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Graphs as mathematical models

A quantum spin network is a network of interacting qubits.

It can be modelled by a connected
weighted undirected graph X , where the vertices and edges of X represent the qubits and their
interactions, respectively.

Assign a quantum state to some vertex u of X , which can be represented by the standard basis
vector eu. How does this quantum state propagate across the graph?

Schrödinger’s equation dictates that the evolution of eu is given by

ψ(t) = U(t)eu,

where ψ(t) is the state of the quantum system represented by X at time t.
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Quantum walks
Let H be a real symmetric matrix such that Hu,v = 0 if and only if u and v are not adjacent.

A
continuous-time quantum walk on X is determined by the matrix

U(t) = exp(itH) =
∞∑

k=0

(it)kHk

k! ,

where i2 = −1 and t ∈ R. Note that U(t) is symmetric and unitary, and so

n∑
j=1

|U(t)u,j |2= 1 for each vertex u in X .

Hence, |U(t)u,v |2 is interpreted as the probability that the quantum state initially at vertex u is
found at vertex v at time t. (Every row/column of U(t) determines a probability distribution).
Note: Typically, H is taken to be the adjacency matrix A or the Laplacian matrix L of X .
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A visualization

at t = 0
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A visualization

at 0 < t < π√
2
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A visualization

at t = π√
2
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A visualization

at t = 2π√
2
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Perfect state transfer

Definition
Vertices u and v admit perfect state transfer (PST) in X if for some τ > 0,

|U(τ)u,v |= 1.

If u = v , then we say that u is periodic.

Definition
Vertices u and v admit pretty good state transfer (PGST) in X if for some {τk} ⊆ R+,

lim
k→∞

|U(τk)u,v |= 1.
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Spectral decomposition
Let λ1, . . . , λr are the distinct real eigenvalues of A and Ej be the orthogonal projection matrix
associated to λj . Then

A =
r∑

j=1
λjEj .

Each Ej =
∑k

j=1 wiwT
i , where {w1, . . . ,wk} is an ON basis for the eigenspace of λj . The Ej ’s

are real, symmetric, idempotent, pairwise multiplicatively orthogonal and sum to identity.

U(t) = exp(itA) =
r∑

j=1
exp(itλj)Ej .

Definition
1 The eigenvalue support of vertex u in X is the set σu(A) = {λj : Ejeu ̸= 0}.
2 Vertices u and v are strongly cospectral in X if Ejeu = ±Ejev for each j .
3 Vertices u and v are cospectral if (Ej)u,u = ±(Ej)v ,v for each j .
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Paths and complete graphs

Theorem (Christandl et al., Godsil et al.)

1 P2 and P3 are the only paths that exhibit PST.
2 Pn exhibits PGST between end vertices if and only if n = p − 1, n = 2p − 1 and

n = 2m − 1, where p is prime and m is an integer.

For Kn, A = J − I, the eigenvalues of A are n − 1 and −1, with 1 and e1 − ej as eigenvectors.

A = (n − 1) 1
nJ + (−1)

(
I − 1

nJ
)

=⇒ U(t) = exp(it(n − 1)) 1
nJ + exp(−it)

(
I − 1

nJ
)

• U(t)u,v = 1
n exp(it(n − 1)) − 1

nexp(−it) =⇒ |U(t)u,v |= 1
n |exp(itn) − 1|≤ 2

n .
• U(t)u,u = 1

n exp(it(n − 1)) + n−1
n exp(−it) =⇒ |U(t)u,u|= 1

n |exp(itn) + n − 1|≥ 1 − 2
n .
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Sedentariness
Definition
A vertex u is C -sedentary if there exists a constant 0 < C ≤ 1 such that for all t,

|U(t)u,u|≥ C ,

and in case |U(t0)u,u|= C for some t0 ∈ R, we say that u is tightly C -sedentary.

Example: each u ∈ V (Kn) is tightly (1 − 2
n )-sedentary since

|U(t)u,u|= |n−1+exp(itn)|
n ≥ 1 − 2

n for all t.

Proposition

1 If u is C-sedentary, then u is C ′-sedentary for all 0 < C ′ ≤ C.
2 If u and v are cospectral (UA(t)u,u = UA(t)v ,v ), then u is C-sedentary if and only if v is.

17 / 33



Sedentariness
Definition
A vertex u is C -sedentary if there exists a constant 0 < C ≤ 1 such that for all t,

|U(t)u,u|≥ C ,

and in case |U(t0)u,u|= C for some t0 ∈ R, we say that u is tightly C -sedentary.

Example: each u ∈ V (Kn) is tightly (1 − 2
n )-sedentary since

|U(t)u,u|= |n−1+exp(itn)|
n ≥ 1 − 2

n for all t.

