Recurrence of Unitary and Stochastic Quantum Walks

Martin Štefaňák

Department of Physics, Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Algebraic Graph Theory Seminar, 3. 11. 2025

AGT Seminar

Outline

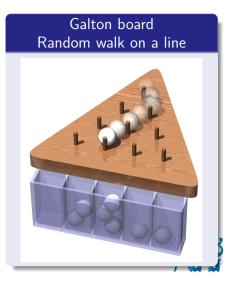
- Random Walks and Quantum Walks
- 2 Recurrence of Random Walks and Quantum Walks
- 3 Example Recurrence of a Two-state Quantum Walk on a Line
- 4 Recurrence of Discrete-time Quantum Stochastic Walks

Random Walk

- Walker hops randomly between vertices of a graph
- Prescribed rules for jumps
- Discrete-time steps

Probability distribution p(x, t)

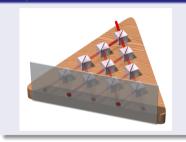
- Starts the walk at the vertex 0
- ullet Trajectories connecting vertices 0 and x in t steps
- Each trajectory has a probability
- Sum all probabilities p(x, t)



Quantum Walk

- Walker is a quantum particle
- Discrete-time unitary evolution
- Coherent spreading instead of random jumps
- Quantum walker evolves into a state of superposition of being on different vertices (until measurement)

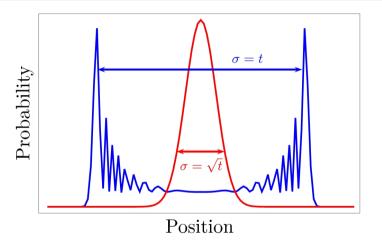
Optical Galton board Quantum walk on a line



Probability distribution after t steps p(x, t)?

- Each trajectory from 0 to x has a probability amplitude
- ullet Sum all amplitudes wave function $\psi(x,t)$ interference
- Probability distribution $p(x, t) = |\psi(x, t)|^2$

Comparison of Random and Quantum Walk on a Line



- Classical walk diffusion
- Quantum walk wave propagation

Two-state Quantum Walk on a Line

- Quantum walk on 1D lattice, walker moves left/right in every step
- Position space $|x\rangle$, $x \in \mathbb{Z}$, coin space $|L\rangle$, $|R\rangle$
- Unitary operator for a single step $U = S \cdot (I \otimes C)$
- ullet Conditional shift S moves walker according to the coin state

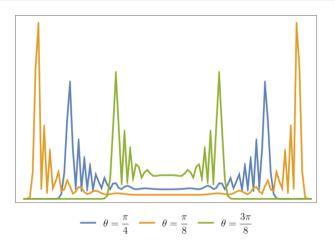
$$S|x,L\rangle = |x-1,L\rangle, \quad S|x,R\rangle = |x+1,R\rangle$$

• Coin operator — unitary transformation on the coin space

$$C(\theta) = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}, \quad C(\pi/4) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$
 – Hadamard coin

- ullet QW is analogy of correlated RW keep direction with $\cos^2 \theta$, change with $\sin^2 \theta$
- ullet For $heta=\pi/4$ correlated RW reduces to simple RW

Role of Coin Parameter θ



- \bullet $\,\theta$ determines the speed of propagation
- After t steps wavefronts are at positions $\approx \pm t \cos \theta$

Outline

- Random Walks and Quantum Walks
- 2 Recurrence of Random Walks and Quantum Walks
- 3 Example Recurrence of a Two-state Quantum Walk on a Line
- 4 Recurrence of Discrete-time Quantum Stochastic Walks

Recurrence in classical random walks

- Consider probabilities of first return after n steps q_n
- Mutually exclusive events recurrence probability is given by a sum

$$P=\sum_{n=1}^{\infty}q_n$$

• Relation between q_n and probability to be at origin after n steps p_n

$$p_0 = 1, \quad p_1 = q_1, \quad p_2 = q_2 + q_1 p_1$$

 $p_n = q_n + q_{n-1} p_1 + \ldots + q_1 p_{n-1}$

• Introduce generating functions for probabilities

$$\mu(z) = \sum_{n=0}^{\infty} p_n z^n, \quad a(z) = \sum_{n=1}^{\infty} q_n z^n, \quad z < 1$$

