Vertex sedentariness

Hermie Monterde (she/her)

University of Manitoba

Algebraic Graph Theory Seminar, Winter 2024 University of Waterloo

January 29, 2024

A quantum spin network is a network of interacting qubits.

A quantum spin network is a network of interacting qubits. It can be modelled by a connected weighted undirected graph X, where the vertices and edges of X represent the qubits and their interactions, respectively.

A quantum spin network is a network of interacting qubits. It can be modelled by a connected weighted undirected graph X, where the *vertices* and *edges* of X represent the *qubits* and their *interactions*, respectively.

Assign a quantum state to some vertex u of X, which can be represented by the standard basis vector \mathbf{e}_u . How does this quantum state propagate across the graph?

A quantum spin network is a network of interacting qubits. It can be modelled by a connected weighted undirected graph X, where the *vertices* and *edges* of X represent the *qubits* and their *interactions*, respectively.

Assign a quantum state to some vertex u of X, which can be represented by the standard basis vector \mathbf{e}_u . How does this quantum state propagate across the graph?

Schrödinger's equation dictates that the evolution of e_u is given by

 $\psi(t)=U(t)\mathbf{e}_{u},$

where $\psi(t)$ is the state of the quantum system represented by X at time t.

Let H be a real symmetric matrix such that $H_{u,v} = 0$ if and only if u and v are not adjacent.

Let *H* be a real symmetric matrix such that $H_{u,v} = 0$ if and only if *u* and *v* are not adjacent. A **continuous-time quantum walk** on *X* is determined by the matrix

$$U(t) = \exp(itH) = \sum_{k=0}^{\infty} \frac{(it)^k H^k}{k!},$$

where $i^2 = -1$ and $t \in \mathbb{R}$.

Let *H* be a real symmetric matrix such that $H_{u,v} = 0$ if and only if *u* and *v* are not adjacent. A **continuous-time quantum walk** on *X* is determined by the matrix

$$U(t) = \exp(itH) = \sum_{k=0}^{\infty} \frac{(it)^k H^k}{k!},$$

where $i^2 = -1$ and $t \in \mathbb{R}$. Note that U(t) is symmetric and unitary, and so

Let *H* be a real symmetric matrix such that $H_{u,v} = 0$ if and only if *u* and *v* are not adjacent. A **continuous-time quantum walk** on *X* is determined by the matrix

$$U(t) = \exp(itH) = \sum_{k=0}^{\infty} \frac{(it)^k H^k}{k!},$$

where $i^2 = -1$ and $t \in \mathbb{R}$. Note that U(t) is symmetric and unitary, and so

$$\sum_{j=1}^{n} |U(t)_{u,j}|^2 = 1 \text{ for each vertex } u \text{ in } X.$$

Let *H* be a real symmetric matrix such that $H_{u,v} = 0$ if and only if *u* and *v* are not adjacent. A **continuous-time quantum walk** on *X* is determined by the matrix

$$U(t) = \exp(itH) = \sum_{k=0}^{\infty} \frac{(it)^k H^k}{k!},$$

where $i^2 = -1$ and $t \in \mathbb{R}$. Note that U(t) is symmetric and unitary, and so

$$\sum_{j=1}^{n} |U(t)_{u,j}|^2 = 1 \text{ for each vertex } u \text{ in } X.$$

Hence, $|U(t)_{u,v}|^2$ is interpreted as the probability that the quantum state initially at vertex u is found at vertex v at time t. (Every row/column of U(t) determines a probability distribution).

Let *H* be a real symmetric matrix such that $H_{u,v} = 0$ if and only if *u* and *v* are not adjacent. A **continuous-time quantum walk** on *X* is determined by the matrix

$$U(t) = \exp(itH) = \sum_{k=0}^{\infty} \frac{(it)^k H^k}{k!},$$

where $i^2 = -1$ and $t \in \mathbb{R}$. Note that U(t) is symmetric and unitary, and so

$$\sum_{j=1}^{n} |U(t)_{u,j}|^2 = 1 \text{ for each vertex } u \text{ in } X.$$

Hence, $|U(t)_{u,v}|^2$ is interpreted as the probability that the quantum state initially at vertex u is found at vertex v at time t. (Every row/column of U(t) determines a probability distribution). Note: Typically, H is taken to be the adjacency matrix A or the Laplacian matrix L of X.

Perfect state transfer

Definition

Vertices u and v admit perfect state transfer (PST) in X if for some $\tau > 0$,

 $|U(\tau)_{u,v}|=1.$

If u = v, then we say that u is periodic.

Definition

Vertices *u* and *v* admit pretty good state transfer (PGST) in X if for some $\{\tau_k\} \subseteq \mathbb{R}^+$,

 $\lim_{k\to\infty}|U(\tau_k)_{u,v}|=1.$

Let $\lambda_1, \ldots, \lambda_r$ are the distinct real eigenvalues of A and E_j be the orthogonal projection matrix associated to λ_j . Then

$$A = \sum_{j=1}^{\prime} \lambda_j E_j.$$

Let $\lambda_1, \ldots, \lambda_r$ are the distinct real eigenvalues of A and E_j be the orthogonal projection matrix associated to λ_j . Then

$$A=\sum_{j=1}^{\prime}\lambda_{j}E_{j}.$$

Each $E_j = \sum_{j=1}^k \mathbf{w}_i \mathbf{w}_i^T$, where $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ is an ON basis for the eigenspace of λ_j . The E_j 's are real, symmetric, idempotent, pairwise multiplicatively orthogonal and sum to identity.

