Vertex sedentariness

Hermie Monterde (she/her)

University of Manitoba
Algebraic Graph Theory Seminar, Winter 2024
University of Waterloo
January 29, 2024

Graphs as mathematical models

A quantum spin network is a network of interacting qubits.

Graphs as mathematical models

A quantum spin network is a network of interacting qubits. It can be modelled by a connected weighted undirected graph X, where the vertices and edges of X represent the qubits and their interactions, respectively.

Graphs as mathematical models

A quantum spin network is a network of interacting qubits. It can be modelled by a connected weighted undirected graph X, where the vertices and edges of X represent the qubits and their interactions, respectively.

Assign a quantum state to some vertex u of X, which can be represented by the standard basis vector \mathbf{e}_{u}. How does this quantum state propagate across the graph?

Graphs as mathematical models

A quantum spin network is a network of interacting qubits. It can be modelled by a connected weighted undirected graph X, where the vertices and edges of X represent the qubits and their interactions, respectively.

Assign a quantum state to some vertex u of X, which can be represented by the standard basis vector \mathbf{e}_{u}. How does this quantum state propagate across the graph?

Schrödinger's equation dictates that the evolution of \mathbf{e}_{u} is given by

$$
\psi(t)=U(t) \mathbf{e}_{u}
$$

where $\psi(t)$ is the state of the quantum system represented by X at time t.

Quantum walks

Let H be a real symmetric matrix such that $H_{u, v}=0$ if and only if u and v are not adjacent.

Quantum walks

Let H be a real symmetric matrix such that $H_{u, v}=0$ if and only if u and v are not adjacent. A continuous-time quantum walk on X is determined by the matrix

$$
U(t)=\exp (i t H)=\sum_{k=0}^{\infty} \frac{(i t)^{k} H^{k}}{k!}
$$

where $i^{2}=-1$ and $t \in \mathbb{R}$.

Quantum walks

Let H be a real symmetric matrix such that $H_{u, v}=0$ if and only if u and v are not adjacent. A continuous-time quantum walk on X is determined by the matrix

$$
U(t)=\exp (i t H)=\sum_{k=0}^{\infty} \frac{(i t)^{k} H^{k}}{k!}
$$

where $i^{2}=-1$ and $t \in \mathbb{R}$. Note that $U(t)$ is symmetric and unitary, and so

Quantum walks

Let H be a real symmetric matrix such that $H_{u, v}=0$ if and only if u and v are not adjacent. A continuous-time quantum walk on X is determined by the matrix

$$
U(t)=\exp (i t H)=\sum_{k=0}^{\infty} \frac{(i t)^{k} H^{k}}{k!}
$$

where $i^{2}=-1$ and $t \in \mathbb{R}$. Note that $U(t)$ is symmetric and unitary, and so

$$
\sum_{j=1}^{n}\left|U(t)_{u, j}\right|^{2}=1 \text { for each vertex } u \text { in } X
$$

Quantum walks

Let H be a real symmetric matrix such that $H_{u, v}=0$ if and only if u and v are not adjacent. A continuous-time quantum walk on X is determined by the matrix

$$
U(t)=\exp (i t H)=\sum_{k=0}^{\infty} \frac{(i t)^{k} H^{k}}{k!}
$$

where $i^{2}=-1$ and $t \in \mathbb{R}$. Note that $U(t)$ is symmetric and unitary, and so

$$
\sum_{j=1}^{n}\left|U(t)_{u, j}\right|^{2}=1 \text { for each vertex } u \text { in } X
$$

Hence, $\left|U(t)_{u, v}\right|^{2}$ is interpreted as the probability that the quantum state initially at vertex u is found at vertex v at time t. (Every row/column of $U(t)$ determines a probability distribution).

Quantum walks

Let H be a real symmetric matrix such that $H_{u, v}=0$ if and only if u and v are not adjacent. A continuous-time quantum walk on X is determined by the matrix

$$
U(t)=\exp (i t H)=\sum_{k=0}^{\infty} \frac{(i t)^{k} H^{k}}{k!}
$$

where $i^{2}=-1$ and $t \in \mathbb{R}$. Note that $U(t)$ is symmetric and unitary, and so

$$
\sum_{j=1}^{n}\left|U(t)_{u, j}\right|^{2}=1 \text { for each vertex } u \text { in } X
$$

Hence, $\left|U(t)_{u, v}\right|^{2}$ is interpreted as the probability that the quantum state initially at vertex u is found at vertex v at time t. (Every row/column of $U(t)$ determines a probability distribution). Note: Typically, H is taken to be the adjacency matrix A or the Laplacian matrix L of X.

A visualization

at $t=0$

A visualization

$$
\text { at } 0<t<\frac{\pi}{\sqrt{2}}
$$

A visualization

$$
\text { at } 0<t<\frac{\pi}{\sqrt{2}}
$$

A visualization

$$
\text { at } 0<t<\frac{\pi}{\sqrt{2}}
$$

A visualization

$$
\text { at } 0<t<\frac{\pi}{\sqrt{2}}
$$

A visualization

$$
\text { at } 0<t<\frac{\pi}{\sqrt{2}}
$$

A visualization

$$
\text { at } 0<t<\frac{\pi}{\sqrt{2}}
$$

A visualization

$$
\text { at } 0<t<\frac{\pi}{\sqrt{2}}
$$

A visualization

$$
\text { at } t=\frac{\pi}{\sqrt{2}}
$$

A visualization

$$
\text { at } t=\frac{2 \pi}{\sqrt{2}}
$$

Perfect state transfer

Definition

Vertices u and v admit perfect state transfer (PST) in X if for some $\tau>0$,

$$
\left|U(\tau)_{u, v}\right|=1
$$

If $u=v$, then we say that u is periodic.

Definition

Vertices u and v admit pretty good state transfer (PGST) in X if for some $\left\{\tau_{k}\right\} \subseteq \mathbb{R}^{+}$,

$$
\lim _{k \rightarrow \infty}\left|U\left(\tau_{k}\right)_{u, v}\right|=1
$$

Spectral decomposition

Let $\lambda_{1}, \ldots, \lambda_{r}$ are the distinct real eigenvalues of A and E_{j} be the orthogonal projection matrix associated to λ_{j}. Then

$$
A=\sum_{j=1}^{r} \lambda_{j} E_{j}
$$

Spectral decomposition

Let $\lambda_{1}, \ldots, \lambda_{r}$ are the distinct real eigenvalues of A and E_{j} be the orthogonal projection matrix associated to λ_{j}. Then

$$
A=\sum_{j=1}^{r} \lambda_{j} E_{j}
$$

Each $E_{j}=\sum_{j=1}^{k} \mathbf{w}_{i} \mathbf{w}_{i}^{T}$, where $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$ is an ON basis for the eigenspace of λ_{j}. The E_{j} 's are real, symmetric, idempotent, pairwise multiplicatively orthogonal and sum to identity.