• We find the relation between generating functions

$$\mu(z) = 1 + \mu(z)a(z) \Longrightarrow a(z) = 1 - \mu(z)^{-1}$$

Recurrence in classical random walks

ullet Recurrence probability obtained by limit $z o 1^-$

$$P = \lim_{z \to 1^{-}} a(z) = 1 - \frac{1}{\sum_{n=0}^{+\infty} p_n} = 1 - \frac{1}{\Sigma}, \quad \Sigma = \sum_{n=0}^{+\infty} p_n$$

- $P = 1 \Longleftrightarrow \Sigma$ diverges
- ullet For unbiased random walk on \mathbb{Z}^d $p_n \sim n^{-rac{d}{2}}$
- Classical random walks are recurrent (P = 1) for d = 1, 2,
- Transient (P < 1) for $d \ge 3$ (Polya, 1921)
- Relation between q_n and p_n will not hold in the quantum case
- However, there will be a similar relation between amplitudes (or their generating functions)

10 / 33

Monitored evolution of quantum walk

- ullet Unitary step U followed by a measurement at the origin $\Pi_0=|0
 angle\langle 0|\otimes I_c$
- Stop if we find the walker, continue otherwise complementary projection Π_0^{\perp}
- \bullet State of the quantum walker after n steps conditional wave function

$$|\psi^{(c)}(n)\rangle = \frac{1}{\sqrt{s_{n-1}}}U\tilde{U}^{n-1}|\psi(0)\rangle, \quad \tilde{U} = \Pi_0^{\perp}U$$

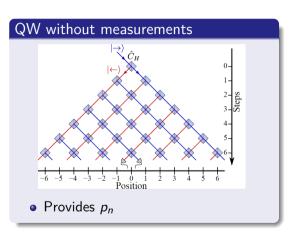
ullet Survival probability — prob. of not being absorbed at the origin in first n-1 steps

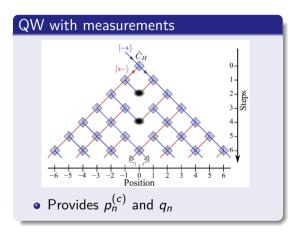
$$s_{n-1} = \left\| \tilde{U}^{n-1} | \psi(0)
angle
ight\|^2$$

- ullet Conditional probability to be at the origin $p_n^{(c)} = |\langle 0 | \psi^{(c)}(n) \rangle|^2$
- First return probability $q_n = s_{n-1} \ p_n^{(c)}$

AGT Seminar

Recurrence in Quantum Walks





No simple relation between first return probability q_n and prob. of being at origin p_n

Recurrence in Quantum Walks

- Fundamental difference between measurement in classical and quantum case
- Random walker has a position, measurement merely reveals it
- Position of a quantum walker is not defined until we make a measurement

Recurrence probability of a quantum walk

$$P = \sum_{n=1}^{\infty} q_n \neq 1 - \frac{1}{\sum_{n=0}^{\infty} p_n}$$

• First return probabilities q_n

$$q_n = \|a_n\psi\|^2$$

• First return amplitude operator (note that $\Pi_0 \psi = \psi$)

$$a_n = \Pi_0 U \tilde{U}^{n-1} \Pi_0$$

Generating functions

• *n*-th step return amplitude operators (without prior monitoring)

$$\mu_n = \Pi_0 U^n \Pi_0$$

• Operator valued generating functions ($z \in \mathbb{C}$, |z| < 1)

$$\mu(z) = \sum_{n=0}^{\infty} \mu_n z^n, \quad a(z) = \sum_{n=1}^{\infty} a_n z^n$$

ullet Resolvents for U and $ilde{U}$

$$G(z) = \sum_{n=0}^{\infty} U^n z^n = (I - zU)^{-1}, \quad \tilde{G}(z) = \sum_{n=0}^{\infty} \tilde{U}^n z^n = (I - z\tilde{U})^{-1}$$

Renewal equations for generating functions

• Relations between generating functions and resolvents

$$\mu(z) = \Pi_0 G(z) \Pi_0, \quad a(z) = z \Pi_0 U \tilde{G}(z) \Pi_0$$

Additional properties

$$\tilde{G}(z) - I = z \tilde{U} \tilde{G}(z), \quad \Pi_0 \tilde{G}(z) \Pi_0 = \Pi_0$$

