definite programming.
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Kemeny-based testing for COVID-19

[physics.soc-ph] 24 Jul 2020

Kemeny-based testing for COVID-19

Serife Yilmaz,* Ekaterina Dudkina,! Michelangelo Bin,! Emanuele Crisostomi,! Pietro Ferraro,*
Roderick Murr:ly-Smith.§ Thomas Parisini,”*%:| Lewi Stone,** Robert Shorten*
*Dyson School of Design Engineering, Imperial College London, London, UK.
TDep:mmen[ of Electrical and Electronic Engineering, Imperial College London, London, UK.
1Deparn-rmm of Energy, Systems, Territory and Constructions Engineering, University of Pisa, Pisa, Italy
Email: {emanuele.crisostomi } @unipi.it
iSchool of Computing Science, University of Glasgow, Glasgow, Scotland.
1 Department of Engineering and Architecture, University of Trieste, Trieste, Italy.
I KIOS Research and Innovation Center of Excellence, University of Cyprus, Nicosia, Cyprus.
** The George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel.

Abstract—Testing, tracking and tracing abilities have been iden-
tified as pivotal in helping countries to safely reopen activities
after the first wave of the COVID-19 virus. Contact tracing apps
give the unprecedented possibility to reconstruct graphs of daily
contacts, so the question is who should be tested? As human
contact networks are known to exhibit community structure, in
this paper we show that the Kemeny constant of a graph can
be used to identify and analyze bridges between communities
in a graph. Our ‘Kemeny indicator’ is the change in Kemeny
constant when a node or edge is removed from the graph. We
show that testing individuals who are associated with large values
of the Kemeny indicator can help in efficiently intercepting new
virus outhreaks, when they are still in their early stage. Extensive
simulations provide promising results in early identification and
in blocking possible ‘super-spreaders’ links that transmit disease
between different communities.

Index Terms—Markov chains, Covid-19, Kemeny constant
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Kemeny’s consta

rate, and a high compliance of people in using this app, it
could significantly help to stop the epidemic as shown in
[10]. The benefits of efficient testing are clear. In addition
to identifying infected individuals and tracing their contacts,
fast diagnostic tests also allow estimation of the degree of
spread of the virus in a region.

Accordingly, one proposal is to perform the tracing task by
using Bluetooth connectivity to recognize when a prolonged
proximity between two smartphones (and thus, their owners)
occurs. For instance, the smartphone app that has been rec-
ommended by the Italian government stores a contact when
a proximity of less or equal than two meters for at least
15 minutes is recorded.! Thus, the tracing task is currently
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Kemeny’s constant and COVID-19
Summary

» Suppose there is a contact network for how individuals might
spread a communicable disease to other people in their
community.
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Kemeny’s constant and COVID-19
Summary

» Suppose there is a contact network for how individuals might
spread a communicable disease to other people in their
community.

» Compute Kemeny’s constant for a random walk on this graph.
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Kemeny’s constant and COVID-19
Summary

» Suppose there is a contact network for how individuals might
spread a communicable disease to other people in their
community.

» Compute Kemeny’s constant for a random walk on this graph.

» For each vertex (individual) in the graph, compute Kemeny’s
constant for the random walk on the graph with that vertex
removed.

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



Kemeny’s constant and COVID-19
Summary

» Suppose there is a contact network for how individuals might
spread a communicable disease to other people in their
community.

» Compute Kemeny’s constant for a random walk on this graph.

» For each vertex (individual) in the graph, compute Kemeny’s
constant for the random walk on the graph with that vertex
removed.

» Which vertex causes the biggest increase in Kemeny’s constant
after its removal?
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Kemeny’s constant and COVID-19

» Kemeny-based testing for COVID-19. Serife Yilmaz, Ekaterina
Dudkina, Michelangelo Bin, Emanuele Crisostomi, Pietro
Ferraro, Roderick Murray-Smith, Thomas Parisini, Lewi Stone,
Robert Shorten. PLoS ONE (2020), 15:11.