Proposition

1 If u is C-sedentary, then u is C ′-sedentary for all 0 < C ′ ≤ C.
2 If u and v are cospectral (UA(t)u,u = UA(t)v ,v ), then u is C-sedentary if and only if v is.

17 / 33



Sedentariness
Definition
A vertex u is C -sedentary if there exists a constant 0 < C ≤ 1 such that for all t,

|U(t)u,u|≥ C ,

and in case |U(t0)u,u|= C for some t0 ∈ R, we say that u is tightly C -sedentary.

Example: each u ∈ V (Kn) is tightly (1 − 2
n )-sedentary since

|U(t)u,u|= |n−1+exp(itn)|
n ≥ 1 − 2

n for all t.

Proposition

1 If u is C-sedentary, then u is C ′-sedentary for all 0 < C ′ ≤ C.
2 If u and v are cospectral (UA(t)u,u = UA(t)v ,v ), then u is C-sedentary if and only if v is.

17 / 33



Neither sedentary nor involved in PGST
Proposition (M., 2023)
A sedentary vertex cannot be involved in pretty good state transfer. Moreover, a vertex involved
in pretty good state transfer cannot be sedentary.

Follows from: |U(t)u,u|2+|U(t)u,v |2+
∑

j ̸=u,v |U(t)u,j |2= 1

Example (M., 2024)

• For each n ≥ 3, consider K1,n with central vertex u. Then UA( π
2
√

n )u,u = 0, and so u is not
sedentary. Since u is not strongly cospectral with any vertex in X , it cannot exhibit PGST.

• For each n ≥ 3, consider X = K2 × Kn and let V (K2) = {1, 2}. Then X is not sedentary at
every vertex. For each u ∈ V (Kn), (1, u) is strongly cospectral only to (2, u) in X , and
PST occurs between them if and only if n is even. Consequently, each vertex of K2 × Kn
for each odd n is periodic, sedentary, and is involved in strong cospectrality but not PST.
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Twins
Definition
Two vertices are twins if they have the same neighbours. A maximal subset T of V (X ) is a
twin set if each pair of vertices in T are twins.

Lemma (M., 2022)
Let T be a set of twins in X. Then u, v ∈ T if and only if eu − ev is an eigenvector of A
corresponding to 0 (resp., −1) whenever u and v are non-adjacent (resp., adjacent).

A(e1 − e2) =


0 η
η 0

A3,1 A3,2 ∗
...

...
An,1 An,2




1

−1
0
...
0

 =


−η
η
0
...
0

 = −η(e1 − e2)
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A dichotomy

Theorem (Kirkland, M., Plosker, 2023)
Let T be a twin set in X. Then for any two vertices u and v in T ,

|U(t)u,u| + |U(t)u,v | ≥ 1 for all t ∈ R.

Corollary (M., 2024)
A vertex u ∈ T is either sedentary or involved in PGST with some vertex v ̸= u in T .

Corollary (M., 2024)
If u ∈ T is not involved in strong cospectrality, then each u ∈ T is sedentary.
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If u ∈ T is not involved in strong cospectrality, then each u ∈ T is sedentary.
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Twins are mostly sedentary

Theorem (M., 2024)
Let θ ∈ {0,−1}. Each vertex in a twin set T is sedentary if and only if:

1 Either (i) |T |≥ 3 or (ii) T = {u, v} and there is a θ-eigenvector w /∈ span{eu − ev } of A
such that wT eu ̸= 0 or wT ev ̸= 0 (i.e., u ∈ T is not involved in strong cospectrality)

2 T = {u, v} and wT eu = wT ev = 0 for all θ-eigenvectors w /∈ span{eu − ev } of A (i.e., u
and v are strongly cospectral), and there are integers mj such that∑

σu(A)\{θ}
mj(λj − θ) = 0 and

∑
σu(A)\{θ}

mj is odd.

If we add that ϕ(A, t) ∈ Z[t] and u is periodic, then the latter statement is equivalent to
each eigenvalue λj ∈ σu(A)\{θ} is of the form λj = θ + bj

√
∆, where bj is an integer and

either ∆ = 1 or ∆ > 1 is a square-free integer and the ν2(bj)’s are not all equal.
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A necessary condition

Lemma (M., 2023)
Let u be a vertex of X with σu(A) = {λ1, . . . , λr }. If S is a non-empty proper subset of σu(A),
say S = {λ1, . . . , λs}, such that

s∑
j=1

(Ej)u,u = a

for some 1
2 ≤ a < 1, then

|UA(t)u,u| ≥ F (t) :=
∣∣∣∣ s∑

j=1
eitλj (Ej)u,u

∣∣∣∣ − (1 − a) for all t. (1)

Remark. If a = 1
2 , then F (t) ≤ 0 for all t. Thus, to establish sedentariness, it suffices to find

∅ ̸= S ⊆ σu(A) with 1
2 < a < 1 such that F (t) is bounded away from 0 for all t.
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Bounds
Theorem (M., 2024)
Let T be a twin set in X and fix u ∈ T. Let B1 be the resulting set after orthonormalizing
{eu − ev : v ∈ T\{u}},

and B = B1 ∪ B2 be an orthonormal basis for the eigenspace of M
associated with θ ∈ {0,−1}. Define F =

∑
w∈B2 wwT , where F is absent if B2 = ∅. Then

|UA(t)u,u|≥ 1 − 2
|T |

+ 2Fu,u for all t.

