DISTANCE-REGULAR GRAPHS THAT SUPPORT A UNIFORM STRUCTURE

(In collaboration with B. Fernández, Š.Miklavič, and G. Monzillo)

Roghayeh Maleki

University of Primorska-Slovenia

Combinatorics Seminar-University of Waterloo 13/Nov/2023

Aim of the talk

The aim of this talk is to

Aim of the talk

The aim of this talk is to

Classify non-bipartite distance-regular graphs with classical parameters which support a uniform structure.

We analyze three cases:

- Non-bipartite distance regular graphs of negative type.
- Non-bipartite distance regular graphs with classical parameters with $q=1$.
- Non-bipartite distance regular graphs with classical parameters with $q \geq 2$.

Part 1

Preliminaries

Preliminaries

- $\Gamma=(X, \mathcal{R})$: simple, finite, and connected graph,
- $\partial(x, y):=$ distance between x and y, where $x, y \in X$,
- $\varepsilon(x)=\max \{\partial(x, y) \mid y \in X\}$ (eccentricity of x),
- $D=\max \{\varepsilon(x) \mid x \in X\}$ (diameter of Γ)
- $\Gamma_{i}(x)=\{y \in X \mid \partial(x, y)=i\}$ (In particular, $\Gamma(x)=\Gamma_{1}(x)$).
- For an integer $k \geq 0$, we say that Γ is regular with valency k whenever $|\Gamma(x)|=k$ for all $x \in X$.

Preliminaries

- Adjacency matrix of Γ defined by

$$
(A)_{x y}= \begin{cases}1 & \partial(x, y)=1 \\ 0 & \partial(x, y) \neq 1\end{cases}
$$

- V : vector space over \mathbb{C} consisting of column vectors whose coordinates are indexed by X.
$M_{|X|}(\mathbb{C}): \mathbb{C}$-algebra consisting of all matrices whose rows and columns are indexed by X and whose entries are in \mathbb{C}.
V : the standard module

Preliminaries

Definition 3.1

Fix $x \in X$ and let $\varepsilon=\varepsilon(x)$. For $0 \leq i \leq \varepsilon$ let $E_{i}^{*}=E_{i}^{*}(x)$ denote the diagonal matrix in $M_{|X|}(\mathbb{C})$ defined by

$$
\left(E_{i}^{*}\right)_{y y}=\left\{\begin{array}{ll}
1 & \partial(x, y)=i, \\
0 & \partial(x, y) \neq i
\end{array} \quad(y \in X)\right.
$$

E_{i}^{*} is called the i-th dual idempotent of Γ with respect to x.

Preliminaries

Definition 3.1

Fix $x \in X$ and let $\varepsilon=\varepsilon(x)$. For $0 \leq i \leq \varepsilon$ let $E_{i}^{*}=E_{i}^{*}(x)$ denote the diagonal matrix in $M_{|X|}(\mathbb{C})$ defined by

$$
\left(E_{i}^{*}\right)_{y y}=\left\{\begin{array}{ll}
1 & \partial(x, y)=i, \\
0 & \partial(x, y) \neq i
\end{array} \quad(y \in X)\right.
$$

E_{i}^{*} is called the i-th dual idempotent of Γ with respect to x.

Definition 3.2

Terwilliger algebra $T:=T(x)$ of Γ, with respect to x, is a subalgebra of $M_{|X|}(\mathbb{C})$, generated by the adjacency matrix of Γ and the dual idempotents.

Preliminaries

Definition 3.1

Fix $x \in X$ and let $\varepsilon=\varepsilon(x)$. For $0 \leq i \leq \varepsilon$ let $E_{i}^{*}=E_{i}^{*}(x)$ denote the diagonal matrix in $M_{|X|}(\mathbb{C})$ defined by

$$
\left(E_{i}^{*}\right)_{y y}=\left\{\begin{array}{ll}
1 & \partial(x, y)=i, \\
0 & \partial(x, y) \neq i
\end{array} \quad(y \in X)\right.
$$

E_{i}^{*} is called the i-th dual idempotent of Γ with respect to x.