» A comparison of centrality measures and their role in
controlling the spread in epidemic networks. Ekaterina
Dudkina, Michelangelo Bin, Jane Breen, Emanuele Crisostomi,
Pietro Ferraro, Steve Kirkland, Jakub Maracek, Roderick
Murray-Smith, Thomas Parisini, Lewi Stone, Serife Yilmaz,
Robert Shorten. International Journal of Control (2023), in

press.
Node Degree Kemeny Constant
e = ‘ b 3
S pE
# : + .
k N e/ N
¢ ok
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Kemeny’s constant and road networks

» An Edge Centrality Measure Based on the Kemeny
Constant. Diego Altafini, Dario A Bini, Valerio Cutini, Beatrice
Meini, Federico Poloni. SIAM Journal on Matrix Analysis and
Applications 44:2 (2023), 648—-669.

Kemeny-based centrality r=1e-8, filtered
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Altafini, Bini, Cutini, Meini, Poloni

ldea:
» Determine which road plays the biggest role in a road network.
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Altafini, Bini, Cutini, Meini, Poloni

Idea:
» Determine which road plays the biggest role in a road network.
» Given a weighted, undirected graph G, Kemeny’s constant for
the weighted random walk on G indicates how well-connected
the road network is.
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Altafini, Bini, Cutini, Meini, Poloni

ldea:
» Determine which road plays the biggest role in a road network.

» Given a weighted, undirected graph G, Kemeny’s constant for
the weighted random walk on G indicates how well-connected
the road network is.

» If removing an edge from the graph causes K(T) to increase by
a lot, then it is important to the connectivity of the graph.
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Altafini, Bini, Cutini, Meini, Poloni

ldea:
» Determine which road plays the biggest role in a road network.

» Given a weighted, undirected graph G, Kemeny’s constant for
the weighted random walk on G indicates how well-connected
the road network is.

» If removing an edge from the graph causes K(T) to increase by
a lot, then it is important to the connectivity of the graph.

» Determine, for each edge e in G, the value of

c(e) = K(G - e) — K(G).
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Altafini, Bini, Cutini, Meini, Poloni

ldea:
» Determine which road plays the biggest role in a road network.

» Given a weighted, undirected graph G, Kemeny’s constant for
the weighted random walk on G indicates how well-connected
the road network is.

» If removing an edge from the graph causes K(T) to increase by
a lot, then it is important to the connectivity of the graph.

» Determine, for each edge e in G, the value of
c(e) = K(G—-e)— K(G).

» This gives you a centrality ‘score’ for each road in the network.
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Altafini, Bini, Cutini, Meini, Poloni

Results

Let A be the (weighted) adjacency matrix of the graph, and suppose
we remove edge {/,j}.
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Altafini, Bini, Cutini, Meini, Poloni

Results

Let A be the (weighted) adjacency matrix of the graph, and suppose
we remove edge {/,j}.

0 1

> Z\:A—a,-,,-U[1 0

] UT,where U= [g; g].
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Altafini, Bini, Cutini, Meini, Poloni

Results

Let A be the (weighted) adjacency matrix of the graph, and suppose
we remove edge {/,j}.

~ 0 1
» A=A—a;U [1 O] UT,where U= [g; g].
» Then T = T + UVT where
T S; 0 TaA 4. 0 (d,’ — a,-7j)*1 T
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Altafini, Bini, Cutini, Meini, Poloni

Results

Let A be the (weighted) adjacency matrix of the graph, and suppose
we remove edge {/,j}.

~ 0 1
» A=A—a;U [1 O] UT,where U= [g; g].
» Then T = T + UVT where
T S; 0 TaA 4. 0 (d,’ — a,-7j)*1 T

» Theorem: c(e) = trace((/ — VT ZU)~1VT Z2U)
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Altafini, Bini, Cutini, Meini, Poloni

Results

Let A be the (weighted) adjacency matrix of the graph, and suppose
we remove edge {/,j}.

~ 0 1
» A=A—a;U [1 O] UT,where U= [g; g].
» Then T = T + UVT where
T S; 0 TaA 4. 0 (d,’ — a,-7j)*1 T

» Theorem: c(e) = trace((/ — VT ZU)~1VT Z2U)
» The main pursuit in this article, though, is finding efficient ways
to do this for every edge in the network.
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Altafini, Bini, Cutini, Meini, Poloni

Results (continued)

» Judgment call: when deleting an edge {/,}, add the lost weight
aj to aloop at / and a loop at j.
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Altafini, Bini, Cutini, Meini, Poloni

Results (continued)