Resolvent identities

$$G(z) - \tilde{G}(z) = zG(z)\Pi_0 U\tilde{G}(z) = z\tilde{G}(z)\Pi_0 UG(z)$$

Leads to relations

$$\mu(z) - \Pi_0 = \mu(z)a(z) = a(z)\mu(z)$$

Renewal equation

Renewal equations

$$\mu(z) - \Pi_0 = \mu(z)a(z) = a(z)\mu(z)$$

• All operators act on the origin subspace

$$\mu(z) = |0\rangle\langle 0| \otimes \mu_c(z), \quad a(z) = |0\rangle\langle 0| \otimes a_c(z), \quad \Pi_0 = |0\rangle\langle 0| \otimes I_c$$

• Relation for operators acting on the coin space (amplitude generating functions)

$$a_c(z) = I_c - \mu_c(z)^{-1}$$

Reminder — relation for classical generating functions for probabilities

$$a(z) = 1 - \mu(z)^{-1}$$

Recurrence probability

• Recurrence probability can be evaluated with

$$P = \int_{0}^{2\pi} ||a_c(e^{it})\psi_c||^2 \frac{dt}{2\pi} = \langle \psi_c | R | \psi_c \rangle$$

• Recurrence probability operator

$$R=\int\limits_{0}^{2\pi}a_{c}^{\dagger}(\mathrm{e}^{it})a_{c}(\mathrm{e}^{it})rac{dt}{2\pi}$$

Grünbaum et al., Commun. Math. Phys. 320, 543 (2013)

Outline

- Random Walks and Quantum Walks
- 2 Recurrence of Random Walks and Quantum Walks
- 3 Example Recurrence of a Two-state Quantum Walk on a Line
- 4 Recurrence of Discrete-time Quantum Stochastic Walks

Generating functions and resolvent for homogeneous case

Evolution operator in the momentum representation

$$U = \int_0^{2\pi} \frac{dk}{2\pi} |k\rangle\langle k| \otimes U(k), \quad U(k) = S(k) \cdot C, \quad S(k) = \operatorname{diag}(e^{ik}, e^{-ik})$$

Resolvent

$$G(z) = \int_0^{2\pi} \frac{dk}{2\pi} |k\rangle\langle k| \otimes (I_c - zU(k))^{-1}$$

• Generating function — Stieltjes operator

$$\mu(z) = \Pi_0 G(z) \Pi_0 = |0\rangle\langle 0| \otimes \mu_c(z)$$

$$\mu_c(z) = \int_0^{2\pi} \frac{dk}{2\pi} (I_c - zU(k))^{-1}$$

Resolvent in momentum picture

• Evolution operator in the momentum picture

$$U(k) = \begin{pmatrix} e^{ik} & 0 \\ 0 & e^{-ik} \end{pmatrix} \cdot \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix} = \begin{pmatrix} e^{ik} \cos \theta & \sin \theta e^{ik} \\ \sin \theta e^{-ik} & -e^{-ik} \cos \theta \end{pmatrix}$$

Resolvent in the Fourier space

$$(I_c - zU(k))^{-1} = \frac{1}{f(z,k)} \begin{pmatrix} 1 + ze^{-ik}\cos\theta & z\sin\theta e^{ik} \\ z\sin\theta e^{-ik} & 1 - ze^{ik}\cos\theta \end{pmatrix}$$

$$f(z,k) = 1 - 2iz\cos\theta\sin k - z^2$$

Stieltjes operator

$$\mu_c(z) = \int_0^{2\pi} \frac{dk}{2\pi} (I_c - zU(k))^{-1}$$

Evaluation of Stieltjes operator

ullet Stieltjes operator — involves integrals of the form $(n=0,\pm 1)$

$$\mathcal{I}(n) = \int_0^{2\pi} \frac{dk}{2\pi} \frac{e^{ink}}{f(z,k)} = \frac{1}{2\pi i} \oint \frac{x^n dx}{b(x)}, \quad x = e^{ik}$$
$$b(x) = x(1 - z^2) - z(1 - x^2) \cos \theta$$