Spectral decomposition

Let $\lambda_{1}, \ldots, \lambda_{r}$ are the distinct real eigenvalues of A and E_{j} be the orthogonal projection matrix associated to λ_{j}. Then

$$
A=\sum_{j=1}^{r} \lambda_{j} E_{j}
$$

Each $E_{j}=\sum_{j=1}^{k} \mathbf{w}_{i} \mathbf{w}_{i}^{T}$, where $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$ is an ON basis for the eigenspace of λ_{j}. The E_{j} 's are real, symmetric, idempotent, pairwise multiplicatively orthogonal and sum to identity.

$$
U(t)=\exp (i t A)=\sum_{j=1}^{r} \exp \left(i t \lambda_{j}\right) E_{j}
$$

Spectral decomposition

Let $\lambda_{1}, \ldots, \lambda_{r}$ are the distinct real eigenvalues of A and E_{j} be the orthogonal projection matrix associated to λ_{j}. Then

$$
A=\sum_{j=1}^{r} \lambda_{j} E_{j}
$$

Each $E_{j}=\sum_{j=1}^{k} \mathbf{w}_{i} \mathbf{w}_{i}^{T}$, where $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{k}\right\}$ is an ON basis for the eigenspace of λ_{j}. The E_{j} 's are real, symmetric, idempotent, pairwise multiplicatively orthogonal and sum to identity.

$$
U(t)=\exp (i t A)=\sum_{j=1}^{r} \exp \left(i t \lambda_{j}\right) E_{j}
$$

Definition

1 The eigenvalue support of vertex u in X is the set $\sigma_{u}(A)=\left\{\lambda_{j}: E_{j} \mathbf{e}_{u} \neq \mathbf{0}\right\}$.
2 Vertices u and v are strongly cospectral in X if $E_{j} \mathbf{e}_{u}= \pm E_{j} \mathbf{e}_{v}$ for each j.
3 Vertices u and v are cospectral if $\left(E_{j}\right)_{u, u}= \pm\left(E_{j}\right)_{v, v}$ for each j.

Paths and complete graphs

Theorem (Christandl et al., Godsil et al.)

$1 P_{2}$ and P_{3} are the only paths that exhibit PST.
$2 P_{n}$ exhibits PGST between end vertices if and only if $n=p-1, n=2 p-1$ and $n=2^{m}-1$, where p is prime and m is an integer.

Paths and complete graphs

Theorem (Christandl et al., Godsil et al.)

$1 P_{2}$ and P_{3} are the only paths that exhibit PST.
$2 P_{n}$ exhibits PGST between end vertices if and only if $n=p-1, n=2 p-1$ and $n=2^{m}-1$, where p is prime and m is an integer.

For $K_{n}, A=\mathbf{J}-I$, the eigenvalues of A are $n-1$ and -1 , with $\mathbf{1}$ and $\mathbf{e}_{1}-\mathbf{e}_{j}$ as eigenvectors.

Paths and complete graphs

Theorem (Christandl et al., Godsil et al.)

$1 P_{2}$ and P_{3} are the only paths that exhibit PST.
$2 P_{n}$ exhibits PGST between end vertices if and only if $n=p-1, n=2 p-1$ and $n=2^{m}-1$, where p is prime and m is an integer.

For $K_{n}, A=\mathbf{J}-I$, the eigenvalues of A are $n-1$ and -1 , with $\mathbf{1}$ and $\mathbf{e}_{1}-\mathbf{e}_{j}$ as eigenvectors.

$$
A=(n-1) \frac{1}{n} \mathbf{J}+(-1)\left(I-\frac{1}{n} \mathbf{J}\right)
$$

Paths and complete graphs

Theorem (Christandl et al., Godsil et al.)

$1 P_{2}$ and P_{3} are the only paths that exhibit PST.
$2 P_{n}$ exhibits PGST between end vertices if and only if $n=p-1, n=2 p-1$ and $n=2^{m}-1$, where p is prime and m is an integer.

For $K_{n}, A=\mathbf{J}-I$, the eigenvalues of A are $n-1$ and -1 , with $\mathbf{1}$ and $\mathbf{e}_{1}-\mathbf{e}_{j}$ as eigenvectors.

$$
A=(n-1) \frac{1}{n} \mathbf{J}+(-1)\left(I-\frac{1}{n} \mathbf{J}\right) \Longrightarrow U(t)=\exp (i t(n-1)) \frac{1}{n} \mathbf{J}+\exp (-i t)\left(I-\frac{1}{n} \mathbf{J}\right)
$$

Paths and complete graphs

Theorem (Christandl et al., Godsil et al.)

$1 P_{2}$ and P_{3} are the only paths that exhibit PST.
$2 P_{n}$ exhibits PGST between end vertices if and only if $n=p-1, n=2 p-1$ and $n=2^{m}-1$, where p is prime and m is an integer.

For $K_{n}, A=\mathbf{J}-I$, the eigenvalues of A are $n-1$ and -1 , with $\mathbf{1}$ and $\mathbf{e}_{1}-\mathbf{e}_{j}$ as eigenvectors.

$$
A=(n-1) \frac{1}{n} \mathbf{J}+(-1)\left(I-\frac{1}{n} \mathbf{J}\right) \Longrightarrow U(t)=\exp (i t(n-1)) \frac{1}{n} \mathbf{J}+\exp (-i t)\left(I-\frac{1}{n} \mathbf{J}\right)
$$

- $U(t)_{u, v}=\frac{1}{n} \exp (i t(n-1))-\frac{1}{n} \exp (-i t) \Longrightarrow$

Paths and complete graphs

Theorem (Christandl et al., Godsil et al.)

$1 P_{2}$ and P_{3} are the only paths that exhibit PST.
$2 P_{n}$ exhibits PGST between end vertices if and only if $n=p-1, n=2 p-1$ and $n=2^{m}-1$, where p is prime and m is an integer.

For $K_{n}, A=\mathbf{J}-I$, the eigenvalues of A are $n-1$ and -1 , with $\mathbf{1}$ and $\mathbf{e}_{1}-\mathbf{e}_{j}$ as eigenvectors.

$$
A=(n-1) \frac{1}{n} \mathbf{J}+(-1)\left(I-\frac{1}{n} \mathbf{J}\right) \Longrightarrow U(t)=\exp (i t(n-1)) \frac{1}{n} \mathbf{J}+\exp (-i t)\left(I-\frac{1}{n} \mathbf{J}\right)
$$

- $U(t)_{u, v}=\frac{1}{n} \exp (i t(n-1))-\frac{1}{n} \exp (-i t) \Longrightarrow\left|U(t)_{u, v}\right|=\frac{1}{n}|\exp (i t n)-1| \leq \frac{2}{n}$.

Paths and complete graphs

Theorem (Christandl et al., Godsil et al.)

$1 P_{2}$ and P_{3} are the only paths that exhibit PST.
$2 P_{n}$ exhibits PGST between end vertices if and only if $n=p-1, n=2 p-1$ and $n=2^{m}-1$, where p is prime and m is an integer.

For $K_{n}, A=\mathbf{J}-I$, the eigenvalues of A are $n-1$ and -1 , with $\mathbf{1}$ and $\mathbf{e}_{1}-\mathbf{e}_{j}$ as eigenvectors.

$$
A=(n-1) \frac{1}{n} \mathbf{J}+(-1)\left(I-\frac{1}{n} \mathbf{J}\right) \Longrightarrow U(t)=\exp (i t(n-1)) \frac{1}{n} \mathbf{J}+\exp (-i t)\left(I-\frac{1}{n} \mathbf{J}\right)
$$

- $U(t)_{u, v}=\frac{1}{n} \exp (i t(n-1))-\frac{1}{n} \exp (-i t) \Longrightarrow\left|U(t)_{u, v}\right|=\frac{1}{n}|\exp (i t n)-1| \leq \frac{2}{n}$.
- $U(t)_{u, u}=\frac{1}{n} \exp (i t(n-1))+\frac{n-1}{n} \exp (-i t) \Longrightarrow$

Paths and complete graphs

Theorem (Christandl et al., Godsil et al.)