» Judgment call: when deleting an edge {/,}, add the lost weight
aj to aloop at / and a loop at j.
» This means c(e) is always nonnegative (no Braess edges)
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Altafini, Bini, Cutini, Meini, Poloni

Results (continued)

» Judgment call: when deleting an edge {/,}, add the lost weight
aj to aloop at / and a loop at j.
» This means c(e) is always nonnegative (no Braess edges)
» This also means the new formula for c(e) involves a positive
semidefinite matrix, and the Cholesky decomposition of this
allows for efficient computation of all centrality scores c(e)
(O(r° + m))
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Altafini, Bini, Cutini, Meini, Poloni

Results (continued)

» Judgment call: when deleting an edge {/,}, add the lost weight
aj to aloop at / and a loop at j.
» This means c(e) is always nonnegative (no Braess edges)
» This also means the new formula for c(e) involves a positive
semidefinite matrix, and the Cholesky decomposition of this
allows for efficient computation of all centrality scores c(e)

(O(n® + m))
o;%ooo o;%ooo 0 00 0 0O
%oggoo éégooo 0 1 0-fo00
i1 09010 o LT o001l o0 0 0 00 00O
— | 38 — | 8 3 =
T oiooi% T OOO%?%EO—%O%OO
oo%%o5 oo%§o5 0 0 00 00
000 5 30 000 5 30 0 000 00O
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Questions about weighted random walks from

applications

» Can we find good expressions and bounds for the difference in
Kemeny’s constant after removing an edge, or removing a
vertex?
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Questions about weighted random walks from

applications

» Can we find good expressions and bounds for the difference in
Kemeny’s constant after removing an edge, or removing a
vertex?

» Under what circumstances does the structure of the graph
impose that (G — e) < K£(G)? (i.e. when is an edge a Braess
edge?)

Jane Breen (Ontario Tech) Kemeny’s constant AGT Seminar



Q Non-backtracking random walks
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Kemeny’s constant for nonbacktracking random walks

» Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin.
Non-backtracking random walks mix faster. Communications in
Contemporary Mathematics 9, no. 04 (2007): 585-603.
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Kemeny’s constant for nonbacktracking random walks

» Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin.
Non-backtracking random walks mix faster. Communications in
Contemporary Mathematics 9, no. 04 (2007): 585-603.

» Mixing time ~ size of the second largest eigenvalue p, of the
transition matrix.
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Kemeny’s constant for nonbacktracking random walks

» Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin.
Non-backtracking random walks mix faster. Communications in
Contemporary Mathematics 9, no. 04 (2007): 585-603.

» Mixing time ~ size of the second largest eigenvalue p, of the
transition matrix.

» Kemeny’s constant ~ ‘expected time to mixing’ (Hunter)
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Kemeny’s constant for nonbacktracking random walks

» Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin.
Non-backtracking random walks mix faster. Communications in
Contemporary Mathematics 9, no. 04 (2007): 585-603.

» Mixing time ~ size of the second largest eigenvalue p, of the
transition matrix.

» Kemeny’s constant ~ ‘expected time to mixing’ (Hunter)
> ...
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Kemeny’s constant for nonbacktracking random walks

» Noga Alon, Itai Benjamini, Eyal Lubetzky, and Sasha Sodin.
Non-backtracking random walks mix faster. Communications in
Contemporary Mathematics 9, no. 04 (2007): 585-603.

» Mixing time ~ size of the second largest eigenvalue p, of the
transition matrix.

» Kemeny’s constant ~ ‘expected time to mixing’ (Hunter)

v

» Do non-backiracking random walks have smaller Kemeny’s
constant than simple random walks?
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Kemeny’s constant for nonbacktracking random walks

» Kemeny’s constant for nonbacktracking random walks.
Jane Breen, Nolan Faught, Cory Glover, Mark Kempton, Adam
Knudson, Alice Oveson.