Definition 3.2

Terwilliger algebra $T:=T(x)$ of Γ, with respect to x, is a subalgebra of $M_{|X|}(\mathbb{C})$, generated by the adjacency matrix of Γ and the dual idempotents.

- T-module is a vector subspace W of V, which is invariant for every $t \in T$:

$$
t W \subseteq W \text { for all } t \in T
$$

Preliminaries

Definition 3.3

Let W denote an irreducible T-module. Then, W is an orthogonal direct sum of the nonvanishing spaces among $E_{0}^{*} W, E_{1}^{*} W, \ldots, E_{D(X)}^{*} W$. We define

Preliminaries

Definition 3.3

Let W denote an irreducible T-module. Then, W is an orthogonal direct sum of the nonvanishing spaces among $E_{0}^{*} W, E_{1}^{*} W, \ldots, E_{D(X)}^{*} W$. We define

- endpoint of $W \quad r=\min \left\{i \mid 0 \leq i \leq \varepsilon, E_{i}^{*} W \neq 0\right\}$
- diameter of $W \quad d=\left|\left\{i \mid 0 \leq i \leq \varepsilon, E_{i}^{*} W \neq 0\right\}\right|-1$

Preliminaries

Definition 3.3

Let W denote an irreducible T-module. Then, W is an orthogonal direct sum of the nonvanishing spaces among $E_{0}^{*} W, E_{1}^{*} W, \ldots, E_{D(X)}^{*} W$. We define

- endpoint of $W \quad r=\min \left\{i \mid 0 \leq i \leq \varepsilon, E_{i}^{*} W \neq 0\right\}$
- diameter of $W \quad d=\left|\left\{i \mid 0 \leq i \leq \varepsilon, E_{i}^{*} W \neq 0\right\}\right|-1$

In addition,

- Irreducible T-module W is called thin, whenever

$$
\operatorname{dim} E_{i}^{*} W \leq 1 \quad \text { for each } 0 \leq i \leq \varepsilon
$$

Preliminaries

Matrices L, F, R
Define $L=L(x), F=F(x)$, and $R=R(x)$ in $M_{|X|}(\mathbb{C})$ by

$$
L=\sum_{i=1}^{\varepsilon} E_{i-1}^{*} A E_{i}^{*}, \quad F=\sum_{i=0}^{\varepsilon} E_{i}^{*} A E_{i}^{*}, \quad R=\sum_{i=0}^{\varepsilon-1} E_{i+1}^{*} A E_{i}^{*} .
$$

We refer to L, F, and R as the lowering, flat, and raising matrices with respect to x, respectively.

- Note that

$$
F_{(z, y)}= \begin{cases}1 & \partial(z, y)=1 \text { and } \partial(x, z)=\partial(x, y) \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
R_{(z, y)}= \begin{cases}1 & \partial(z, y)=1 \text { and } \partial(x, z)=\partial(x, y)+1 \\ 0 & \text { otherwise }\end{cases}
$$

- Moreover, $L, F, R \in T, F=F^{\top}, R=L^{\top}$, and $A=L+F+R$.

Uniform structure for a bipartite graph

Definition 3.4

Assume $\Gamma=(X, \mathcal{R})$ is bipartite. Fix a vertex $x \in X$. Define the following partial order \leq on X :

$$
\text { for all } y, z \in X, \quad \text { let } y \leq z \quad \text { whenever } \partial(x, y)+\partial(y, z)=\partial(x, z) \text {. }
$$

This allows us to directly translate the definition of a uniform poset to the setting of bipartite graphs.

Uniform structure for a bipartite graph

Definition 3.5

A parameter matrix $U=\left(e_{i j}\right)_{1 \leq i, j \leq \varepsilon}$ is defined to be a tridiagonal matrix with entries in \mathbb{C}, satisfying the following properties:

- $e_{i i}=1(1 \leq i \leq \varepsilon)$,
- $e_{i, i-1} \neq 0$ for $2 \leq i \leq \varepsilon$ or $e_{i-1, i} \neq 0$ for $2 \leq i \leq \varepsilon$, and
- the principal submatrix $\left(e_{i j}\right)_{s \leq i, j \leq t}$ is nonsingular for $1 \leq s \leq t \leq \varepsilon$.