$1 P_{2}$ and P_{3} are the only paths that exhibit PST.
$2 P_{n}$ exhibits PGST between end vertices if and only if $n=p-1, n=2 p-1$ and $n=2^{m}-1$, where p is prime and m is an integer.

For $K_{n}, A=\mathbf{J}-I$, the eigenvalues of A are $n-1$ and -1 , with $\mathbf{1}$ and $\mathbf{e}_{1}-\mathbf{e}_{j}$ as eigenvectors.

$$
A=(n-1) \frac{1}{n} \mathbf{J}+(-1)\left(I-\frac{1}{n} \mathbf{J}\right) \Longrightarrow U(t)=\exp (i t(n-1)) \frac{1}{n} \mathbf{J}+\exp (-i t)\left(I-\frac{1}{n} \mathbf{J}\right)
$$

- $U(t)_{u, v}=\frac{1}{n} \exp (i t(n-1))-\frac{1}{n} \exp (-i t) \Longrightarrow\left|U(t)_{u, v}\right|=\frac{1}{n}|\exp (i t n)-1| \leq \frac{2}{n}$.
- $U(t)_{u, u}=\frac{1}{n} \exp (i t(n-1))+\frac{n-1}{n} \exp (-i t) \Longrightarrow\left|U(t)_{u, u}\right|=\frac{1}{n}|\exp (i t n)+n-1| \geq 1-\frac{2}{n}$.

Sedentariness

Definition

A vertex u is C-sedentary if there exists a constant $0<C \leq 1$ such that for all t,

$$
\left|U(t)_{u, u}\right| \geq C
$$

and in case $\left|U\left(t_{0}\right)_{u, u}\right|=C$ for some $t_{0} \in \mathbb{R}$, we say that u is tightly C-sedentary.

Sedentariness

Definition

A vertex u is C-sedentary if there exists a constant $0<C \leq 1$ such that for all t,

$$
\left|U(t)_{u, u}\right| \geq C
$$

and in case $\left|U\left(t_{0}\right)_{u, u}\right|=C$ for some $t_{0} \in \mathbb{R}$, we say that u is tightly C-sedentary.
Example: each $u \in V\left(K_{n}\right)$ is tightly $\left(1-\frac{2}{n}\right)$-sedentary since

$$
\left|U(t)_{u, u}\right|=\frac{|n-1+\exp (i t n)|}{n} \geq 1-\frac{2}{n} \text { for all } t .
$$

Sedentariness

Definition

A vertex u is C-sedentary if there exists a constant $0<C \leq 1$ such that for all t,

$$
\left|U(t)_{u, u}\right| \geq C,
$$

and in case $\left|U\left(t_{0}\right)_{u, u}\right|=C$ for some $t_{0} \in \mathbb{R}$, we say that u is tightly C-sedentary.
Example: each $u \in V\left(K_{n}\right)$ is tightly $\left(1-\frac{2}{n}\right)$-sedentary since

$$
\left|U(t)_{u, u}\right|=\frac{|n-1+\exp (i t n)|}{n} \geq 1-\frac{2}{n} \text { for all } t .
$$

Proposition

1 If u is C-sedentary, then u is C^{\prime}-sedentary for all $0<C^{\prime} \leq C$.
2 If u and v are cospectral $\left(U_{A}(t)_{u, u}=U_{A}(t)_{v, v}\right)$, then u is C-sedentary if and only if v is.

Neither sedentary nor involved in PGST

Proposition (M., 2023)

A sedentary vertex cannot be involved in pretty good state transfer. Moreover, a vertex involved in pretty good state transfer cannot be sedentary.

Follows from: $\left|U(t)_{u, u}\right|^{2}+\left|U(t)_{u, v}\right|^{2}+\sum_{j \neq u, v}\left|U(t)_{u, j}\right|^{2}=1$

Neither sedentary nor involved in PGST

Proposition (M., 2023)

A sedentary vertex cannot be involved in pretty good state transfer. Moreover, a vertex involved in pretty good state transfer cannot be sedentary.

Follows from: $\left|U(t)_{u, u}\right|^{2}+\left|U(t)_{u, v}\right|^{2}+\sum_{j \neq u, v}\left|U(t)_{u, j}\right|^{2}=1$

Example (M., 2024)

- For each $n \geq 3$, consider $K_{1, n}$ with central vertex u. Then $U_{A}\left(\frac{\pi}{2 \sqrt{n}}\right)_{u, u}=0$, and so u is not sedentary. Since u is not strongly cospectral with any vertex in X, it cannot exhibit PGST.

Neither sedentary nor involved in PGST

Proposition (M., 2023)

A sedentary vertex cannot be involved in pretty good state transfer. Moreover, a vertex involved in pretty good state transfer cannot be sedentary.

Follows from: $\left|U(t)_{u, u}\right|^{2}+\left|U(t)_{u, v}\right|^{2}+\sum_{j \neq u, v}\left|U(t)_{u, j}\right|^{2}=1$

Example (M., 2024)

- For each $n \geq 3$, consider $K_{1, n}$ with central vertex u. Then $U_{A}\left(\frac{\pi}{2 \sqrt{n}}\right)_{u, u}=0$, and so u is not sedentary. Since u is not strongly cospectral with any vertex in X, it cannot exhibit PGST.
- For each $n \geq 3$, consider $X=K_{2} \times K_{n}$ and let $V\left(K_{2}\right)=\{1,2\}$. Then X is not sedentary at every vertex. For each $u \in V\left(K_{n}\right),(1, u)$ is strongly cospectral only to $(2, u)$ in X, and PST occurs between them if and only if n is even. Consequently, each vertex of $K_{2} \times K_{n}$ for each odd n is periodic, sedentary, and is involved in strong cospectrality but not PST.

Twins

Definition

Two vertices are twins if they have the same neighbours. A maximal subset T of $V(X)$ is a twin set if each pair of vertices in T are twins.

Lemma (M., 2022)

Let T be a set of twins in X. Then $u, v \in T$ if and only if $\boldsymbol{e}_{u}-\boldsymbol{e}_{v}$ is an eigenvector of A corresponding to 0 (resp., -1) whenever u and v are non-adjacent (resp., adjacent).

$$
A\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)=\left[\begin{array}{ccc}
0 & \eta \\
\eta & 0 \\
A_{3,1} & A_{3,2} & * \\
\vdots & \vdots \\
A_{n, 1} & A_{n, 2}
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
0 \\
\vdots \\
0
\end{array}\right]=\left[\begin{array}{c}
-\eta \\
\eta \\
0 \\
\vdots \\
0
\end{array}\right]=-\eta\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)
$$

A dichotomy

Theorem (Kirkland, M., Plosker, 2023)
Let T be a twin set in X. Then for any two vertices u and v in T,

$$
\left|U(t)_{u, u}\right|+\left|U(t)_{u, v}\right| \geq 1 \quad \text { for all } t \in \mathbb{R} .
$$

A dichotomy

Theorem (Kirkland, M., Plosker, 2023)

Let T be a twin set in X. Then for any two vertices u and v in T,

$$
\left|U(t)_{u, u}\right|+\left|U(t)_{u, v}\right| \geq 1 \quad \text { for all } t \in \mathbb{R} .
$$

Corollary (M., 2024)
A vertex $u \in T$ is either sedentary or involved in PGST with some vertex $v \neq u$ in T.