Random Structures & Algorithms 63:2 (2023), 343—363.
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Example of non-backtracking random walk
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Example of non-backtracking random walk
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Example of non-backtracking random walk
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Example of non-backtracking random walk
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Random walks on the edge-space of a graph
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Random walks on the edge-space of a graph
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Random walks on the edge-space of a graph
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Definition of edge-space random walks

The transition matrix P, for the simple random walk on the edge
space of Gis a 2m x 2m matrix defined entrywise as

1 TR
(@ _) Gy =Kk
Paij). ko) { 0, otherwise.
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Definition of edge-space random walks

The transition matrix P, for the simple random walk on the edge
space of Gis a 2m x 2m matrix defined entrywise as

1 i .
(&) ) agyy =k
P,k { 0, otherwise.

v

The transition matrix Ppy, for the simple random walk on the edge
space of G is a 2m x 2m matrix defined entrywise as

(nb) :{ dngTa if j =k AND ¢ # i;

Pij) (k.0 0, otherwise.
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Example

(1,2) (1,3) (1,4) (2,1) (2,3) (3,1) (3,2) (3,4) (4,1) (4,3)

(1,2) / 0 0 0 0 . 0 0 0 0 0
(1,3)] © 0 0 0 0 0 3 . 0 0
(1,4)| o 0 0 0 0 0 0 0 0 1
(2,1)] o0 . 3 0 0 0 0 0 0 0
(2,3)| 0 0 0 0 0 . 0 . 0 0
@G| 3 0 3 0 0 0 0 0 0 0
(3,2 o0 0 0 % 0 0 0 0 0 0
(3,4)| o0 0 0 0 0 0 0 0 . 0
@l 3 . 0 0 0 0 0 0 0 0
(43)\ 0 0 0 0 0 . 3 0 0 0
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Example

(1,2) (1,3) (1,4) (2,1) (2,3) (3,1) (3,2) (3,4) (4,1) (4,9

(1,2) 1
(1,3)
(1,4)
(2,1)
(2,3)
(3,1)
(3.2)
(3,4)
(4.1)
(4,3)

oN=O ON—- O O O O O
oON—=O O O ON—=-0O O O =~
O O O ON=ON=O O O
[Nl eolNelNoNoNoNo)
O OO OO O OoOoOo

N O O O ON-O O OO
N O O OO O O oMo
O OO O ON-= O ON=O
OO+ 0000000
O OO0 OO0 OO —=0O0
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Some notation and notes

» We define K(Pe) =: Ke(G), and K(Ppp) =: Knp(G).
» Non-backtracking Kemeny’s constant cannot be defined for
graphs with pendent vertices, or for cycles.
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Some notation and notes

» We define K(Pe) =: Ke(G), and K(Ppp) =: Knp(G).
» Non-backtracking Kemeny’s constant cannot be defined for
graphs with pendent vertices, or for cycles.

» We will only look at graphs with minimum degree two.
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Some notation and notes

» We define K(Pe) =: Ke(G), and K(Ppp) =: Knp(G).
» Non-backtracking Kemeny’s constant cannot be defined for
graphs with pendent vertices, or for cycles.

» We will only look at graphs with minimum degree two.

» To compare the behaviour of the simple random walk and the
non-backtracking walk,
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Some notation and notes

» We define K(Pe) =: Ke(G), and K(Ppp) =: Knp(G).
» Non-backtracking Kemeny’s constant cannot be defined for
graphs with pendent vertices, or for cycles.

» We will only look at graphs with minimum degree two.

» To compare the behaviour of the simple random walk and the
non-backtracking walk, it makes more sense to compare Cp(G)
with KCe(G), not K\ (G).
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Kemeny’s constant for P,

Let G be a connected graph with |V(G)| = n and |E(G)| = m. Then

Ke(G) = Kv(G) +2m —n.
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Kemeny’s constant for P,

Let G be a connected graph with |V(G)| = n and |E(G)| = m. Then

Ke(G) = Kv(G) +2m —n.

Proof:
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Kemeny’s constant for P,

Let G be a connected graph with |V(G)| = n and |E(G)| = m. Then

Ke(G) = Kv(G) +2m —n.

Proof: Uses a neat matrix factorization.
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Matrix factorization

Definition

The startpoint incidence operator of G is the n x 2m matrix T with
rows indexed by the vertices and columns indexed by the directed
edges, such that

1, fu=v;
0, otherwise.

T(U7 (Vv W)) = {

(1,2) (1,3) (1,4) (2,1) (2,3) (3,1) (3,2) (3,4) (4,1) (4,3
1 1 1 0 0 0 0 0 0 0

0 0 0 0 0
T 1 1 1 0 0
0 0 0 1 1

o O =

’
2| o 0 0 1
“3| o 0 0 0

4\ o 0 0 0
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Matrix factorization

Definition

The endpoint incidence operator of G is the 2m x n matrix S with
rows indexed by the directed edges and columns indexed by the
vertices, such that

1, ifv=w,
0, otherwise.