For convenience we write $e_{i}^{-}:=e_{i, i-1}$ for $2 \leq i \leq \varepsilon$ and $e_{i}^{+}:=e_{i, i+1}$ for $1 \leq i \leq \varepsilon-1$. We also define $e_{1}^{-}:=0$ and $e_{\varepsilon}^{+}:=0$.

Uniform structure for a bipartite graph

Definition 3.5

A parameter matrix $U=\left(e_{i j}\right)_{1 \leq i, j \leq \varepsilon}$ is defined to be a tridiagonal matrix with entries in \mathbb{C}, satisfying the following properties:

- $e_{i i}=1(1 \leq i \leq \varepsilon)$,
- $e_{i, i-1} \neq 0$ for $2 \leq i \leq \varepsilon$ or $e_{i-1, i} \neq 0$ for $2 \leq i \leq \varepsilon$, and
- the principal submatrix $\left(e_{i j}\right)_{s \leq i, j \leq t}$ is nonsingular for $1 \leq s \leq t \leq \varepsilon$.

For convenience we write $e_{i}^{-}:=e_{i, i-1}$ for $2 \leq i \leq \varepsilon$ and $e_{i}^{+}:=e_{i, i+1}$ for $1 \leq i \leq \varepsilon-1$. We also define $e_{1}^{-}:=0$ and $e_{\varepsilon}^{+}:=0$.

- Let Γ be a bipartite graph. A uniform structure of Γ with respect to x is a pair (U, f) where $f=\left\{f_{i}\right\}_{i=1}^{\varepsilon}$ is a vector in \mathbb{C}^{ε}, such that

$$
e_{i}^{-} R L^{2}+L R L+e_{i}^{+} L^{2} R=f_{i} L
$$

is satisfied on $E_{i}^{*} V$ for $1 \leq i \leq \varepsilon$

Uniform structure for a bipartite graph

Theorem 1 (P. Terwilliger- 1990)

Let $\Gamma=(X, \mathcal{R})$ be a bipartite graph and fix $x \in X$. Let $T=T(x)$ denote the corresponding Terwilliger algebra. Assume that Γ admits a uniform structure with respect to x. Then, the following assertions hold:
(i) Every irreducible T-module is thin.
(ii) The isomorphism class of any irreducible T-module W is determined by its endpoint and its diameter.

Graphs that support a uniform structure

Definition 3.6

Consider $\Gamma=(X, \mathcal{R}):$ a non-bipartite graph, fix $x \in X$ and let

$$
\mathcal{R}_{f}=\mathcal{R} \backslash\{y z \mid \partial(x, y)=\partial(x, z)\} .
$$

We define $\Gamma_{f}=\Gamma_{f}(x)$ to be the graph with vertex set X and edge set \mathcal{R}_{f}, and we observe that Γ_{f} is bipartite and connected.

Graphs that support a uniform structure

Definition 3.6

Consider $\Gamma=(X, \mathcal{R}):$ a non-bipartite graph, fix $x \in X$ and let

$$
\mathcal{R}_{f}=\mathcal{R} \backslash\{y z \mid \partial(x, y)=\partial(x, z)\} .
$$

We define $\Gamma_{f}=\Gamma_{f}(x)$ to be the graph with vertex set X and edge set \mathcal{R}_{f}, and we observe that Γ_{f} is bipartite and connected.

- The graph Γ supports a uniform structure with respect to x, if Γ_{f} admits a uniform structure with respect to x.

Some observations

Let $\varepsilon=\varepsilon(x)$ and let $T_{f}=T_{f}(x)$ be the Terwilliger algebra of Γ_{f}. Then,

- since X is also the vertex set of Γ_{f}, we observe that V is also the standard module for Γ_{f}.
- the flat matrix of Γ_{f} is the zero matrix and we have $A_{f}=L+R$.
- for $0 \leq i \leq \varepsilon$, The i-th dual idempotents of Γ_{f} with respect to x is equal to E_{i}^{*}, and we have $T_{f}=<L, R, E_{i=0}^{* \varepsilon}>$.