A dichotomy

Theorem (Kirkland, M., Plosker, 2023)

Let T be a twin set in X. Then for any two vertices u and v in T,

$$
\left|U(t)_{u, u}\right|+\left|U(t)_{u, v}\right| \geq 1 \quad \text { for all } t \in \mathbb{R} \text {. }
$$

Corollary (M., 2024)
A vertex $u \in T$ is either sedentary or involved in PGST with some vertex $v \neq u$ in T.

Corollary (M., 2024)

If $u \in T$ is not involved in strong cospectrality, then each $u \in T$ is sedentary.

Twins are mostly sedentary

Theorem (M., 2024)

Let $\theta \in\{0,-1\}$. Each vertex in a twin set T is sedentary if and only if:
1 Either (i) $|T| \geq 3$ or (ii) $T=\{u, v\}$ and there is a θ-eigenvector $\boldsymbol{w} \notin \operatorname{span}\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}\right\}$ of A such that $\boldsymbol{w}^{\top} \boldsymbol{e}_{u} \neq 0$ or $\boldsymbol{w}^{\top} \boldsymbol{e}_{v} \neq 0$ (i.e., $u \in T$ is not involved in strong cospectrality)
$2 T=\{u, v\}$ and $\boldsymbol{w}^{\top} \boldsymbol{e}_{u}=\boldsymbol{w}^{T} \boldsymbol{e}_{v}=0$ for all θ-eigenvectors $\boldsymbol{w} \notin \operatorname{span}\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}\right\}$ of A (i.e., u and v are strongly cospectral), and there are integers m_{j} such that

$$
\sum_{\sigma_{u}(A) \backslash\{\theta\}} m_{j}\left(\lambda_{j}-\theta\right)=0 \quad \text { and } \quad \sum_{\sigma_{u}(A) \backslash\{\theta\}} m_{j} \text { is odd. }
$$

If we add that $\phi(A, t) \in \mathbb{Z}[t]$ and u is periodic, then the latter statement is equivalent to each eigenvalue $\lambda_{j} \in \sigma_{u}(A) \backslash\{\theta\}$ is of the form $\lambda_{j}=\theta+b_{j} \sqrt{\Delta}$, where b_{j} is an integer and either $\Delta=1$ or $\Delta>1$ is a square-free integer and the $\nu_{2}\left(b_{j}\right)$'s are not all equal.

A necessary condition

Lemma (M., 2023)

Let u be a vertex of X with $\sigma_{u}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$. If S is a non-empty proper subset of $\sigma_{u}(A)$, say $S=\left\{\lambda_{1}, \ldots, \lambda_{s}\right\}$, such that

$$
\sum_{j=1}^{s}\left(E_{j}\right)_{u, u}=a
$$

for some $\frac{1}{2} \leq a<1$, then

$$
\begin{equation*}
\left|U_{A}(t)_{u, u}\right| \geq F(t):=\left|\sum_{j=1}^{s} e^{i t \lambda_{j}}\left(E_{j}\right)_{u, u}\right|-(1-a) \quad \text { for all } t \tag{1}
\end{equation*}
$$

A necessary condition

Lemma (M., 2023)

Let u be a vertex of X with $\sigma_{u}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$. If S is a non-empty proper subset of $\sigma_{u}(A)$, say $S=\left\{\lambda_{1}, \ldots, \lambda_{s}\right\}$, such that

$$
\sum_{j=1}^{s}\left(E_{j}\right)_{u, u}=a
$$

for some $\frac{1}{2} \leq a<1$, then

$$
\begin{equation*}
\left|U_{A}(t)_{u, u}\right| \geq F(t):=\left|\sum_{j=1}^{s} e^{i t \lambda_{j}}\left(E_{j}\right)_{u, u}\right|-(1-a) \quad \text { for all } t \tag{1}
\end{equation*}
$$

Remark. If $a=\frac{1}{2}$, then $F(t) \leq 0$ for all t.

A necessary condition

Lemma (M., 2023)

Let u be a vertex of X with $\sigma_{u}(A)=\left\{\lambda_{1}, \ldots, \lambda_{r}\right\}$. If S is a non-empty proper subset of $\sigma_{u}(A)$, say $S=\left\{\lambda_{1}, \ldots, \lambda_{s}\right\}$, such that

$$
\sum_{j=1}^{s}\left(E_{j}\right)_{u, u}=a
$$

for some $\frac{1}{2} \leq a<1$, then

$$
\begin{equation*}
\left|U_{A}(t)_{u, u}\right| \geq F(t):=\left|\sum_{j=1}^{s} e^{i t \lambda_{j}}\left(E_{j}\right)_{u, u}\right|-(1-a) \quad \text { for all } t . \tag{1}
\end{equation*}
$$

Remark. If $a=\frac{1}{2}$, then $F(t) \leq 0$ for all t. Thus, to establish sedentariness, it suffices to find $\varnothing \neq S \subseteq \sigma_{u}(A)$ with $\frac{1}{2}<a<1$ such that $F(t)$ is bounded away from 0 for all t.

Bounds

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_{1} be the resulting set after orthonormalizing $\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}: v \in T \backslash\{u\}\right\}$,

Bounds

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_{1} be the resulting set after orthonormalizing $\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}: v \in T \backslash\{u\}\right\}$, and $\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ be an orthonormal basis for the eigenspace of M associated with $\theta \in\{0,-1\}$.

Bounds

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_{1} be the resulting set after orthonormalizing $\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}: v \in T \backslash\{u\}\right\}$, and $\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ be an orthonormal basis for the eigenspace of M associated with $\theta \in\{0,-1\}$. Define $F=\sum_{\boldsymbol{w} \in \mathcal{B}_{2}} \boldsymbol{w} \boldsymbol{w}^{\top}$, where F is absent if $\mathcal{B}_{2}=\varnothing$. Then

Bounds

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_{1} be the resulting set after orthonormalizing $\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}: v \in T \backslash\{u\}\right\}$, and $\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ be an orthonormal basis for the eigenspace of M associated with $\theta \in\{0,-1\}$. Define $F=\sum_{\boldsymbol{w} \in \mathcal{B}_{2}} \boldsymbol{w} \boldsymbol{w}^{T}$, where F is absent if $\mathcal{B}_{2}=\varnothing$. Then

$$
\left|U_{A}(t)_{u, u}\right| \geq 1-\frac{2}{|T|}+2 F_{u, u} \quad \text { for all } t
$$

Bounds

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_{1} be the resulting set after orthonormalizing $\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}: v \in T \backslash\{u\}\right\}$, and $\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ be an orthonormal basis for the eigenspace of M associated with $\theta \in\{0,-1\}$. Define $F=\sum_{\boldsymbol{w} \in \mathcal{B}_{2}} \boldsymbol{w} \boldsymbol{w}^{\top}$, where F is absent if $\mathcal{B}_{2}=\varnothing$. Then

$$
\left|U_{A}(t)_{u, u}\right| \geq 1-\frac{2}{|T|}+2 F_{u, u} \quad \text { for all } t
$$

Sketch: Let $|T|=m$ and 0_{k} denote the $k \times k$ zero matrix. From our assumption, we deduce that

Bounds

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_{1} be the resulting set after orthonormalizing $\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}: v \in T \backslash\{u\}\right\}$, and $\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ be an orthonormal basis for the eigenspace of M associated with $\theta \in\{0,-1\}$. Define $F=\sum_{\boldsymbol{w} \in \mathcal{B}_{2}} \boldsymbol{w} \boldsymbol{w}^{\top}$, where F is absent if $\mathcal{B}_{2}=\varnothing$. Then

$$
\left|U_{A}(t)_{u, u}\right| \geq 1-\frac{2}{|T|}+2 F_{u, u} \quad \text { for all } t
$$