Let $\lambda_1, \ldots, \lambda_r$ are the distinct real eigenvalues of A and E_j be the orthogonal projection matrix associated to λ_j . Then

$$A=\sum_{j=1}^{\prime}\lambda_{j}E_{j}.$$

Each $E_j = \sum_{j=1}^k \mathbf{w}_i \mathbf{w}_i^T$, where $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ is an ON basis for the eigenspace of λ_j . The E_j 's are real, symmetric, idempotent, pairwise multiplicatively orthogonal and sum to identity.

$$U(t) = \exp(itA) = \sum_{j=1}^{r} \exp(it\lambda_j)E_j$$

Let $\lambda_1, \ldots, \lambda_r$ are the distinct real eigenvalues of A and E_j be the orthogonal projection matrix associated to λ_j . Then

$$A=\sum_{j=1}^{\cdot}\lambda_j E_j.$$

Each $E_j = \sum_{j=1}^k \mathbf{w}_i \mathbf{w}_i^T$, where $\{\mathbf{w}_1, \ldots, \mathbf{w}_k\}$ is an ON basis for the eigenspace of λ_j . The E_j 's are real, symmetric, idempotent, pairwise multiplicatively orthogonal and sum to identity.

$$U(t) = \exp(itA) = \sum_{j=1}^{r} \exp(it\lambda_j)E_j.$$

Definition

- **1** The eigenvalue support of vertex u in X is the set $\sigma_u(A) = \{\lambda_j : E_j \mathbf{e}_u \neq \mathbf{0}\}.$
- **2** Vertices *u* and *v* are strongly cospectral in X if $E_j \mathbf{e}_u = \pm E_j \mathbf{e}_v$ for each *j*.
- 3 Vertices u and v are cospectral if $(E_j)_{u,u} = \pm (E_j)_{v,v}$ for each j.

Theorem (Christandl et al., Godsil et al.)

1 P_2 and P_3 are the only paths that exhibit PST.

2 P_n exhibits PGST between end vertices if and only if n = p - 1, n = 2p - 1 and $n = 2^m - 1$, where p is prime and m is an integer.

Theorem (Christandl et al., Godsil et al.)

1 P_2 and P_3 are the only paths that exhibit PST.

2 P_n exhibits PGST between end vertices if and only if n = p - 1, n = 2p - 1 and $n = 2^m - 1$, where p is prime and m is an integer.

Theorem (Christandl et al., Godsil et al.)

1 P_2 and P_3 are the only paths that exhibit PST.

2 P_n exhibits PGST between end vertices if and only if n = p - 1, n = 2p - 1 and $n = 2^m - 1$, where p is prime and m is an integer.

$$A = (n-1)\frac{1}{n}\mathbf{J} + (-1)\left(I - \frac{1}{n}\mathbf{J}\right)$$

Theorem (Christandl et al., Godsil et al.)

- **1** P_2 and P_3 are the only paths that exhibit PST.
- 2 P_n exhibits PGST between end vertices if and only if n = p 1, n = 2p 1 and $n = 2^m 1$, where p is prime and m is an integer.

$$A = (n-1)\frac{1}{n}\mathbf{J} + (-1)\left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right) \implies U(t) = \exp(it(n-1))\frac{1}{n}\mathbf{J} + \exp(-it)\left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right)$$

Theorem (Christandl et al., Godsil et al.)

- **1** P_2 and P_3 are the only paths that exhibit PST.
- 2 P_n exhibits PGST between end vertices if and only if n = p 1, n = 2p 1 and $n = 2^m 1$, where p is prime and m is an integer.

$$A = (n-1)\frac{1}{n}\mathbf{J} + (-1)\left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right) \implies U(t) = \exp(it(n-1))\frac{1}{n}\mathbf{J} + \exp(-it)\left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right)$$

•
$$U(t)_{u,v} = \frac{1}{n} \exp(it(n-1)) - \frac{1}{n} \exp(-it) \implies$$

Theorem (Christandl et al., Godsil et al.)

- **1** P_2 and P_3 are the only paths that exhibit PST.
- 2 P_n exhibits PGST between end vertices if and only if n = p 1, n = 2p 1 and $n = 2^m 1$, where p is prime and m is an integer.

$$A = (n-1)\frac{1}{n}\mathbf{J} + (-1)\left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right) \implies U(t) = \exp(it(n-1))\frac{1}{n}\mathbf{J} + \exp(-it)\left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right)$$

•
$$U(t)_{u,v} = \frac{1}{n} \exp(it(n-1)) - \frac{1}{n} \exp(-it) \implies |U(t)_{u,v}| = \frac{1}{n} |\exp(itn) - 1| \le \frac{2}{n}$$

Theorem (Christandl et al., Godsil et al.)

- **1** P_2 and P_3 are the only paths that exhibit PST.
- 2 P_n exhibits PGST between end vertices if and only if n = p 1, n = 2p 1 and $n = 2^m 1$, where p is prime and m is an integer.

$$A = (n-1)\frac{1}{n}\mathbf{J} + (-1)\left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right) \implies U(t) = \exp(it(n-1))\frac{1}{n}\mathbf{J} + \exp(-it)\left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right)$$

•
$$U(t)_{u,v} = \frac{1}{n} \exp(it(n-1)) - \frac{1}{n} \exp(-it) \implies |U(t)_{u,v}| = \frac{1}{n} |\exp(itn) - 1| \le \frac{2}{n}$$
.
• $U(t)_{u,u} = \frac{1}{n} \exp(it(n-1)) + \frac{n-1}{n} \exp(-it) \implies$

Theorem (Christandl et al., Godsil et al.)

- **1** P_2 and P_3 are the only paths that exhibit PST.
- 2 P_n exhibits PGST between end vertices if and only if n = p 1, n = 2p 1 and $n = 2^m 1$, where p is prime and m is an integer.

$$A = (n-1)\frac{1}{n}\mathbf{J} + (-1)\left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right) \implies U(t) = \exp(it(n-1))\frac{1}{n}\mathbf{J} + \exp(-it)\left(\mathbf{I} - \frac{1}{n}\mathbf{J}\right)$$

•
$$U(t)_{u,v} = \frac{1}{n} \exp(it(n-1)) - \frac{1}{n} \exp(-it) \implies |U(t)_{u,v}| = \frac{1}{n} |\exp(itn) - 1| \le \frac{2}{n}.$$

• $U(t)_{u,u} = \frac{1}{n} \exp(it(n-1)) + \frac{n-1}{n} \exp(-it) \implies |U(t)_{u,u}| = \frac{1}{n} |\exp(itn) + n - 1| \ge 1 - \frac{2}{n}.$

Sedentariness

Definition

A vertex *u* is *C*-sedentary if there exists a constant $0 < C \leq 1$ such that for all *t*,

 $|U(t)_{u,u}|\geq C,$

and in case $|U(t_0)_{u,u}| = C$ for some $t_0 \in \mathbb{R}$, we say that u is *tightly C-sedentary*.

Sedentariness

Definition

A vertex u is C-sedentary if there exists a constant $0 < C \leq 1$ such that for all t,

 $|U(t)_{u,u}|\geq C,$

and in case $|U(t_0)_{u,u}| = C$ for some $t_0 \in \mathbb{R}$, we say that u is *tightly C-sedentary*.