Some observations

Let $\varepsilon=\varepsilon(x)$ and let $T_{f}=T_{f}(x)$ be the Terwilliger algebra of Γ_{f}. Then,

- since X is also the vertex set of Γ_{f}, we observe that V is also the standard module for Γ_{f}.
- the flat matrix of Γ_{f} is the zero matrix and we have $A_{f}=L+R$.
- for $0 \leq i \leq \varepsilon$, The i-th dual idempotents of Γ_{f} with respect to x is equal to E_{i}^{*}, and we have $T_{f}=<L, R, E_{i=0}^{* \varepsilon}>$.

Lemma 1 (Connection between a T-module and a T_{f}-module)

Let W denote a T-module. Then,

- W is also a T_{f}-module.
- If W is a thin irreducible T-module, then W is a thin irreducible T_{f}-module.

Some observations

Let $\varepsilon=\varepsilon(x)$ and let $T_{f}=T_{f}(x)$ be the Terwilliger algebra of Γ_{f}. Then,

- since X is also the vertex set of Γ_{f}, we observe that V is also the standard module for Γ_{f}.
- the flat matrix of Γ_{f} is the zero matrix and we have $A_{f}=L+R$.
- for $0 \leq i \leq \varepsilon$, The i-th dual idempotents of Γ_{f} with respect to x is equal to E_{i}^{*}, and we have $T_{f}=<L, R, E_{i=0}^{* \varepsilon}>$.

Lemma 1 (Connection between a T-module and a T_{f}-module)

Let W denote a T-module. Then,

- W is also a T_{f}-module.
- If W is a thin irreducible T-module, then W is a thin irreducible T_{f}-module.

Here we must mention that the following might happen.

- W is irreducible as a T-module, but reducible as a T_{f}-module.
- W and W^{\prime} are non-isomorphic as T-modules, but they are isomorphic as T_{f}-modules.
\Rightarrow Both of them happen in the case of Doob graphs.

Distance regular graphs

We know

- The Terwilliger algebra of the graph Γ and its modules,
- uniform structure for bipartite graphs,
- The graph Γ supports a uniform structure with respect to x, if Γ_{f} admits a uniform structure with respect to x.

Distance regular graphs

We know

- The Terwilliger algebra of the graph Γ and its modules,
- uniform structure for bipartite graphs,
- The graph Γ supports a uniform structure with respect to x, if Γ_{f} admits a uniform structure with respect to x.
(4) Distance regular graphs with classical parameters.

Distance regular graphs

Definition 3.7

- The graph Γ is distance-regular whenever, for all integers $0 \leq h, i, j \leq D$ and all $x, y \in X$ with $\partial(x, y)=h$, the number $p_{i j}^{h}:=\left|\Gamma_{i}(x) \cap \Gamma_{j}(y)\right|$ is independent of the choice of x, y. The constants $\left(p_{i j}^{h}\right)$ are known as the intersection numbers of Γ. For convenience,
$c_{i}:=p_{1 i-1}^{i}(1 \leq i \leq D)$,
$a_{i}:=p_{1 i}^{i}(0 \leq i \leq D)$,
$b_{i}:=p_{1 i+1}^{i}(0 \leq i \leq D-1)$,
$k_{i}:=p_{i i}^{0}(0 \leq i \leq D)$.
- Γ is bipartite iff $a_{i}=0$ for all $0 \leq i \leq D$.

Distance Regular graphs

Definition 3.7

- The graph Γ is distance-regular whenever, for all integers $0 \leq h, i, j \leq D$ and all $x, y \in X$ with $\partial(x, y)=h$, the number $p_{i j}^{h}:=\left|\Gamma_{i}(x) \cap \Gamma_{j}(y)\right|$ is independent of the choice of x, y. The constants $\left(p_{i j}^{h}\right)$ are known as the intersection numbers of Γ. For convenience,
$c_{i}:=p_{1 i-1}^{i}(1 \leq i \leq D)$,
$a_{i}:=p_{1 i}^{i}(0 \leq i \leq D)$,
$b_{i}:=p_{1 i+1}^{i}(0 \leq i \leq D-1)$,
$k_{i}:=p_{i i}^{0}(0 \leq i \leq D)$.
- Γ is bipartite iff $a_{i}=0$ for all $0 \leq i \leq D$.