Sketch: Let $|T|=m$ and 0_{k} denote the $k \times k$ zero matrix. From our assumption, we deduce that

$$
E_{\theta}=\left(I_{m}-\frac{1}{m} \mathbf{J}_{m} \oplus 0_{n-m}\right)+F
$$

Bounds

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_{1} be the resulting set after orthonormalizing $\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}: v \in T \backslash\{u\}\right\}$, and $\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ be an orthonormal basis for the eigenspace of M associated with $\theta \in\{0,-1\}$. Define $F=\sum_{\boldsymbol{w} \in \mathcal{B}_{2}} \boldsymbol{w} \boldsymbol{w}^{\top}$, where F is absent if $\mathcal{B}_{2}=\varnothing$. Then

$$
\left|U_{A}(t)_{u, u}\right| \geq 1-\frac{2}{|T|}+2 F_{u, u} \quad \text { for all } t
$$

Sketch: Let $|T|=m$ and 0_{k} denote the $k \times k$ zero matrix. From our assumption, we deduce that

$$
E_{\theta}=\left(I_{m}-\frac{1}{m} \mathbf{J}_{m} \oplus 0_{n-m}\right)+F
$$

Taking $S=\{\theta\}$ and $a=\left(E_{\theta}\right)_{u, u}$

Bounds

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_{1} be the resulting set after orthonormalizing $\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}: v \in T \backslash\{u\}\right\}$, and $\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ be an orthonormal basis for the eigenspace of M associated with $\theta \in\{0,-1\}$. Define $F=\sum_{\boldsymbol{w} \in \mathcal{B}_{2}} \boldsymbol{w} \boldsymbol{w}^{\top}$, where F is absent if $\mathcal{B}_{2}=\varnothing$. Then

$$
\left|U_{A}(t)_{u, u}\right| \geq 1-\frac{2}{|T|}+2 F_{u, u} \quad \text { for all } t
$$

Sketch: Let $|T|=m$ and 0_{k} denote the $k \times k$ zero matrix. From our assumption, we deduce that

$$
E_{\theta}=\left(I_{m}-\frac{1}{m} \mathbf{J}_{m} \oplus 0_{n-m}\right)+F
$$

Taking $S=\{\theta\}$ and $a=\left(E_{\theta}\right)_{u, u}=1-\frac{1}{m}+F_{u, u}$

Bounds

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_{1} be the resulting set after orthonormalizing $\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}: v \in T \backslash\{u\}\right\}$, and $\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ be an orthonormal basis for the eigenspace of M associated with $\theta \in\{0,-1\}$. Define $F=\sum_{\boldsymbol{w} \in \mathcal{B}_{2}} \boldsymbol{w} \boldsymbol{w}^{\top}$, where F is absent if $\mathcal{B}_{2}=\varnothing$. Then

$$
\left|U_{A}(t)_{u, u}\right| \geq 1-\frac{2}{|T|}+2 F_{u, u} \quad \text { for all } t
$$

Sketch: Let $|T|=m$ and 0_{k} denote the $k \times k$ zero matrix. From our assumption, we deduce that

$$
E_{\theta}=\left(I_{m}-\frac{1}{m} \mathbf{J}_{m} \oplus 0_{n-m}\right)+F
$$

Taking $S=\{\theta\}$ and $a=\left(E_{\theta}\right)_{u, u}=1-\frac{1}{m}+F_{u, u} \geq \frac{1}{2}$,

Bounds

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_{1} be the resulting set after orthonormalizing $\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}: v \in T \backslash\{u\}\right\}$, and $\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ be an orthonormal basis for the eigenspace of M associated with $\theta \in\{0,-1\}$. Define $F=\sum_{\boldsymbol{w} \in \mathcal{B}_{2}} \boldsymbol{w} \boldsymbol{w}^{T}$, where F is absent if $\mathcal{B}_{2}=\varnothing$. Then

$$
\left|U_{A}(t)_{u, u}\right| \geq 1-\frac{2}{|T|}+2 F_{u, u} \quad \text { for all } t
$$

Sketch: Let $|T|=m$ and 0_{k} denote the $k \times k$ zero matrix. From our assumption, we deduce that

$$
E_{\theta}=\left(I_{m}-\frac{1}{m} \mathbf{J}_{m} \oplus 0_{n-m}\right)+F
$$

Taking $S=\{\theta\}$ and $a=\left(E_{\theta}\right)_{u, u}=1-\frac{1}{m}+F_{u, u} \geq \frac{1}{2}$, we obtain

$$
\left|U_{A}(t)_{u, u}\right| \geq\left|e^{i \theta t}\left(E_{\theta}\right)_{u, u}\right|-(1-a)
$$

Bounds

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_{1} be the resulting set after orthonormalizing $\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}: v \in T \backslash\{u\}\right\}$, and $\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ be an orthonormal basis for the eigenspace of M associated with $\theta \in\{0,-1\}$. Define $F=\sum_{\boldsymbol{w} \in \mathcal{B}_{2}} \boldsymbol{w} \boldsymbol{w}^{T}$, where F is absent if $\mathcal{B}_{2}=\varnothing$. Then

$$
\left|U_{A}(t)_{u, u}\right| \geq 1-\frac{2}{|T|}+2 F_{u, u} \quad \text { for all } t
$$

Sketch: Let $|T|=m$ and 0_{k} denote the $k \times k$ zero matrix. From our assumption, we deduce that

$$
E_{\theta}=\left(I_{m}-\frac{1}{m} \mathbf{J}_{m} \oplus 0_{n-m}\right)+F
$$

Taking $S=\{\theta\}$ and $a=\left(E_{\theta}\right)_{u, u}=1-\frac{1}{m}+F_{u, u} \geq \frac{1}{2}$, we obtain

$$
\left|U_{A}(t)_{u, u}\right| \geq\left|e^{i \theta t}\left(E_{\theta}\right)_{u, u}\right|-(1-a)=a-(1-a)=2 a-1
$$

Bounds

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_{1} be the resulting set after orthonormalizing $\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}: v \in T \backslash\{u\}\right\}$, and $\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2}$ be an orthonormal basis for the eigenspace of M associated with $\theta \in\{0,-1\}$. Define $F=\sum_{\boldsymbol{w} \in \mathcal{B}_{2}} \boldsymbol{w} \boldsymbol{w}^{T}$, where F is absent if $\mathcal{B}_{2}=\varnothing$. Then

$$
\left|U_{A}(t)_{u, u}\right| \geq 1-\frac{2}{|T|}+2 F_{u, u} \quad \text { for all } t
$$

Sketch: Let $|T|=m$ and 0_{k} denote the $k \times k$ zero matrix. From our assumption, we deduce that

$$
E_{\theta}=\left(I_{m}-\frac{1}{m} \mathbf{J}_{m} \oplus 0_{n-m}\right)+F
$$

Taking $S=\{\theta\}$ and $a=\left(E_{\theta}\right)_{u, u}=1-\frac{1}{m}+F_{u, u} \geq \frac{1}{2}$, we obtain

$$
\left|U_{A}(t)_{u, u}\right| \geq\left|e^{i \theta t}\left(E_{\theta}\right)_{u, u}\right|-(1-a)=a-(1-a)=2 a-1=1-\frac{2}{|T|}+2 F_{u, u}
$$

Strongly cospectral twins

Corollary (M., 2024)
1 If $|T| \geq 3$, then each vertex in T is $\left(1-\frac{2}{|T|}+2 F_{u, u}\right)$-sedentary.