Example: each $u \in V(K_n)$ is tightly $(1 - \frac{2}{n})$ -sedentary since

$$|U(t)_{u,u}| = rac{|n-1+\exp(itn)|}{n} \geq 1-rac{2}{n}$$
 for all t
Sedentariness

Definition

A vertex u is C-sedentary if there exists a constant $0 < C \leq 1$ such that for all t,

 $|U(t)_{u,u}|\geq C,$

and in case $|U(t_0)_{u,u}| = C$ for some $t_0 \in \mathbb{R}$, we say that u is *tightly C-sedentary*.

Example: each $u \in V(K_n)$ is tightly $(1 - \frac{2}{n})$ -sedentary since

$$|U(t)_{u,u}| = rac{|n-1+\exp(itn)|}{n} \ge 1-rac{2}{n}$$
 for all t .

Proposition

1 If u is C-sedentary, then u is C'-sedentary for all $0 < C' \leq C$.

2 If u and v are cospectral $(U_A(t)_{u,u} = U_A(t)_{v,v})$, then u is C-sedentary if and only if v is.

Neither sedentary nor involved in PGST

Proposition (M., 2023)

A sedentary vertex cannot be involved in pretty good state transfer. Moreover, a vertex involved in pretty good state transfer cannot be sedentary.

Follows from: $|U(t)_{u,u}|^2 + |U(t)_{u,v}|^2 + \sum_{j \neq u,v} |U(t)_{u,j}|^2 = 1$

Neither sedentary nor involved in PGST

Proposition (M., 2023)

A sedentary vertex cannot be involved in pretty good state transfer. Moreover, a vertex involved in pretty good state transfer cannot be sedentary.

Follows from: $|U(t)_{u,u}|^2 + |U(t)_{u,v}|^2 + \sum_{j \neq u,v} |U(t)_{u,j}|^2 = 1$

Example (M., 2024)

For each n ≥ 3, consider K_{1,n} with central vertex u. Then U_A(π/(2√n))u,u = 0, and so u is not sedentary. Since u is not strongly cospectral with any vertex in X, it cannot exhibit PGST.

Neither sedentary nor involved in PGST

Proposition (M., 2023)

A sedentary vertex cannot be involved in pretty good state transfer. Moreover, a vertex involved in pretty good state transfer cannot be sedentary.

Follows from: $|U(t)_{u,u}|^2 + |U(t)_{u,v}|^2 + \sum_{j \neq u,v} |U(t)_{u,j}|^2 = 1$

Example (M., 2024)

- For each n ≥ 3, consider K_{1,n} with central vertex u. Then U_A(π/(2√n))_{u,u} = 0, and so u is not sedentary. Since u is not strongly cospectral with any vertex in X, it cannot exhibit PGST.
- For each n ≥ 3, consider X = K₂ × K_n and let V(K₂) = {1,2}. Then X is not sedentary at every vertex. For each u ∈ V(K_n), (1, u) is strongly cospectral only to (2, u) in X, and PST occurs between them if and only if n is even. Consequently, each vertex of K₂ × K_n for each odd n is periodic, sedentary, and is involved in strong cospectrality but not PST.

Twins

Definition

Two vertices are **twins** if they have the same neighbours. A maximal subset T of V(X) is a **twin set** if each pair of vertices in T are twins.

Lemma (M., 2022)

Let T be a set of twins in X. Then $u, v \in T$ if and only if $e_u - e_v$ is an eigenvector of A corresponding to 0 (resp., -1) whenever u and v are non-adjacent (resp., adjacent).

$$A(\mathbf{e}_{1} - \mathbf{e}_{2}) = \begin{bmatrix} 0 & \eta & \\ \eta & 0 & \\ A_{3,1} & A_{3,2} & * \\ \vdots & \vdots & \\ A_{n,1} & A_{n,2} & \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \begin{bmatrix} -\eta \\ \eta \\ 0 \\ \vdots \\ 0 \end{bmatrix} = -\eta(\mathbf{e}_{1} - \mathbf{e}_{2})$$

A dichotomy

Theorem (Kirkland, M., Plosker, 2023)

Let T be a twin set in X. Then for any two vertices u and v in T,

$$|U(t)_{u,u}|+|U(t)_{u,v}|\geq 1$$
 for all $t\in\mathbb{R}$

A dichotomy

Theorem (Kirkland, M., Plosker, 2023)

Let T be a twin set in X. Then for any two vertices u and v in T,

$$|U(t)_{u,u}|+|U(t)_{u,v}|\geq 1$$
 for all $t\in\mathbb{R}$

Corollary (M., 2024)

A vertex $u \in T$ is either sedentary or involved in PGST with some vertex $v \neq u$ in T.

A dichotomy

Theorem (Kirkland, M., Plosker, 2023)

Let T be a twin set in X. Then for any two vertices u and v in T,

$$|U(t)_{u,u}|+|U(t)_{u,v}|\geq 1$$
 for all $t\in\mathbb{R}$

Corollary (M., 2024)

A vertex $u \in T$ is either sedentary or involved in PGST with some vertex $v \neq u$ in T.

Corollary (M., 2024)

If $u \in T$ is not involved in strong cospectrality, then each $u \in T$ is sedentary.

Twins are mostly sedentary

Theorem (M., 2024)

Let $\theta \in \{0, -1\}$. Each vertex in a twin set T is sedentary if and only if:

- **1** Either (i) $|T| \ge 3$ or (ii) $T = \{u, v\}$ and there is a θ -eigenvector $\mathbf{w} \notin \text{span}\{\mathbf{e}_u \mathbf{e}_v\}$ of A such that $\mathbf{w}^T \mathbf{e}_u \neq 0$ or $\mathbf{w}^T \mathbf{e}_v \neq 0$ (i.e., $u \in T$ is not involved in strong cospectrality)
- 2 $T = \{u, v\}$ and $\mathbf{w}^T \mathbf{e}_u = \mathbf{w}^T \mathbf{e}_v = 0$ for all θ -eigenvectors $\mathbf{w} \notin \text{span}\{\mathbf{e}_u \mathbf{e}_v\}$ of A (i.e., u and v are strongly cospectral), and there are integers m_j such that

$$\sum_{\sigma_u(\mathcal{A})\setminus\{ heta\}} m_j(\lambda_j- heta) = 0 \quad ext{and} \quad \sum_{\sigma_u(\mathcal{A})\setminus\{ heta\}} m_j ext{ is odd}.$$

If we add that $\phi(A, t) \in \mathbb{Z}[t]$ and u is periodic, then the latter statement is equivalent to each eigenvalue $\lambda_j \in \sigma_u(A) \setminus \{\theta\}$ is of the form $\lambda_j = \theta + b_j \sqrt{\Delta}$, where b_j is an integer and either $\Delta = 1$ or $\Delta > 1$ is a square-free integer and the $\nu_2(b_j)$'s are not all equal.