Definition 3.8

A distance regular graph Γ is called a near polygon whenever $a_{i}=a_{1} c_{i}$ for $1 \leq i \leq D-1$ and Γ does not contain the complete multipartite graph $K_{1,1,2}$ as an induced subgraph.

Distance regular graphs

Definition 3.9 (Distance-regular graphs with classical parameters)

The graph Γ is said to have classical parameters (D, q, α, β) whenever the intersection numbers of Γ satisfy

$$
\begin{cases}c_{i}=\left[\begin{array}{l}
i \\
1
\end{array}\right]\left(1+\alpha\left[\begin{array}{c}
i-1 \\
1
\end{array}\right]\right) & (1 \leq i \leq D) \\
b_{i}=\left(\left[\begin{array}{l}
D \\
1
\end{array}\right]-\left[\begin{array}{l}
i \\
1
\end{array}\right]\right)\left(\beta-\alpha\left[\begin{array}{l}
i \\
1
\end{array}\right]\right) & (0 \leq i \leq D-1)\end{cases}
$$

where

$$
\left[\begin{array}{l}
j \\
1
\end{array}\right]:=1+q+q^{2}+\cdots+q^{j-1}
$$

Note that q is an integer and $q \notin\{0,-1\}$.

Distance regular graphs

Definition 3.10

Let $\Gamma=(X, \mathcal{R})$ denote a distance-regular non-bipartite graph with diameter $D \geq 3$, intersection numbers $b_{i}(0 \leq i \leq D-1), c_{i}(1 \leq i \leq D)$, and eigenvalues $\theta_{0}>\theta_{1}>\ldots>\theta_{D}$. The graph Γ is tight whenever the equality holds in

$$
\left(\theta_{1}+\frac{b_{0}}{a_{1}+1}\right)\left(\theta_{D}+\frac{b_{0}}{a_{1}+1}\right) \geq-\frac{b_{0} a_{1} b_{1}}{\left(a_{1}+1\right)^{2}} .
$$

Distance regular graphs

From now on we,

- Let $\Gamma=(X, \mathcal{R})$ denote a distance-regular non-bipartite graph with diameter $D \geq 3$, intersection numbers $b_{i}(0 \leq i \leq D-1), c_{i}(1 \leq i \leq D)$, and eigenvalues $\theta_{0}>\theta_{1}>\ldots>\theta_{D}$.
- Fix $x \in X$, and let $T=T(x)$ be the Terwilliger algebra of Γ and $E_{i}^{*}(0 \leq i \leq D)$ be the dual idempotents of Γ with respect to x.
- Let L, F, and R denote the corresponding lowering, flat, and raising matrices, respectively.
- Let $T_{f}=T_{f}(x)$ be the Terwilliger algebra of Γ_{f}. Note that T_{f} is generated by the matrices L, R, and $E_{i}^{*}(0 \leq i \leq D)$.

Part 2

Part 2

- DRGs with classical parameters of negative type.

Part 2

- DRGs with classical parameters of negative type.
- Distance-regular graphs with classical parameters with $q=1$.

DRGs with classical parameters of negative type

DRGs with classical parameters of negative type that support a uniform structure

DRGs with classical parameters of Negative type THAT SUPPORT A UNIFORM STRUCTURE
 ```q\leq-2```

Let Γ be a distance-regular graph with classical parameters of negative type.

Question. Which graphs, Γ, in this category support a uniform structure?

We split the analysis of this question into three cases:

DRGs with classical parameters of Negative type THAT SUPPORT A UNIFORM STRUCTURE
 ```q\leq-2```

Let Γ be a distance-regular graph with classical parameters of negative type.

Question. Which graphs, Γ, in this category support a uniform structure?