Strongly cospectral twins

Corollary (M., 2024)

1 If $|T| \geq 3$, then each vertex in T is $\left(1-\frac{2}{|T|}+2 F_{u, u}\right)$-sedentary.
2 If $T=\{u, v\}$ and there is a θ-eigenvector $\boldsymbol{w} \notin \operatorname{span}\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}\right\}$ of A such that $\boldsymbol{w}^{T} \boldsymbol{e}_{u} \neq 0$ or $\boldsymbol{w}^{T} \boldsymbol{e}_{v} \neq 0$, then each vertex T is $2 F_{u, u}$-sedentary.

Strongly cospectral twins

Corollary (M., 2024)

1 If $|T| \geq 3$, then each vertex in T is $\left(1-\frac{2}{|T|}+2 F_{u, u}\right)$-sedentary.
2 If $T=\{u, v\}$ and there is a θ-eigenvector $\boldsymbol{w} \notin \operatorname{span}\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}\right\}$ of A such that $\boldsymbol{w}^{\top} \boldsymbol{e}_{u} \neq 0$ or $\boldsymbol{w}^{T} \boldsymbol{e}_{v} \neq 0$, then each vertex T is $2 F_{u, u}$-sedentary.

Note: we currently do not have bounds for sedentary twins that admit strong cospectrality.

Strongly cospectral twins

Corollary (M., 2024)

1 If $|T| \geq 3$, then each vertex in T is $\left(1-\frac{2}{|T|}+2 F_{u, u}\right)$-sedentary.
2 If $T=\{u, v\}$ and there is a θ-eigenvector $\boldsymbol{w} \notin \operatorname{span}\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}\right\}$ of A such that $\boldsymbol{w}^{T} \boldsymbol{e}_{u} \neq 0$ or $\boldsymbol{w}^{T} \boldsymbol{e}_{v} \neq 0$, then each vertex T is $2 F_{u, u}$-sedentary.

Note: we currently do not have bounds for sedentary twins that admit strong cospectrality.

Theorem (M., 2023)

Let $u \in V\left(O_{2}\right)$ and $|V(X)|=n$. In $O_{2} \vee X$, the following hold relative to the Laplacian.
1 If $n \equiv 2(\bmod 4)$, then u is involved in PST in $O_{2} \vee X$.

Strongly cospectral twins

Corollary (M., 2024)

1 If $|T| \geq 3$, then each vertex in T is $\left(1-\frac{2}{|T|}+2 F_{u, u}\right)$-sedentary.
2 If $T=\{u, v\}$ and there is a θ-eigenvector $\boldsymbol{w} \notin \operatorname{span}\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}\right\}$ of A such that $\boldsymbol{w}^{T} \boldsymbol{e}_{u} \neq 0$ or $\boldsymbol{w}^{T} \boldsymbol{e}_{v} \neq 0$, then each vertex T is $2 F_{u, u}$-sedentary.

Note: we currently do not have bounds for sedentary twins that admit strong cospectrality.

Theorem (M., 2023)

Let $u \in V\left(O_{2}\right)$ and $|V(X)|=n$. In $O_{2} \vee X$, the following hold relative to the Laplacian.
1 If $n \equiv 2(\bmod 4)$, then u is involved in PST in $O_{2} \vee X$.
2 If $n \equiv 0(\bmod 4)$, then $\left|U_{L}(t)_{u, u}\right| \geq \frac{2}{n+2}$ with equality if and only if $t=\frac{j \pi}{2}$ for any odd j.

Strongly cospectral twins

Corollary (M., 2024)

1 If $|T| \geq 3$, then each vertex in T is $\left(1-\frac{2}{|T|}+2 F_{u, u}\right)$-sedentary.
2 If $T=\{u, v\}$ and there is a θ-eigenvector $\boldsymbol{w} \notin \operatorname{span}\left\{\boldsymbol{e}_{u}-\boldsymbol{e}_{v}\right\}$ of A such that $\boldsymbol{w}^{\top} \boldsymbol{e}_{u} \neq 0$ or $\boldsymbol{w}^{T} \boldsymbol{e}_{v} \neq 0$, then each vertex T is $2 F_{u, u}$-sedentary.

Note: we currently do not have bounds for sedentary twins that admit strong cospectrality.

Theorem (M., 2023)

Let $u \in V\left(O_{2}\right)$ and $|V(X)|=n$. In $O_{2} \vee X$, the following hold relative to the Laplacian.
1 If $n \equiv 2(\bmod 4)$, then u is involved in PST in $O_{2} \vee X$.
2 If $n \equiv 0(\bmod 4)$, then $\left|U_{L}(t)_{u, u}\right| \geq \frac{2}{n+2}$ with equality if and only if $t=\frac{j \pi}{2}$ for any odd j.
3 Let n be odd. If $n=1$, then $\left|U_{L}(t)_{u, u}\right| \geq \frac{1}{3}$ with equality if and only if $t=\ell \pi$ for any odd ℓ, while $n \geq 3$, then $\left|U_{L}(t)_{u, u}\right| \geq \frac{\sqrt{2}}{n+2}$ with equality if and only if $t=\frac{j \pi}{2}$ for any odd j.

Complete multipartite graphs: Laplacian case

Corollary (M., 2024)

Let $X=K_{n_{1}, \ldots, n_{k}}, n=\sum_{j=1}^{k} n_{j}$ and u be a vertex in partite set of size n_{ℓ}.
1 If $n_{\ell}=1$, then u is tightly $\left(1-\frac{2}{n}\right)$-sedentary at time $t=\frac{j \pi}{n}$ for any odd j.

Complete multipartite graphs: Laplacian case

Corollary (M., 2024)

Let $X=K_{n_{1}, \ldots, n_{k}}, n=\sum_{j=1}^{k} n_{j}$ and u be a vertex in partite set of size n_{ℓ}.
1 If $n_{\ell}=1$, then u is tightly $\left(1-\frac{2}{n}\right)$-sedentary at time $t=\frac{j \pi}{n}$ for any odd j.
2 If $n_{\ell}=2$ and $n \equiv 0(\bmod 4)$, then u is involved in PST.
3 If $n_{\ell}=2$ and $n \equiv 2(\bmod 4)$, then u is tightly $\left(\frac{2}{n}\right)$-sedentary at time $t=\frac{j \pi}{2}$ for any odd j.
4 Let $n_{\ell}=2$ and n be odd. If $n=3$, then u is tightly $\left(\frac{1}{3}\right)$-sedentary at time $t=j \pi$ for any odd j. If $n \geq 5$, then u is tightly $\left(\frac{\sqrt{2}}{n}\right)$-sedentary at time $t=\frac{j \pi}{2}$ for any odd j.