Sketch: Let |T |= m and 0k denote the k × k zero matrix. From our assumption, we deduce that

Eθ =
(

Im − 1
mJm ⊕ 0n−m

)
+ F ,

Taking S = {θ} and a = (Eθ)u,u = 1 − 1
m + Fu,u ≥ 1

2 , we obtain

|UA(t)u,u|≥ |eiθt(Eθ)u,u|−(1 − a) = a − (1 − a) = 2a − 1 = 1 − 2
|T | + 2Fu,u.
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Strongly cospectral twins
Corollary (M., 2024)

1 If |T |≥ 3, then each vertex in T is
(
1 − 2

|T | + 2Fu,u
)
-sedentary.

2 If T = {u, v} and there is a θ-eigenvector w /∈ span{eu − ev } of A such that wT eu ̸= 0 or
wT ev ̸= 0, then each vertex T is 2Fu,u-sedentary.

Note: we currently do not have bounds for sedentary twins that admit strong cospectrality.

Theorem (M., 2023)
Let u ∈ V (O2) and |V (X )|= n. In O2 ∨ X, the following hold relative to the Laplacian.

1 If n ≡ 2 (mod 4), then u is involved in PST in O2 ∨ X.
2 If n ≡ 0 (mod 4), then |UL(t)u,u| ≥ 2

n+2 with equality if and only if t = jπ
2 for any odd j.

3 Let n be odd. If n = 1, then |UL(t)u,u| ≥ 1
3 with equality if and only if t = ℓπ for any odd

ℓ, while n ≥ 3, then |UL(t)u,u| ≥
√

2
n+2 with equality if and only if t = jπ

2 for any odd j.
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Complete multipartite graphs: Laplacian case

Corollary (M., 2024)
Let X = Kn1,...,nk , n =

∑k
j=1 nj and u be a vertex in partite set of size nℓ.

1 If nℓ = 1, then u is tightly (1 − 2
n )-sedentary at time t = jπ

n for any odd j.

2 If nℓ = 2 and n ≡ 0 (mod 4), then u is involved in PST.
3 If nℓ = 2 and n ≡ 2 (mod 4), then u is tightly ( 2

n )-sedentary at time t = jπ
2 for any odd j.

4 Let nℓ = 2 and n be odd. If n = 3, then u is tightly (1
3)-sedentary at time t = jπ for any

odd j. If n ≥ 5, then u is tightly (
√

2
n )-sedentary at time t = jπ

2 for any odd j.
5 If nℓ ≥ 3, then u is tightly C-sedentary, where C = 1 − 2

nℓ
at time t = jπ

g whenever
ν2(n) > ν2(nℓ), where g = gcd(n, nℓ) and j is any odd integer and C > 1 − 2

nℓ
otherwise.

• If (i) n ̸≡ 0 or (ii) n ≡ 0 (mod 4) ∧ nj ̸= 2 for each j , then each vertex in X is sedentary.
• CP(2k) for even k are the only complete multipartite graphs with no sedentary vertex.
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ν2(n) > ν2(nℓ), where g = gcd(n, nℓ) and j is any odd integer and C > 1 − 2

nℓ
otherwise.

• If (i) n ̸≡ 0 or (ii) n ≡ 0 (mod 4) ∧ nj ̸= 2 for each j , then each vertex in X is sedentary.
• CP(2k) for even k are the only complete multipartite graphs with no sedentary vertex.
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Cartesian products

Theorem (M., 2023)
Let Z = X1□X2□ · · ·□Xn and u = (u1, . . . , un).

1 If each Xj is Cj -sedentary at uj , then Z is (
∏n

j=1 Cj)-sedentary at u. In particular, if each
Xj is tightly Cj -sedentary at uj , then Z is tightly C ′-sedentary at u, where C ′ ≥

∏n
j=1 Cj .

2 If Z is C-sedentary at u, then each Xj is Cj -sedentary at uj for some 0 < Cj < 1.

Theorem (M., 2023)
Let n1, . . . , nm ≥ 2 and X = Kn1□Kn2□ . . .□Knm . The following hold.