S((u,v),w) = {

(1,2) (1,3) (1,4) (2,1) (2,3) (3,1) (3,2) (3,4) (4,1) (4,3

1 0 0 0 1 0 1 0 0 1 0
ST 2 1 0 0 0 0 0 1 0 0 0
3 0 1 0 0 1 0 0 0 0 1
4 0 0 1 0 0 0 0 1 0 0
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Matrix factorization

» The edge-space adjacency matrix Ae can be factored
Ae = ST.

» The ordinary adjacency matrix A can be factored
A=TS.

» Let 7 be the edge reversal operator - the 2m x 2m matrix with
rows and columns both indexed by E’ that switches a directed
edge with its opposite.

» Then A, = ST — 7.
Pe = D;'(ST)
> Ppp=(De— 1)"(TS - 7).

v
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Kemeny’s constant for P,

Let G be a connected graph with |V(G)| = nand |E(G)| = m. Then

Ke(G) = Kv(G) +2m — n.

Proof:
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Kemeny’s constant for P,

Let G be a connected graph with |V(G)| = nand |E(G)| = m. Then

Ke(G) = Kv(G) +2m — n.

Proof:

» Po=D;'ST =(D;'S)T

» The eigenvalues of (D;'S)T are those of T(D;'S), with enough

extra zeros. (2m — n of them)

» T(D;'S)=TSD~' = AD~'

» AD'~ D 'A=P.
Therefore the eigenvalues of P, are the eigenvalues of P with an
additional 2m — n zero eigenvalues.
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Non-backtracking random walks on regular graphs

Previous work

» Cory Glover and Mark Kempton. Some spectral properties of the
non-backtracking matrix of a graph. Linear Algebra and its
Applications 618 (2021): 37-57.
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Non-backtracking random walks on regular graphs

Previous work

» Cory Glover and Mark Kempton. Some spectral properties of the
non-backtracking matrix of a graph. Linear Algebra and its
Applications 618 (2021): 37-57.

Do nonbacktracking random walks on regular graphs mix faster, and
how much faster can it be?
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Edge-space random walks on regular graphs

Lemma

Let G be a connected d-regular graph of order n, where d > 3, with
adjacency spectrumd = Xy > Ao > --- > \p. Then

Ke(G) = n(d — 1)+Z%.
=2 !
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Edge-space random walks on regular graphs

Let G be a connected d-regular graph of order n, where d > 3. Then

ijgnJrL_ﬁ

Knb(G) = d d—2 d

Proof:
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Edge-space random walks on regular graphs

Let G be a connected d-regular graph of order n, where d > 3. Then

d - 2)Ke(G) 1 n

+2n+ ——— -

K(G) = | d d-2 d

Proof:

» The spectrum of the non-backtracking transition probability
matrix of a d-regular graph is

(20 (2 = hs)

d—1 d—1 ’ 2(d — 1)
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How does K.,(G) compare?

Let G be a d-regular graph, d > 3, which is not K4, Ks, or K3 3. Then

ICe(G) > ’Cnb(G)'
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How does K.,(G) compare?

Let G be a d-regular graph, d > 3, which is not K4, Ks, or K3 3. Then

’Ce(G) > Knb(G)' )
Let G be a d-regular graph, d > 3, which is not K4, Ks or K3 3. Then

2 ]Cnb(G)
123 < K6

< 1.
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When are these tight?
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When are these tight?

> For Ky, Ks, and Ks3, Knp(G) > Ko(G).
» For complete graphs, we have limp_,oo ’C":((,fn")) —1.
» What about equality in the lower bound?

e ]
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When are these tight?

> For Ky, Ks, and Ks3, Knp(G) > Ko(G).
» For complete graphs, we have limp_,oo ’C":((,fn")) —1.
» What about equality in the lower bound?

GX I I XD
L g
_ 4n® 4 35n% —122n+ 216
B 16n

4P 411512 — 74n + 216

Kel(G) Kn(G) = o
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When are these tight?