We split the analysis of this question into three cases:

- Case 1. Γ has intersection number $a_{1} \neq 0$ and is not a near polygon.
- Case 2. Γ has intersection number $a_{1}=0$.
- Case 3. Γ is a near polygon.

CASE 1. Γ HAS INTERSECTION NUMBER $a_{1} \neq 0$ AND IS NOT A NEAR POLYGON.

Proposition 1 (Š.Miklavič - 2009)

Assume that Γ is of negative type with $a_{1} \neq 0$ and it is not a near polygon. Then, the following statements hold.

- Up to isomorphism there is a unique irreducible module with endpoint 1 which is non-thin.
- Let W denote a non-thin irreducible T-module with endpoint 1. Pick a non-zero $w \in E_{1}^{*} W$. Then, the following vectors form a basis for W :

$$
\begin{equation*}
E_{i}^{*} A_{i-1} w \quad(1 \leq i \leq D), \quad E_{i}^{*} A_{i+1} w \quad(2 \leq i \leq D-1) \tag{1}
\end{equation*}
$$

Case 1.

Theorem [B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]
Assume that Γ is of negative type with $a_{1} \neq 0$ and it is not a near polygon. Then, Γ does not support a uniform structure with respect to x.

Case 1.

Theorem [B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]
Assume that Γ is of negative type with $a_{1} \neq 0$ and it is not a near polygon. Then, Γ does not support a uniform structure with respect to x.

Proof.

- Let W denote a non-thin irreducible T-module with endpoint 1 (which is unique),
- pick a non-zero $w \in E_{1}^{*} W$ (W is also a T_{f}-module),
- let $W^{\prime} \subseteq W$ be an irreducible T_{f}-module which contains w,
- using the action of L and R on the basis from Proposition 1, we observe that the vectors $R w$ and $L R^{2} w$ are linearly independent.
- W^{\prime} is non-thin,
- by Theorem 1, Γ does not support a uniform structure.

Case 2. Γ HAS Intersection number $a_{1}=0$.

Theorem [B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]
Assume that Γ is of negative type with $a_{1}=0$. Then, Γ does not support a uniform structure with respect to x.

CASE 3. Γ IS A NEAR POLYGON.

We first recall following results for distance-regular graphs of negative type with $a_{1} \neq 0$ and $c_{2}>1$.

Theorem 2 (Chih-wen Weng - 1999)

Assume Γ has classical parameters (D, q, α, β) where $D \geq 4$. Suppose $q \leq-2, a_{1} \neq 0$, and $c_{2}>1$. Then, one of the following hold.

- Γ is the dual polar graph ${ }^{2} A_{2 D-1}(-q)$.
- Γ is Hermitian forms graph $\operatorname{Her}_{-q}(D)$.
- $\alpha=(q-1) / 2, \beta=-\left(1+q^{D}\right) / 2$, and $-q$ is a power of an odd prime.

Corollary 1

Assume Γ has classical parameters (D, q, α, β). Suppose Γ is a regular near polygon with $q \leq-2$. Then, either Γ is the dual polar graph ${ }^{2} A_{2 D-1}(-q)$ or $D=3$.

Case 3. Γ IS A NEAR POLYGON.

Therefore, we have the following result.
Theorem [B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]
Let Γ denote the dual polar graph ${ }^{2} A_{2 D-1}(-q)$. Then,

$$
-\frac{q^{4}}{q^{2}+1} R L^{2}+L R L-\frac{q^{-2}}{q^{2}+1} L^{2} R=(-q)^{2 D-1} L \quad(\text { C. Worawannotai - 2013) }
$$

is satisfied on $E_{i}^{*} V$ for $1 \leq i \leq D$. Therefore, Γ supports a uniform structure with respect to x, where $e_{i}^{-}=-q^{4} /\left(q^{2}+1\right)(2 \leq i \leq D), e_{i}^{+}=-q^{-2} /\left(q^{2}+1\right)(1 \leq i \leq D-1)$, and $f_{i}=(-q)^{2 D-1}(1 \leq i \leq D)$.