A necessary condition

Lemma (M., 2023)

Let u be a vertex of X with $\sigma_u(A) = \{\lambda_1, \dots, \lambda_r\}$. If S is a non-empty proper subset of $\sigma_u(A)$, say $S = \{\lambda_1, \dots, \lambda_s\}$, such that

$$\sum_{j=1}^{s} (E_j)_{u,u} = a$$

for some $\frac{1}{2} \leq a < 1$, then

$$|U_A(t)_{u,u}| \ge F(t) := \left|\sum_{j=1}^s e^{it\lambda_j} (E_j)_{u,u}\right| - (1-a) \quad \text{for all } t.$$
 (1)

A necessary condition

Lemma (M., 2023)

Let u be a vertex of X with $\sigma_u(A) = \{\lambda_1, \dots, \lambda_r\}$. If S is a non-empty proper subset of $\sigma_u(A)$, say $S = \{\lambda_1, \dots, \lambda_s\}$, such that

$$\sum_{j=1}^{\mathsf{s}} (E_j)_{u,u} = \mathsf{a}$$

for some $rac{1}{2} \leq a < 1$, then

$$|U_{\mathcal{A}}(t)_{u,u}| \geq F(t) := \left|\sum_{j=1}^{s} e^{it\lambda_j} (E_j)_{u,u}\right| - (1-a) \quad \text{for all } t. \tag{1}$$

Remark. If $a = \frac{1}{2}$, then $F(t) \le 0$ for all t.

A necessary condition

Lemma (M., 2023)

Let u be a vertex of X with $\sigma_u(A) = \{\lambda_1, ..., \lambda_r\}$. If S is a non-empty proper subset of $\sigma_u(A)$, say $S = \{\lambda_1, ..., \lambda_s\}$, such that

$$\sum_{j=1}^{s} (E_j)_{u,u} = a$$

for some $\frac{1}{2} \leq a < 1$, then

$$|U_A(t)_{u,u}| \ge F(t) := \left|\sum_{j=1}^s e^{it\lambda_j} (E_j)_{u,u}\right| - (1-a) \quad \text{for all } t. \tag{1}$$

Remark. If $a = \frac{1}{2}$, then $F(t) \le 0$ for all t. Thus, to establish sedentariness, it suffices to find $\emptyset \ne S \subseteq \sigma_u(A)$ with $\frac{1}{2} < a < 1$ such that F(t) is bounded away from 0 for all t.

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_1 be the resulting set after orthonormalizing $\{e_u - e_v : v \in T \setminus \{u\}\},\$

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_1 be the resulting set after orthonormalizing $\{e_u - e_v : v \in T \setminus \{u\}\}$, and $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ be an orthonormal basis for the eigenspace of M associated with $\theta \in \{0, -1\}$.

Theorem (M., 2024)

Let *T* be a twin set in *X* and fix $u \in T$. Let \mathcal{B}_1 be the resulting set after orthonormalizing $\{e_u - e_v : v \in T \setminus \{u\}\}$, and $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ be an orthonormal basis for the eigenspace of *M* associated with $\theta \in \{0, -1\}$. Define $F = \sum_{w \in \mathcal{B}_2} ww^T$, where *F* is absent if $\mathcal{B}_2 = \emptyset$. Then

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_1 be the resulting set after orthonormalizing $\{e_u - e_v : v \in T \setminus \{u\}\}$, and $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ be an orthonormal basis for the eigenspace of M associated with $\theta \in \{0, -1\}$. Define $F = \sum_{w \in \mathcal{B}_2} ww^T$, where F is absent if $\mathcal{B}_2 = \emptyset$. Then

$$|U_{\mathcal{A}}(t)_{u,u}| \ge 1 - rac{2}{|\mathcal{T}|} + 2F_{u,u}$$
 for all t .

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_1 be the resulting set after orthonormalizing $\{e_u - e_v : v \in T \setminus \{u\}\}$, and $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ be an orthonormal basis for the eigenspace of M associated with $\theta \in \{0, -1\}$. Define $F = \sum_{w \in \mathcal{B}_2} ww^T$, where F is absent if $\mathcal{B}_2 = \emptyset$. Then

$$|U_{\mathcal{A}}(t)_{u,u}| \geq 1-rac{2}{|\mathcal{T}|}+2F_{u,u}$$
 for all t .

Sketch: Let |T| = m and 0_k denote the $k \times k$ zero matrix. From our assumption, we deduce that

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_1 be the resulting set after orthonormalizing $\{e_u - e_v : v \in T \setminus \{u\}\}$, and $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ be an orthonormal basis for the eigenspace of M associated with $\theta \in \{0, -1\}$. Define $F = \sum_{w \in \mathcal{B}_2} ww^T$, where F is absent if $\mathcal{B}_2 = \emptyset$. Then

$$|U_{\mathcal{A}}(t)_{u,u}| \ge 1 - rac{2}{|\mathcal{T}|} + 2F_{u,u}$$
 for all t .

Sketch: Let |T| = m and 0_k denote the $k \times k$ zero matrix. From our assumption, we deduce that

$$E_{\theta} = \left(I_m - \frac{1}{m}\mathbf{J}_m \oplus \mathbf{0}_{n-m}\right) + F,$$

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_1 be the resulting set after orthonormalizing $\{e_u - e_v : v \in T \setminus \{u\}\}$, and $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ be an orthonormal basis for the eigenspace of M associated with $\theta \in \{0, -1\}$. Define $F = \sum_{w \in \mathcal{B}_2} ww^T$, where F is absent if $\mathcal{B}_2 = \emptyset$. Then

$$|U_{\mathcal{A}}(t)_{u,u}| \geq 1-rac{2}{|\mathcal{T}|}+2F_{u,u}$$
 for all t .