Complete multipartite graphs: Laplacian case

Corollary (M., 2024)

Let $X=K_{n_{1}, \ldots, n_{k}}, n=\sum_{j=1}^{k} n_{j}$ and u be a vertex in partite set of size n_{ℓ}.
1 If $n_{\ell}=1$, then u is tightly $\left(1-\frac{2}{n}\right)$-sedentary at time $t=\frac{j \pi}{n}$ for any odd j.
2 If $n_{\ell}=2$ and $n \equiv 0(\bmod 4)$, then u is involved in PST.
3 If $n_{\ell}=2$ and $n \equiv 2(\bmod 4)$, then u is tightly $\left(\frac{2}{n}\right)$-sedentary at time $t=\frac{j \pi}{2}$ for any odd j.
4 Let $n_{\ell}=2$ and n be odd. If $n=3$, then u is tightly $\left(\frac{1}{3}\right)$-sedentary at time $t=j \pi$ for any odd j. If $n \geq 5$, then u is tightly $\left(\frac{\sqrt{2}}{n}\right)$-sedentary at time $t=\frac{j \pi}{2}$ for any odd j.
5 If $n_{\ell} \geq 3$, then u is tightly C-sedentary, where $C=1-\frac{2}{n_{\ell}}$ at time $t=\frac{j \pi}{g}$ whenever $\nu_{2}(n)>\nu_{2}\left(n_{\ell}\right)$, where $g=\operatorname{gcd}\left(n, n_{\ell}\right)$ and j is any odd integer and $C>1-\frac{2}{n_{\ell}}$ otherwise.

Complete multipartite graphs: Laplacian case

Corollary (M., 2024)

Let $X=K_{n_{1}, \ldots, n_{k}}, n=\sum_{j=1}^{k} n_{j}$ and u be a vertex in partite set of size n_{ℓ}.
1 If $n_{\ell}=1$, then u is tightly $\left(1-\frac{2}{n}\right)$-sedentary at time $t=\frac{j \pi}{n}$ for any odd j.
2 If $n_{\ell}=2$ and $n \equiv 0(\bmod 4)$, then u is involved in PST.
3 If $n_{\ell}=2$ and $n \equiv 2(\bmod 4)$, then u is tightly $\left(\frac{2}{n}\right)$-sedentary at time $t=\frac{j \pi}{2}$ for any odd j.
4 Let $n_{\ell}=2$ and n be odd. If $n=3$, then u is tightly $\left(\frac{1}{3}\right)$-sedentary at time $t=j \pi$ for any odd j. If $n \geq 5$, then u is tightly $\left(\frac{\sqrt{2}}{n}\right)$-sedentary at time $t=\frac{j \pi}{2}$ for any odd j.
5 If $n_{\ell} \geq 3$, then u is tightly C-sedentary, where $C=1-\frac{2}{n_{\ell}}$ at time $t=\frac{j \pi}{g}$ whenever $\nu_{2}(n)>\nu_{2}\left(n_{\ell}\right)$, where $g=\operatorname{gcd}\left(n, n_{\ell}\right)$ and j is any odd integer and $C>1-\frac{2}{n_{\ell}}$ otherwise.

- If (i) $n \not \equiv 0$ or (ii) $n \equiv 0(\bmod 4) \wedge n_{j} \neq 2$ for each j, then each vertex in X is sedentary.

Complete multipartite graphs: Laplacian case

Corollary (M., 2024)

Let $X=K_{n_{1}, \ldots, n_{k}}, n=\sum_{j=1}^{k} n_{j}$ and u be a vertex in partite set of size n_{ℓ}.
1 If $n_{\ell}=1$, then u is tightly $\left(1-\frac{2}{n}\right)$-sedentary at time $t=\frac{j \pi}{n}$ for any odd j.
2 If $n_{\ell}=2$ and $n \equiv 0(\bmod 4)$, then u is involved in PST.
3 If $n_{\ell}=2$ and $n \equiv 2(\bmod 4)$, then u is tightly $\left(\frac{2}{n}\right)$-sedentary at time $t=\frac{j \pi}{2}$ for any odd j.
4 Let $n_{\ell}=2$ and n be odd. If $n=3$, then u is tightly $\left(\frac{1}{3}\right)$-sedentary at time $t=j \pi$ for any odd j. If $n \geq 5$, then u is tightly $\left(\frac{\sqrt{2}}{n}\right)$-sedentary at time $t=\frac{j \pi}{2}$ for any odd j.
5 If $n_{\ell} \geq 3$, then u is tightly C-sedentary, where $C=1-\frac{2}{n_{\ell}}$ at time $t=\frac{j \pi}{g}$ whenever $\nu_{2}(n)>\nu_{2}\left(n_{\ell}\right)$, where $g=\operatorname{gcd}\left(n, n_{\ell}\right)$ and j is any odd integer and $C>1-\frac{2}{n_{\ell}}$ otherwise.

- If (i) $n \not \equiv 0$ or $($ ii $) n \equiv 0(\bmod 4) \wedge n_{j} \neq 2$ for each j, then each vertex in X is sedentary.
- $C P(2 k)$ for even k are the only complete multipartite graphs with no sedentary vertex.

Cartesian products

Theorem (M., 2023)

Let $Z=X_{1} \square X_{2} \square \cdots \square X_{n}$ and $u=\left(u_{1}, \ldots, u_{n}\right)$.
1 If each X_{j} is C_{j}-sedentary at u_{j}, then Z is $\left(\prod_{j=1}^{n} C_{j}\right)$-sedentary at u. In particular, if each X_{j} is tightly C_{j}-sedentary at u_{j}, then Z is tightly C^{\prime}-sedentary at u, where $C^{\prime} \geq \prod_{j=1}^{n} C_{j}$.
2 If Z is C-sedentary at u, then each X_{j} is C_{j}-sedentary at u_{j} for some $0<C_{j}<1$.

Theorem (M., 2023)

Let $n_{1}, \ldots, n_{m} \geq 2$ and $X=K_{n_{1}} \square K_{n_{2}} \square \ldots \square K_{n_{m}}$. The following hold.
1 If $n_{j}=2$ for some j, then X is not sedentary at any vertex.
2 If each $n_{j} \geq 3$, then X is C-sedentary at u, where $C=\prod_{j=1}^{m}\left(1-\frac{2}{n_{j}}\right)$. If we add that all $\nu_{2}\left(n_{j}\right)$'s are equal, then X is tightly C-sedentary at u at time $t=\frac{\pi}{2^{\nu_{2}\left(n_{1}\right)}}$.

Direct products

Theorem (M., 2024)

Let $u \in V\left(K_{m}\right)$ and $v \in V(Y)$. The following hold.
1 If $m \geq 3$ and Y is C-sedentary at vertex v, where $C>\frac{1}{m-1}$, then $K_{m} \otimes Y$ is $\left(C-\frac{C+1}{m}\right)$-sedentary at vertex (u, v) for any vertex u of K_{m}. In particular, if $Y=K_{n}$ and $n \geq 3$, then (u, v) is sedentary.
$2 K_{2} \times Y$ is C-sedentary at (u, v) if and only if $\left|\operatorname{Re}\left(U_{A(Y)}(t)_{v, v}\right)\right| \geq C$ for all t. In particular, if $Y=K_{n}$, then (u, v) is not sedentary.

Direct products

Theorem (M., 2024)

Let $u \in V\left(K_{m}\right)$ and $v \in V(Y)$. The following hold.
1 If $m \geq 3$ and Y is C-sedentary at vertex v, where $C>\frac{1}{m-1}$, then $K_{m} \otimes Y$ is $\left(C-\frac{C+1}{m}\right)$-sedentary at vertex (u, v) for any vertex u of K_{m}. In particular, if $Y=K_{n}$ and $n \geq 3$, then (u, v) is sedentary.
$2 K_{2} \times Y$ is C-sedentary at (u, v) if and only if $\left|\operatorname{Re}\left(U_{A(Y)}(t)_{v, v}\right)\right| \geq C$ for all t. In particular, if $Y=K_{n}$, then (u, v) is not sedentary.