Can be evaluated with residues

$$\mu_c(z) = rac{1}{2g(z)} egin{pmatrix} 1 - z^2 + g(z) & (1 - z^2 - g(z)) an heta \ -(1 - z^2 - g(z)) an heta & 1 + z^2 + g(z) \end{pmatrix}$$
 $g(z) = \sqrt{1 + 2z^2 \cos(2 heta) + z^4}$

First return generating function and Recurrence probability operator

Renewal equation

$$a_c(z) = I_c - \mu_c(z)^{-1}$$

• First return generating operator

$$a_c(z) = rac{1+z^2-g(z)}{2} egin{pmatrix} 1 & -\cot\theta \ \cot\theta & 1 \end{pmatrix}$$

Recurrence probability operator

$$R=\int\limits_{0}^{2\pi}a_{c}^{\dagger}(e^{it})a_{c}(e^{it})rac{dt}{2\pi}$$

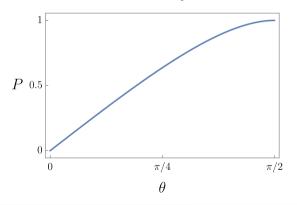
• It is a multiple of identity

$$a_c^{\dagger}(z)a_c(z) = \frac{|1+z^2-g(z)|^2}{4\sin^2\theta}I_c$$

Recurrence of a Quantum Walk on a Line

• Recurrence probability independent of the initial coin state

$$P = rac{1}{8\pi \sin^2 heta} \int\limits_0^{2\pi} |1 + e^{2it} - g(e^{it})|^2 dt = rac{2}{\pi} \left[heta(1 - \cot^2 heta) + \cot heta
ight] < 1$$



- Faster spreading due to interference
 transience already for d = 1
- For Hadamard walk

$$P(\pi/4) = \frac{2}{\pi} \approx 0.636$$

Outline

- Random Walks and Quantum Walks
- 2 Recurrence of Random Walks and Quantum Walks
- 3 Example Recurrence of a Two-state Quantum Walk on a Line
- Recurrence of Discrete-time Quantum Stochastic Walks

Discrete-time Quantum Stochastic Walk

What happens when we interpolate between Quantum Walk and Random Walk?

- Evolution where choose between RW/QW in each step
 - ullet With probability p we make a balanced random walk
 - With probability 1 p we make a quantum walk
- Model can be formulated as a Discrete-time Quantum Stochastic Walk (DTQSW)

$$\rho(t+1) = \mathcal{T}\rho(t) = (1-p)\underbrace{\mathcal{U}\rho(t)\mathcal{U}^{\dagger}}_{\mathsf{QW}} + p\underbrace{\left(\frac{1}{2}S_{L}\rho(t)S_{L}^{\dagger} + \frac{1}{2}S_{R}\rho(t)S_{R}^{\dagger}\right)}_{\mathsf{RW}}$$

ullet $S_{L/R}$ shifts the whole quantum state one lattice site to the left/right

Recurrence of DTQSW — Grünbaum and Velázquez, Adv. Math. (2018)

- ullet Recurrence of DTQSW recurrence of a CPTP map ${\mathcal T}$
- ullet We know the values for the endpoints p=0 (unitary QW) and p=1 (RW)

$$P(p=0)=rac{2}{\pi}\left[heta(1-\cot^2 heta)+\cot heta
ight], \quad P(p=1)=1 ext{ independent of } heta$$

What happens in between?

- ullet Direct numerical simulation allows to study recurrence for $t\sim 500$ steps
- Convergence is much slower than for the unitary quantum walk
- ullet Alternative approach with generating functions allows to effectively consider 10^5 steps

Recurrence probability

$$P = \sum_{n=1}^{\infty} q_n = \lim_{z \to 1^-} \operatorname{Tr} \left[\mathcal{F}(z) \rho(0) \right]$$

• (Reduced) first-return functions (FR)

$$\mathcal{F}(z) = \mathcal{P}f(z)\mathcal{P}, \quad f(z) = (I - \mathcal{Q})\mathcal{T}(I - z\mathcal{Q}\mathcal{T})^{-1}(I - \mathcal{Q})$$

• Projections acting on density matrices

$$\mathcal{P} \rho = \Pi_0 \rho \Pi_0, \quad \mathcal{Q} \rho = \Pi_0^{\perp} \rho \Pi_0^{\perp}$$