Sketch: Let |T| = m and 0_k denote the $k \times k$ zero matrix. From our assumption, we deduce that

$$E_{\theta} = \left(I_m - \frac{1}{m}\mathbf{J}_m \oplus \mathbf{0}_{n-m}\right) + F,$$

Taking $S = \{\theta\}$ and $a = (E_{\theta})_{u,u}$

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_1 be the resulting set after orthonormalizing $\{e_u - e_v : v \in T \setminus \{u\}\}$, and $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ be an orthonormal basis for the eigenspace of M associated with $\theta \in \{0, -1\}$. Define $F = \sum_{w \in \mathcal{B}_2} ww^T$, where F is absent if $\mathcal{B}_2 = \emptyset$. Then

$$|U_{\mathcal{A}}(t)_{u,u}| \geq 1-rac{2}{|\mathcal{T}|}+2F_{u,u}$$
 for all t .

Sketch: Let |T| = m and 0_k denote the $k \times k$ zero matrix. From our assumption, we deduce that

$$E_{\theta} = \left(I_m - \frac{1}{m}\mathbf{J}_m \oplus \mathbf{0}_{n-m}\right) + F,$$

Taking $S = \{\theta\}$ and $a = (E_{\theta})_{u,u} = 1 - \frac{1}{m} + F_{u,u}$

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_1 be the resulting set after orthonormalizing $\{e_u - e_v : v \in T \setminus \{u\}\}$, and $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ be an orthonormal basis for the eigenspace of M associated with $\theta \in \{0, -1\}$. Define $F = \sum_{w \in \mathcal{B}_2} ww^T$, where F is absent if $\mathcal{B}_2 = \emptyset$. Then

$$|U_{\mathcal{A}}(t)_{u,u}| \geq 1-rac{2}{|\mathcal{T}|}+2F_{u,u}$$
 for all t .

Sketch: Let |T| = m and 0_k denote the $k \times k$ zero matrix. From our assumption, we deduce that

$$E_{ heta} = \left(I_m - rac{1}{m} \mathbf{J}_m \oplus \mathbf{0}_{n-m}
ight) + F,$$

Taking $S = \{ heta\}$ and $a = (E_{ heta})_{u,u} = 1 - rac{1}{m} + F_{u,u} \ge rac{1}{2},$

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_1 be the resulting set after orthonormalizing $\{e_u - e_v : v \in T \setminus \{u\}\}$, and $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ be an orthonormal basis for the eigenspace of M associated with $\theta \in \{0, -1\}$. Define $F = \sum_{w \in \mathcal{B}_2} ww^T$, where F is absent if $\mathcal{B}_2 = \emptyset$. Then

$$|U_{\mathcal{A}}(t)_{u,u}| \geq 1-rac{2}{|\mathcal{T}|}+2F_{u,u}$$
 for all t .

Sketch: Let |T| = m and 0_k denote the $k \times k$ zero matrix. From our assumption, we deduce that

$$E_{\theta} = \left(I_m - \frac{1}{m}\mathbf{J}_m \oplus \mathbf{0}_{n-m}\right) + F,$$

Taking $S = \{\theta\}$ and $a = (E_{\theta})_{u,u} = 1 - \frac{1}{m} + F_{u,u} \ge \frac{1}{2}$, we obtain $|U_A(t)_{u,u}| \ge |e^{i\theta t}(E_{\theta})_{u,u}| - (1 - a)$

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_1 be the resulting set after orthonormalizing $\{e_u - e_v : v \in T \setminus \{u\}\}$, and $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ be an orthonormal basis for the eigenspace of M associated with $\theta \in \{0, -1\}$. Define $F = \sum_{w \in \mathcal{B}_2} ww^T$, where F is absent if $\mathcal{B}_2 = \emptyset$. Then

$$|U_{\mathcal{A}}(t)_{u,u}| \geq 1-rac{2}{|\mathcal{T}|}+2F_{u,u}$$
 for all t .

Sketch: Let |T| = m and 0_k denote the $k \times k$ zero matrix. From our assumption, we deduce that

$$E_{\theta} = \left(I_m - \frac{1}{m}\mathbf{J}_m \oplus \mathbf{0}_{n-m}\right) + F,$$

Taking $S = \{\theta\}$ and $a = (E_{\theta})_{u,u} = 1 - \frac{1}{m} + F_{u,u} \ge \frac{1}{2}$, we obtain $|U_A(t)_{u,u}| \ge |e^{i\theta t}(E_{\theta})_{u,u}| - (1-a) = a - (1-a) = 2a - 1$

Theorem (M., 2024)

Let T be a twin set in X and fix $u \in T$. Let \mathcal{B}_1 be the resulting set after orthonormalizing $\{e_u - e_v : v \in T \setminus \{u\}\}$, and $\mathcal{B} = \mathcal{B}_1 \cup \mathcal{B}_2$ be an orthonormal basis for the eigenspace of M associated with $\theta \in \{0, -1\}$. Define $F = \sum_{w \in \mathcal{B}_2} ww^T$, where F is absent if $\mathcal{B}_2 = \emptyset$. Then

$$|U_{\mathcal{A}}(t)_{u,u}| \geq 1-rac{2}{|\mathcal{T}|}+2F_{u,u}$$
 for all t .

Sketch: Let |T| = m and 0_k denote the $k \times k$ zero matrix. From our assumption, we deduce that

$$E_{\theta} = \left(I_m - \frac{1}{m}\mathbf{J}_m \oplus \mathbf{0}_{n-m}\right) + F,$$

Taking $S = \{\theta\}$ and $a = (E_{\theta})_{u,u} = 1 - \frac{1}{m} + F_{u,u} \ge \frac{1}{2}$, we obtain $|U_A(t)_{u,u}| \ge |e^{i\theta t}(E_{\theta})_{u,u}| - (1-a) = a - (1-a) = 2a - 1 = 1 - \frac{2}{|T|} + 2F_{u,u}.$

Corollary (M., 2024)

1 If
$$|T| \ge 3$$
, then each vertex in T is $\left(1 - \frac{2}{|T|} + 2F_{u,u}\right)$ -sedentary.

Corollary (M., 2024)

- **1** If $|T| \ge 3$, then each vertex in T is $\left(1 \frac{2}{|T|} + 2F_{u,u}\right)$ -sedentary.
- If T = {u, v} and there is a θ-eigenvector w ∉ span{e_u e_v} of A such that w^Te_u ≠ 0 or w^Te_v ≠ 0, then each vertex T is 2F_{u,u}-sedentary.