Theorem (M., 2024)

Let Z be a d-regular graph on n vertices such that $d>0$ is an integer and $n=\frac{1}{2} s(d+s)$ for some even integer s satisfying $\nu_{2}(s) \geq \nu_{2}(d)$. If v is an apex of $Y=O_{2} \vee Z$, then $K_{2} \times Y$ is tightly C-sedentary at vertex (u, v) for some $C>0$.

Joins

Lemma (Kirkland and M., 2023)

Let $M \in\{A, L\}$ and $n=|V(X)|$. For all $u, v \in V(X)$ and for all t, we have

$$
\left|\left|U_{M(X \vee Y)}(t)_{u, v}\right|-\left|U_{M(X)}(t)_{u, v}\right|\right| \leq \frac{2}{n}
$$

Joins

Lemma (Kirkland and M., 2023)

Let $M \in\{A, L\}$ and $n=|V(X)|$. For all $u, v \in V(X)$ and for all t, we have

$$
\left|\left|U_{M(X \vee Y)}(t)_{u, v}\right|-\left|U_{M(X)}(t)_{u, V}\right| \leq \frac{2}{n} .\right.
$$

Theorem (M., 2024)

If u is C-sedentary in X with $C>\frac{2}{n}$, then u is $\left(C-\frac{2}{n}\right)$-sedentary in $X \vee Y$ for any graph Y, where we require that X and Y are both regular whenever $M=A$.
By assumption, $\left|U_{M(X)}(t)_{u, u}\right|-\frac{2}{n} \geq C-\frac{2}{n}>0$ for all t. By the lemma,

$$
\left|U_{M(X \vee Y)}(t)_{u, u}\right| \geq\left|U_{M(X)}(t)_{u, u}\right|-\frac{2}{n} \geq C-\frac{2}{n}>0 .
$$

Open questions

1 Characterize sedentariness in trees, Cayley graphs and distance-regular graphs.

Open questions

1 Characterize sedentariness in trees, Cayley graphs and distance-regular graphs.
2 Characterize vertices that are neither sedentary nor involved in PGST. Are there other types of vertices that admit the dichotomous property similar to that of twin vertices?

Open questions

1 Characterize sedentariness in trees, Cayley graphs and distance-regular graphs.
2 Characterize vertices that are neither sedentary nor involved in PGST. Are there other types of vertices that admit the dichotomous property similar to that of twin vertices?
3 For which graphs is it the case that the addition of a weighted loop or an attachment of a pendent path to a vertex induce or preserve sedentariness? If yes, then we ask: which weights of loops or lengths of paths achieve this task?

Open questions

1 Characterize sedentariness in trees, Cayley graphs and distance-regular graphs.
2 Characterize vertices that are neither sedentary nor involved in PGST. Are there other types of vertices that admit the dichotomous property similar to that of twin vertices?
3 For which graphs is it the case that the addition of a weighted loop or an attachment of a pendent path to a vertex induce or preserve sedentariness? If yes, then we ask: which weights of loops or lengths of paths achieve this task?
4 Determine other graph operations (such as the rooted product, lexicographic product, strong product and corona product) that induce and/or preserve sedentariness.

Open questions

1 Characterize sedentariness in trees, Cayley graphs and distance-regular graphs.
2 Characterize vertices that are neither sedentary nor involved in PGST. Are there other types of vertices that admit the dichotomous property similar to that of twin vertices?
3 For which graphs is it the case that the addition of a weighted loop or an attachment of a pendent path to a vertex induce or preserve sedentariness? If yes, then we ask: which weights of loops or lengths of paths achieve this task?
4 Determine other graph operations (such as the rooted product, lexicographic product, strong product and corona product) that induce and/or preserve sedentariness.
5 Characterize sedentary vertices in threshold graphs relative to the adjacency matrix, and provide tight bounds on their sedentariness.

Open questions

1 Characterize sedentariness in trees, Cayley graphs and distance-regular graphs.
2 Characterize vertices that are neither sedentary nor involved in PGST. Are there other types of vertices that admit the dichotomous property similar to that of twin vertices?
3 For which graphs is it the case that the addition of a weighted loop or an attachment of a pendent path to a vertex induce or preserve sedentariness? If yes, then we ask: which weights of loops or lengths of paths achieve this task?
4 Determine other graph operations (such as the rooted product, lexicographic product, strong product and corona product) that induce and/or preserve sedentariness.
5 Characterize sedentary vertices in threshold graphs relative to the adjacency matrix, and provide tight bounds on their sedentariness.
6 Is a dominating vertex in a graph sedentary relative to the adjacency matrix?

References

1 Monterde, H. Strong cospectrality and twin vertices in weighted graphs. Electron. J. Linear Algebra. 38, 494-518 (2022).
2 Godsil, C. Sedentary quantum walks. Linear Algebra Appl. 614, 356-375 (2021).
3 Monterde, H. Sedentariness in quantum walks. Quantum Inf. Process. 22, 273 (2023).
4 Kirkland, S., Monterde, H. and Plosker, S. Quantum state transfer between twins in weighted graphs. J. Algebr. Comb. 58, 623-649 (2023).
5 Kirkland S and Monterde, H. Quantum walks on join graphs. arXiv:2312.06906 (2023).
6 Monterde, H. New results in vertex sedentariness. arXiv:2401.00362 (2024).

Acknowledgements

- Sabrina Lato and Mariia Sobchuk
- Steve Kirkland and Sarah Plosker
- the Department of Mathematics and Faculty of Graduate Studies at UManitoba
- Ada Chan, Chris Godsil, Sooyeong Kim, Darian McLaren, Hiranmoy Pal, Christino Tamon, Christopher van Bommel, Harmony Zhan, Xiaohong Zhang etc

Advertisement

- Women in combinatorics - a network of women and gender-diverse folks in combinatorics
- database of women combinatorialists for diversification of research networks
- scholarships to undergraduates in Mexico and parts of Africa
- virtual colloquia, WinCom virtual conference (summer 2024)
- womenincombinatorics.com

Advertisement

- Women in combinatorics - a network of women and gender-diverse folks in combinatorics
- database of women combinatorialists for diversification of research networks
- scholarships to undergraduates in Mexico and parts of Africa
- virtual colloquia, WinCom virtual conference (summer 2024)
- womenincombinatorics.com
- CMS Women in Mathematics -
- provide support and encouragement for women to pursue and remain in careers in Math
- organize networking events (Connecting Women in Math Across Canada workshop, focused sessions at CMS meetings and on-line symposiums)
- build a network of Women in Math and related groups across Canada
- cms.math.ca/about-the-cms/mathematical-community/women-in-mathematics

Advertisement

- Women in combinatorics - a network of women and gender-diverse folks in combinatorics
- database of women combinatorialists for diversification of research networks
- scholarships to undergraduates in Mexico and parts of Africa
- virtual colloquia, WinCom virtual conference (summer 2024)
- womenincombinatorics.com
- CMS Women in Mathematics -
- provide support and encouragement for women to pursue and remain in careers in Math
- organize networking events (Connecting Women in Math Across Canada workshop, focused sessions at CMS meetings and on-line symposiums)
- build a network of Women in Math and related groups across Canada
- cms.math.ca/about-the-cms/mathematical-community/women-in-mathematics
- 05C50 Online - an online international seminar on graphs and matrices
- sites.google.com/view/05c50online/home

Contact

Thank you for your time! \bigcirc

Email: monterdh@myumanitoba.ca
Google scholar: Hermie Monterde

Googlesite: hermiemonterde

Twitter: Hermie Monterde