> For Ky, Ks, and Ks3, Knp(G) > Ko(G).
» For complete graphs, we have limp_,oo ’C":((,fn")) —1.
» What about equality in the lower bound?

GX I I XD
L g
_ 4n® 4 35n% —122n+ 216
B 16n

4n® +115n° — 74n + 216
ICnb(G) = 48n :

’Cnb G) — 1
Ke(G) —

Ke(G)

From these expressions it is then readily seen that limp_,

wl
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Improvement on the upper bound

Fix the degree d.
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Improvement on the upper bound

Fix the degree d.

For a family { Gk} of d-regular graphs with d fixed, d > 3, and
|V(Gk)| — oo as k — oo, we have

T G

koo Ke(Ge) —  d2
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Improvement on the upper bound

Fix the degree d.

For a family { Gk} of d-regular graphs with d fixed, d > 3, and
|V(Gk)| — oo as k — oo, we have

T G

koo Ke(Ge) —  d2

» Given a d-regular Ramanujan graph, the ratio of the
non-backtracking Kemeny’s constant to the edge Kemeny’s
constant will be close to the upper bound.

» Recall that a graph is a Ramanujan graph if its adjacency
eigenvalues have X\, [Ap| < 2vd —1.

v
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What next?
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What next?

» What is the range of values for K, (G), where G is a graph of
order n?
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» What is the range of values for K, (G), where G is a graph of
order n?
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What next?

» What is the range of values for K, (G), where G is a graph of
order n?

» How does K, (G) compare with Ko(G)?

» Comparing Knp(G) with Kpp(H) is weird if G and H have a
different number of edges.
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Cycle barbell graph

These graphs appear to maximise both KC,p(G) and Ke(G) in an
exhaustive search over all graphs of order n with n+ 1 edges, up to
n = 20.
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Cycle barbell graph

These graphs appear to maximise both KC,p(G) and Ke(G) in an
exhaustive search over all graphs of order n with n+ 1 edges, up to
n = 20.

Figure: The graph CB(3,4,6).

Definition

The cycle barbell G = CB(k,a, b) = C3® Px @ Cp is the 1-sum of an
a-cycle, a path on k vertices, and a b-cycle. Note
|V(G)|=a+b+k—2and |[E(G)|=a+b+k—1.
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Expressions for K, and K for the cycle barbell
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Expressions for K, and K for the cycle barbell

For a cycle barbell G = CB(k, a, b), the edge Kemeny’s constant is
given by

7(b+1)6(b71)(b+2(a+k—1))

Ko(G) = 1 [(a+1)(a71)

A b k=T 6 (a+2(b+k—1))+
2+(k—1)(2k2—4k+3)

+a+ b)(k —1) s

+2abk —1)| +a+b+k.
and the non-backtracking Kemeny’s constant by

2(a+b+k—1)2+3(a+b)?+2ab+4(a+b)k—1)—(a+b+k—1)

Kn(G) = 2(a+b+k—1)
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Extremal graphs
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Extremal graphs

» The graph maximizing K¢(G) is CB(n— 4,3, 3):
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Extremal graphs

» The graph maximizing K¢(G) is CB(n— 4,3, 3):

» The graph maximizing lC,,b(G) is CB(2 n/2 n/2):

VARV
N S\ /
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Questions

» Do non-backtracking random walks have lower Kemeny’s
constant than simple random walks?
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Questions

» Do non-backtracking random walks have lower Kemeny’s
constant than simple random walks?

For all graphs of sufficiently large order, K,5(G) < Ke(G).
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Questions

» Do non-backtracking random walks have lower Kemeny’s
constant than simple random walks?

For all graphs of sufficiently large order, K,5(G) < Ke(G).

n | # graphs with Knp(G) > Ke(G)
4 2
5 10
6 18
7 7
8 3
9 0
10 0
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Questions

» Can we develop more techniques to calculate eigenvalues of Py
or Knp(G)?

» For what graphs are the orders of magnitude of K,,(G) and
Ke(G) the same, and for what graphs they are different? By how
much they can differ?

» What is the largest order of magnitude of K, (G)? All examples
here are O(n?).

» What graph properties lead to large or small simple walk
Kemeny’s constant versus a large non-backtracking walk
Kemeny’s constant?

» What about weighted graphs?
» What about applications?
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o Concluding comments
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Thank you!

Go raibh mile maith agaibh!
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