Renewal equation - relates FR function and Stieltjes operator

$$f(z) = I - \mu(z)^{-1}$$

• CPTP map in the momentum picture

$$\mathcal{T} = \int\limits_{0}^{2\pi} rac{dk_{1}}{2\pi} \int\limits_{0}^{2\pi} rac{dk_{2}}{2\pi} \; |k_{1},k_{2}
angle \langle k_{1},k_{2}| \otimes V(k_{1},k_{2})$$

$$V(k_1, k_2) = (1 - p)U(k_1) \otimes U(k_2) + p\cos(k_1 + k_2)I_c \otimes I_c$$

Resolvent

$$(I - z\hat{\mathcal{T}})^{-1} = \int_{0}^{2\pi} \frac{dk_1}{2\pi} \int_{0}^{2\pi} \frac{dk_2}{2\pi} |k_1, k_2\rangle \langle k_1, k_2| \otimes A(z, k_1, k_2)$$
$$A(z, k_1, k_2) = [I_c \otimes I_c - zV(k_1, k_2)]^{-1}$$

Stieltjes operator

$$\mu(z) = (I - \mathcal{Q})(I - z\mathcal{T})^{-1}(I - \mathcal{Q})$$

• Stieljes operator can be expressed as a sum

$$\mu(z) = \sum_{\substack{x,y,m,n\\xm=yn=0}} |x,m\rangle\langle y,n| \otimes A_{xm,yn}(z)$$

• $A_{xm,yn}(z)$ have to be evaluated numerically

$$A_{xm,yn}(z) = \int_{0}^{2\pi} \frac{dk_1}{2\pi} \int_{0}^{2\pi} \frac{dk_2}{2\pi} A(z, k_1, k_2) e^{ik_1(x-y) + ik_2(m-n)}$$

FR functions

$$f(z) = I - \mu(z)^{-1}, \qquad \mathcal{F}(z) = \mathcal{P}f(z)\mathcal{P}$$

- FR functions can be numerically evaluated for z close to 1
- Approximation of the recurrence probability

$$\tilde{P}_z = \operatorname{Tr}\left[\mathcal{F}(z)\rho(0)\right] = \sum_{n=1}^{\infty} q_n z^n$$

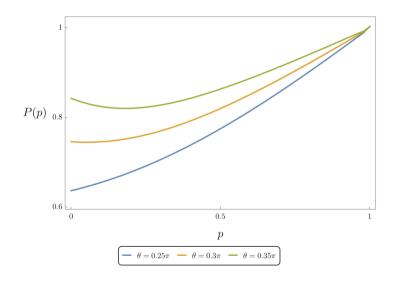
Summing the exact first return probabilities

$$P_t = \sum_{n=1}^t q_n$$

• Choosing z corresponds to effective number of steps $t_{\rm eff} = 1/(1-z)$

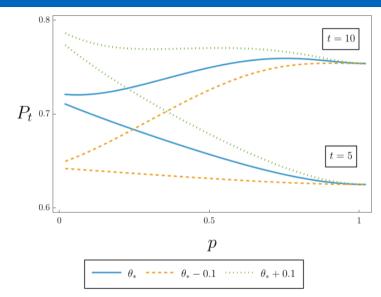
$$z = 0.99999 \implies t_{\text{eff}} = 10^5$$

Recurrence of DTQSW — Stefanak et al., arXiv:2501.08674



- For small θ recurrence probability is purely increasing function of p
- With increasing θ P(p) become non-monotonic
- Classical randomness can help the quantum walker to escape, despite the fact that classical random walk is recurrent

Recurrence of DTQSW — Stefanak et al., arXiv:2501.08674



- Minima at $p \neq 0$ for $\theta > \theta_* \approx 0.2892\pi$ develop in the first few steps
- The fact that they persist in the limit $t \to \infty$ is due to quantum interference
- Non-monotonicity of P(p) arises from interplay of quantum and classical dynamics

References

- G. Pólya, Math. Ann. 84, 149 (1921)
- F. A. Grünbaum, et al., Commun. Math. Phys. **320**, 543 (2013)
- F. A. Grünbaum and L. Velázquez, Advances Math. 326, 352 (2018)
- M. Štefaňák, V. Potoček, I. Yalcinkaya, A. Gabris and I. Jex, arXiv:2501.08674

Thank you for your attention