Corollary (M., 2024)

1 If
$$|T| \ge 3$$
, then each vertex in T is $\left(1 - \frac{2}{|T|} + 2F_{u,u}\right)$ -sedentary.

If T = {u, v} and there is a θ-eigenvector w ∉ span{e_u - e_v} of A such that w^Te_u ≠ 0 or w^Te_v ≠ 0, then each vertex T is 2F_{u,u}-sedentary.

Note: we currently do not have bounds for sedentary twins that admit strong cospectrality.

Corollary (M., 2024)

1 If
$$|T| \ge 3$$
, then each vertex in T is $\left(1 - \frac{2}{|T|} + 2F_{u,u}\right)$ -sedentary.

If T = {u, v} and there is a θ-eigenvector w ∉ span{e_u - e_v} of A such that w^Te_u ≠ 0 or w^Te_v ≠ 0, then each vertex T is 2F_{u,u}-sedentary.

Note: we currently do not have bounds for sedentary twins that admit strong cospectrality.

Theorem (M., 2023)

Let $u \in V(O_2)$ and |V(X)| = n. In $O_2 \lor X$, the following hold relative to the Laplacian. 1 If $n \equiv 2 \pmod{4}$, then u is involved in PST in $O_2 \lor X$.

Corollary (M., 2024)

1 If
$$|T| \ge 3$$
, then each vertex in T is $\left(1 - \frac{2}{|T|} + 2F_{u,u}\right)$ -sedentary.

If T = {u, v} and there is a θ-eigenvector w ∉ span{e_u - e_v} of A such that w^Te_u ≠ 0 or w^Te_v ≠ 0, then each vertex T is 2F_{u,u}-sedentary.

Note: we currently do not have bounds for sedentary twins that admit strong cospectrality.

Theorem (M., 2023)

Let $u \in V(O_2)$ and |V(X)| = n. In $O_2 \lor X$, the following hold relative to the Laplacian. 1 If $n \equiv 2 \pmod{4}$, then u is involved in PST in $O_2 \lor X$. 2 If $n \equiv 0 \pmod{4}$, then $|U_L(t)_{u,u}| \ge \frac{2}{n+2}$ with equality if and only if $t = \frac{j\pi}{2}$ for any odd j.

Corollary (M., 2024)

1 If
$$|T| \ge 3$$
, then each vertex in T is $\left(1 - \frac{2}{|T|} + 2F_{u,u}\right)$ -sedentary.

If T = {u, v} and there is a θ-eigenvector w ∉ span{e_u - e_v} of A such that w^Te_u ≠ 0 or w^Te_v ≠ 0, then each vertex T is 2F_{u,u}-sedentary.

Note: we currently do not have bounds for sedentary twins that admit strong cospectrality.

Theorem (M., 2023)

Let $u \in V(O_2)$ and |V(X)| = n. In $O_2 \vee X$, the following hold relative to the Laplacian.

1 If $n \equiv 2 \pmod{4}$, then u is involved in PST in $O_2 \vee X$.

2 If $n \equiv 0 \pmod{4}$, then $|U_L(t)_{u,u}| \geq \frac{2}{n+2}$ with equality if and only if $t = \frac{j\pi}{2}$ for any odd j.

3 Let n be odd. If n = 1, then $|U_L(t)_{u,u}| \ge \frac{1}{3}$ with equality if and only if $t = \ell \pi$ for any odd ℓ , while $n \ge 3$, then $|U_L(t)_{u,u}| \ge \frac{\sqrt{2}}{n+2}$ with equality if and only if $t = \frac{j\pi}{2}$ for any odd j.

Corollary (M., 2024)

Let $X = K_{n_1,...,n_k}$, $n = \sum_{j=1}^k n_j$ and u be a vertex in partite set of size n_ℓ . 1 If $n_\ell = 1$, then u is tightly $(1 - \frac{2}{n})$ -sedentary at time $t = \frac{j\pi}{n}$ for any odd j.

Corollary (M., 2024)

Corollary (M., 2024)

Let $X = K_{n_1,...,n_k}$, $n = \sum_{i=1}^k n_i$ and u be a vertex in partite set of size n_ℓ . **1** If $n_{\ell} = 1$, then u is tightly $(1 - \frac{2}{n})$ -sedentary at time $t = \frac{j\pi}{n}$ for any odd j. **2** If $n_{\ell} = 2$ and $n \equiv 0 \pmod{4}$, then u is involved in PST. 3 If $n_{\ell} = 2$ and $n \equiv 2 \pmod{4}$, then u is tightly $(\frac{2}{n})$ -sedentary at time $t = \frac{j\pi}{2}$ for any odd j. **4** Let $n_{\ell} = 2$ and n be odd. If n = 3, then u is tightly $(\frac{1}{3})$ -sedentary at time $t = j\pi$ for any odd j. If $n \ge 5$, then u is tightly $(\frac{\sqrt{2}}{n})$ -sedentary at time $t = \frac{j\pi}{2}$ for any odd j. **5** If $n_{\ell} \geq 3$, then u is tightly C-sedentary, where $C = 1 - \frac{2}{n_{\ell}}$ at time $t = \frac{j\pi}{\sigma}$ whenever $\nu_2(n) > \nu_2(n_\ell)$, where $g = \gcd(n, n_\ell)$ and j is any odd integer and $C > 1 - \frac{2}{n_\ell}$ otherwise.

Corollary (M., 2024)

Let $X = K_{n_1,...,n_k}$, $n = \sum_{i=1}^k n_i$ and u be a vertex in partite set of size n_ℓ . If $n_{\ell} = 1$, then u is tightly $(1 - \frac{2}{n})$ -sedentary at time $t = \frac{j\pi}{n}$ for any odd j. If $n_{\ell} = 2$ and $n \equiv 0 \pmod{4}$, then u is involved in PST. If $n_{\ell} = 2$ and $n \equiv 2 \pmod{4}$, then u is tightly $\left(\frac{2}{n}\right)$ -sedentary at time $t = \frac{j\pi}{2}$ for any odd j. Let $n_{\ell} = 2$ and n be odd. If n = 3, then u is tightly $(\frac{1}{3})$ -sedentary at time $t = j\pi$ for any odd j. If $n \ge 5$, then u is tightly $(\frac{\sqrt{2}}{n})$ -sedentary at time $t = \frac{j\pi}{2}$ for any odd j. If $n_{\ell} \ge 3$, then u is tightly C-sedentary, where $C = 1 - \frac{2}{n_{\ell}}$ at time $t = \frac{j\pi}{\sigma}$ whenever $\nu_2(n) > \nu_2(n_\ell)$, where $g = \gcd(n, n_\ell)$ and j is any odd integer and $C > 1 - \frac{2}{n_\ell}$ otherwise.