1 If nj = 2 for some j, then X is not sedentary at any vertex.
2 If each nj ≥ 3, then X is C-sedentary at u, where C =

∏m
j=1(1 − 2

nj
). If we add that all

ν2(nj)’s are equal, then X is tightly C-sedentary at u at time t = π
2ν2(n1) .
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Direct products

Theorem (M., 2024)
Let u ∈ V (Km) and v ∈ V (Y ). The following hold.

1 If m ≥ 3 and Y is C-sedentary at vertex v, where C > 1
m−1 , then Km ⊗ Y is

(C − C+1
m )-sedentary at vertex (u, v) for any vertex u of Km. In particular, if Y = Kn and

n ≥ 3, then (u, v) is sedentary.
2 K2 × Y is C-sedentary at (u, v) if and only if |Re(UA(Y )(t)v ,v )|≥ C for all t. In particular,

if Y = Kn, then (u, v) is not sedentary.

Theorem (M., 2024)
Let Z be a d-regular graph on n vertices such that d > 0 is an integer and n = 1

2s(d + s) for
some even integer s satisfying ν2(s) ≥ ν2(d). If v is an apex of Y = O2 ∨ Z, then K2 × Y is
tightly C-sedentary at vertex (u, v) for some C > 0.
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Joins

Lemma (Kirkland and M., 2023)
Let M ∈ {A, L} and n = |V (X )|. For all u, v ∈ V (X ) and for all t, we have∣∣∣ |UM(X∨Y )(t)u,v |−|UM(X)(t)u,v |

∣∣∣ ≤ 2
n .

Theorem (M., 2024)
If u is C-sedentary in X with C > 2

n , then u is
(
C − 2

n

)
-sedentary in X ∨ Y for any graph Y ,

where we require that X and Y are both regular whenever M = A.

By assumption, |UM(X)(t)u,u|− 2
n ≥ C − 2

n > 0 for all t. By the lemma,

|UM(X∨Y )(t)u,u| ≥ |UM(X)(t)u,u|− 2
n ≥ C − 2

n > 0.
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Open questions

1 Characterize sedentariness in trees, Cayley graphs and distance-regular graphs.

2 Characterize vertices that are neither sedentary nor involved in PGST. Are there other
types of vertices that admit the dichotomous property similar to that of twin vertices?

3 For which graphs is it the case that the addition of a weighted loop or an attachment of a
pendent path to a vertex induce or preserve sedentariness? If yes, then we ask: which
weights of loops or lengths of paths achieve this task?

4 Determine other graph operations (such as the rooted product, lexicographic product,
strong product and corona product) that induce and/or preserve sedentariness.

5 Characterize sedentary vertices in threshold graphs relative to the adjacency matrix, and
provide tight bounds on their sedentariness.

6 Is a dominating vertex in a graph sedentary relative to the adjacency matrix?
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▶ sites.google.com/view/05c50online/home

32 / 33



Advertisement

• Women in combinatorics - a network of women and gender-diverse folks in combinatorics
▶ database of women combinatorialists for diversification of research networks
▶ scholarships to undergraduates in Mexico and parts of Africa
▶ virtual colloquia, WinCom virtual conference (summer 2024)
▶ womenincombinatorics.com

• CMS Women in Mathematics -
▶ provide support and encouragement for women to pursue and remain in careers in Math
▶ organize networking events (Connecting Women in Math Across Canada workshop, focused

sessions at CMS meetings and on-line symposiums)
▶ build a network of Women in Math and related groups across Canada
▶ cms.math.ca/about-the-cms/mathematical-community/women-in-mathematics

• 05C50 Online - an online international seminar on graphs and matrices
▶ sites.google.com/view/05c50online/home

32 / 33



Advertisement

• Women in combinatorics - a network of women and gender-diverse folks in combinatorics
▶ database of women combinatorialists for diversification of research networks
▶ scholarships to undergraduates in Mexico and parts of Africa
▶ virtual colloquia, WinCom virtual conference (summer 2024)
▶ womenincombinatorics.com

• CMS Women in Mathematics -
▶ provide support and encouragement for women to pursue and remain in careers in Math
▶ organize networking events (Connecting Women in Math Across Canada workshop, focused

sessions at CMS meetings and on-line symposiums)
▶ build a network of Women in Math and related groups across Canada
▶ cms.math.ca/about-the-cms/mathematical-community/women-in-mathematics

• 05C50 Online - an online international seminar on graphs and matrices
▶ sites.google.com/view/05c50online/home

32 / 33



Contact

Thank you for your time! ♡

Email: monterdh@myumanitoba.ca

Google scholar: Hermie Monterde

Googlesite: hermiemonterde

Twitter: Hermie Monterde
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