• If (i) $n \neq 0$ or (ii) $n \equiv 0 \pmod{4} \land n_i \neq 2$ for each *j*, then each vertex in X is sedentary.

Corollary (M., 2024)

Let $X = K_{n_1,...,n_k}$, $n = \sum_{i=1}^k n_i$ and u be a vertex in partite set of size n_ℓ . If $n_{\ell} = 1$, then u is tightly $(1 - \frac{2}{n})$ -sedentary at time $t = \frac{j\pi}{n}$ for any odd j. If $n_{\ell} = 2$ and $n \equiv 0 \pmod{4}$, then u is involved in PST. If $n_{\ell} = 2$ and $n \equiv 2 \pmod{4}$, then u is tightly $\left(\frac{2}{n}\right)$ -sedentary at time $t = \frac{j\pi}{2}$ for any odd j. Let $n_{\ell} = 2$ and n be odd. If n = 3, then u is tightly $(\frac{1}{3})$ -sedentary at time $t = j\pi$ for any odd j. If $n \ge 5$, then u is tightly $(\frac{\sqrt{2}}{n})$ -sedentary at time $t = \frac{j\pi}{2}$ for any odd j. If $n_{\ell} \ge 3$, then u is tightly C-sedentary, where $C = 1 - \frac{2}{n_{\ell}}$ at time $t = \frac{j\pi}{\sigma}$ whenever $\nu_2(n) > \nu_2(n_\ell)$, where $g = \gcd(n, n_\ell)$ and j is any odd integer and $C > 1 - \frac{2}{n_\ell}$ otherwise.

- If (i) $n \neq 0$ or (ii) $n \equiv 0 \pmod{4} \land n_j \neq 2$ for each *j*, then each vertex in X is sedentary.
- CP(2k) for even k are the only complete multipartite graphs with no sedentary vertex.

Cartesian products

Theorem (M., 2023)

Let $Z = X_1 \Box X_2 \Box \cdots \Box X_n$ and $u = (u_1, \ldots, u_n)$.

If each X_j is C_j-sedentary at u_j, then Z is (∏ⁿ_{j=1} C_j)-sedentary at u. In particular, if each X_j is tightly C_j-sedentary at u_j, then Z is tightly C'-sedentary at u, where C' ≥ ∏ⁿ_{j=1} C_j.
 If Z is C-sedentary at u, then each X_j is C_j-sedentary at u_j for some 0 < C_j < 1.

Theorem (M., 2023)

- Let $n_1, \ldots, n_m \ge 2$ and $X = K_{n_1} \square K_{n_2} \square \ldots \square K_{n_m}$. The following hold.
 - **1** If $n_j = 2$ for some j, then X is not sedentary at any vertex.
 - **2** If each $n_j \ge 3$, then X is C-sedentary at u, where $C = \prod_{j=1}^{m} (1 \frac{2}{n_j})$. If we add that all $\nu_2(n_j)$'s are equal, then X is tightly C-sedentary at u at time $t = \frac{\pi}{2^{\nu_2(n_1)}}$.
Direct products

Theorem (M., 2024)

Let $u \in V(K_m)$ and $v \in V(Y)$. The following hold.

- If $m \ge 3$ and Y is C-sedentary at vertex v, where $C > \frac{1}{m-1}$, then $K_m \otimes Y$ is $(C \frac{C+1}{m})$ -sedentary at vertex (u, v) for any vertex u of K_m . In particular, if $Y = K_n$ and $n \ge 3$, then (u, v) is sedentary.
- 2 $K_2 \times Y$ is C-sedentary at (u, v) if and only if $|\operatorname{Re}(U_{A(Y)}(t)_{v,v})| \geq C$ for all t. In particular, if $Y = K_n$, then (u, v) is not sedentary.

Direct products

Theorem (M., 2024)

Let $u \in V(K_m)$ and $v \in V(Y)$. The following hold.

1 If $m \ge 3$ and Y is C-sedentary at vertex v, where $C > \frac{1}{m-1}$, then $K_m \otimes Y$ is $(C - \frac{C+1}{m})$ -sedentary at vertex (u, v) for any vertex u of K_m . In particular, if $Y = K_n$ and $n \ge 3$, then (u, v) is sedentary.

2 $K_2 \times Y$ is C-sedentary at (u, v) if and only if $|\operatorname{Re}(U_{A(Y)}(t)_{v,v})| \geq C$ for all t. In particular, if $Y = K_n$, then (u, v) is not sedentary.

Theorem (M., 2024)

Let Z be a d-regular graph on n vertices such that d > 0 is an integer and $n = \frac{1}{2}s(d + s)$ for some even integer s satisfying $\nu_2(s) \ge \nu_2(d)$. If v is an apex of $Y = O_2 \lor Z$, then $K_2 \times Y$ is tightly C-sedentary at vertex (u, v) for some C > 0.

Joins

Lemma (Kirkland and M., 2023)

Let $M \in \{A, L\}$ and n = |V(X)|. For all $u, v \in V(X)$ and for all t, we have

$$\left| U_{\mathcal{M}(X \vee Y)}(t)_{u,v} \right| - \left| U_{\mathcal{M}(X)}(t)_{u,v} \right| \right| \leq \frac{2}{n}.$$

Joins

Lemma (Kirkland and M., 2023)

Let $M \in \{A, L\}$ and n = |V(X)|. For all $u, v \in V(X)$ and for all t, we have

$$\left|U_{\mathcal{M}(X\vee Y)}(t)_{u,v}\right|-\left|U_{\mathcal{M}(X)}(t)_{u,v}\right|\right|\leq \frac{2}{n}.$$

Theorem (M., 2024)

If u is C-sedentary in X with $C > \frac{2}{n}$, then u is $\left(C - \frac{2}{n}\right)$ -sedentary in X \lor Y for any graph Y, where we require that X and Y are both regular whenever M = A.

By assumption, $|U_{M(X)}(t)_{u,u}| - \frac{2}{n} \ge C - \frac{2}{n} > 0$ for all t. By the lemma,

$$|U_{M(X \vee Y)}(t)_{u,u}| \ge |U_{M(X)}(t)_{u,u}| - \frac{2}{n} \ge C - \frac{2}{n} > 0.$$

1 Characterize sedentariness in trees, Cayley graphs and distance-regular graphs.

- 1 Characterize sedentariness in trees, Cayley graphs and distance-regular graphs.
- 2 Characterize vertices that are neither sedentary nor involved in PGST. Are there other types of vertices that admit the dichotomous property similar to that of twin vertices?

- 1 Characterize sedentariness in trees, Cayley graphs and distance-regular graphs.
- 2 Characterize vertices that are neither sedentary nor involved in PGST. Are there other types of vertices that admit the dichotomous property similar to that of twin vertices?
- **3** For which graphs is it the case that the addition of a weighted loop or an attachment of a pendent path to a vertex induce or preserve sedentariness? If yes, then we ask: which weights of loops or lengths of paths achieve this task?

- 1 Characterize sedentariness in trees, Cayley graphs and distance-regular graphs.
- 2 Characterize vertices that are neither sedentary nor involved in PGST. Are there other types of vertices that admit the dichotomous property similar to that of twin vertices?
- **3** For which graphs is it the case that the addition of a weighted loop or an attachment of a pendent path to a vertex induce or preserve sedentariness? If yes, then we ask: which weights of loops or lengths of paths achieve this task?
- Id Determine other graph operations (such as the rooted product, lexicographic product, strong product and corona product) that induce and/or preserve sedentariness.

- 1 Characterize sedentariness in trees, Cayley graphs and distance-regular graphs.
- 2 Characterize vertices that are neither sedentary nor involved in PGST. Are there other types of vertices that admit the dichotomous property similar to that of twin vertices?
- **3** For which graphs is it the case that the addition of a weighted loop or an attachment of a pendent path to a vertex induce or preserve sedentariness? If yes, then we ask: which weights of loops or lengths of paths achieve this task?
- Id Determine other graph operations (such as the rooted product, lexicographic product, strong product and corona product) that induce and/or preserve sedentariness.
- **5** Characterize sedentary vertices in threshold graphs relative to the adjacency matrix, and provide tight bounds on their sedentariness.

- 1 Characterize sedentariness in trees, Cayley graphs and distance-regular graphs.
- 2 Characterize vertices that are neither sedentary nor involved in PGST. Are there other types of vertices that admit the dichotomous property similar to that of twin vertices?
- **3** For which graphs is it the case that the addition of a weighted loop or an attachment of a pendent path to a vertex induce or preserve sedentariness? If yes, then we ask: which weights of loops or lengths of paths achieve this task?
- Id Determine other graph operations (such as the rooted product, lexicographic product, strong product and corona product) that induce and/or preserve sedentariness.
- **5** Characterize sedentary vertices in threshold graphs relative to the adjacency matrix, and provide tight bounds on their sedentariness.
- **6** Is a dominating vertex in a graph sedentary relative to the adjacency matrix?

References

- Monterde, H. Strong cospectrality and twin vertices in weighted graphs. Electron. J. Linear Algebra. 38, 494-518 (2022).
- 2 Godsil, C. Sedentary quantum walks. Linear Algebra Appl. 614, 356-375 (2021).
- **3** Monterde, H. Sedentariness in quantum walks. Quantum Inf. Process. **22**, 273 (2023).
- Kirkland, S., Monterde, H. and Plosker, S. Quantum state transfer between twins in weighted graphs. J. Algebr. Comb. 58, 623–649 (2023).
- 5 Kirkland S and Monterde, H. Quantum walks on join graphs. arXiv:2312.06906 (2023).
- 6 Monterde, H. New results in vertex sedentariness. arXiv:2401.00362 (2024).

Acknowledgements

- Sabrina Lato and Mariia Sobchuk
- Steve Kirkland and Sarah Plosker
- the Department of Mathematics and Faculty of Graduate Studies at UManitoba
- Ada Chan, Chris Godsil, Sooyeong Kim, Darian McLaren, Hiranmoy Pal, Christino Tamon, Christopher van Bommel, Harmony Zhan, Xiaohong Zhang etc

Advertisement

- Women in combinatorics a network of women and gender-diverse folks in combinatorics
 - database of women combinatorialists for diversification of research networks
 - scholarships to undergraduates in Mexico and parts of Africa
 - virtual colloquia, WinCom virtual conference (summer 2024)
 - womenincombinatorics.com

Advertisement

- Women in combinatorics a network of women and gender-diverse folks in combinatorics
 - database of women combinatorialists for diversification of research networks
 - scholarships to undergraduates in Mexico and parts of Africa
 - virtual colloquia, WinCom virtual conference (summer 2024)
 - womenincombinatorics.com

• CMS Women in Mathematics -

- provide support and encouragement for women to pursue and remain in careers in Math
- organize networking events (Connecting Women in Math Across Canada workshop, focused sessions at CMS meetings and on-line symposiums)
- build a network of Women in Math and related groups across Canada
- cms.math.ca/about-the-cms/mathematical-community/women-in-mathematics

Advertisement

- Women in combinatorics a network of women and gender-diverse folks in combinatorics
 - database of women combinatorialists for diversification of research networks
 - scholarships to undergraduates in Mexico and parts of Africa
 - virtual colloquia, WinCom virtual conference (summer 2024)
 - womenincombinatorics.com

• CMS Women in Mathematics -

- provide support and encouragement for women to pursue and remain in careers in Math
- organize networking events (Connecting Women in Math Across Canada workshop, focused sessions at CMS meetings and on-line symposiums)
- build a network of Women in Math and related groups across Canada
- cms.math.ca/about-the-cms/mathematical-community/women-in-mathematics
- 05C50 Online an online international seminar on graphs and matrices
 - sites.google.com/view/05c50online/home

Contact

Thank you for your time! \heartsuit

Email: monterdh@myumanitoba.ca

Google scholar: Hermie Monterde

Googlesite: hermiemonterde

Twitter: Hermie Monterde