Distance-regular graphs with classical parameters $(D, \alpha, \beta, q=1)$

DISTANCE-REGULAR GRAPHS WITH CLASSICAL PARAMETERS WITH $q=1$

We have the following classification for DRGs with classical parameters with $q=1$.

Theorem 3 (Theorem 6.1.1 - Brouwer, Cohen, and Neumaier)

Let Γ denote a distance-regular graph with classical parameters with $q=1$. Then, Γ is one of the following graphs:

- Johnson graph $J(n, D), n \geq 2 D$, (tight: $n=2 D$)
- Gosset graph, (tight)
- Hamming graph $H(D, n)$,
- Halved cube $\frac{1}{2} H(n, 2)$, (tight: n even)
- Doob graph $D(n, m), n \geq 1, m \geq 0$.

We analyze each of these families in order to see which one admits a uniform structure.

DISTANCE-REGULAR GRAPHS WITH CLASSICAL PARAMETERS WITH $q=1$

Theorem [B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]
Let Γ denote a tight graph with classical parameters with $q=1$. Then, Γ does not support a uniform structure with respect to x.

Corollary 2

If Γ is one of the following graphs,

1. Johnson graph $J(2 D, D)$,
2. Gosset graph,
3. Halved cube $\frac{1}{2} H(n, 2)$ with n even,
then, Γ does not support a uniform structure with respect to x.

Johnson graphs $J(n, D)$ with $n>2 D$

Theorem [B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]
Let $\Gamma=J(n, D)$ with $n \geq 2 D$. Then, Γ does not support a uniform structure.

Hamming graph $H(D, n)$ with $n \geq 3$

Theorem [B. Fernández, R.Maleki, Š.Miklavič, G. Monzillo - 2023]
Let Γ denote the Hamming graph $H(D, n)$ with $n \geq 3$. Then,

$$
-\frac{1}{2} R L^{2}+L R L-\frac{1}{2} L^{2} R=(n-1) L
$$

is satisfied on $E_{i}^{*} V$ for $1 \leq i \leq D$ and Γ supports a uniform structure with respect to x, where $e_{i}^{-}=-\frac{1}{2}(2 \leq i \leq D), e_{i}^{+}=-\frac{1}{2}(1 \leq i \leq D-1)$, and $f_{i}=n-1(1 \leq i \leq D)$.

Halved cubes $\frac{1}{2} H(n, 2)$ with n odd.

Theorem [B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]
Let Γ denote the Halved cube $\frac{1}{2} H(n, 2)$ with n odd, $n \geq 7$. Recall that $D=\left\lfloor\frac{n}{2}\right\rfloor=$ $(n-1) / 2$. Then,

$$
e_{i}^{-} R L^{2}+L R L+e_{i}^{+} L^{2} R=f_{i} L
$$

is satisfied on $E_{i}^{*} V$ for $1 \leq i \leq D$, where

$$
\begin{aligned}
& e_{i}^{-}=\frac{4 i-1-2 D}{6-8 i+4 D}(2 \leq i \leq D) \quad e_{i}^{+}=\frac{4 i-5-2 D}{6-8 i+4 D}(1 \leq i \leq D-1) \\
& f_{i}=-(4 i-5)(4 i-1)+(16 i-12) D-4 D^{2}(1 \leq i \leq D)
\end{aligned}
$$

Therefore, Γ supports a uniform structure with respect to x.

Doob graphs $D(n, m)$ WHERE $n \geq 1, m \geq 0$

Theorem [B. Fernández, R.M., Š.Miklavič, G. Monzillo - 2023]
Let Γ denote the Doob graph $D(n, m)$ with $n \geq 1, m \geq 0$ and $D=2 n+m \geq 3$. Then,

$$
-\frac{1}{2} R L^{2}+L R L-\frac{1}{2} L^{2} R=3 L
$$

is satisfied on $E_{i}^{*} V$ for $1 \leq i \leq D$ and Γ supports a strongly uniform structure with respect to x, where $e_{i}^{-}=-\frac{1}{2}(2 \leq i \leq D), e_{i}^{+}=-\frac{1}{2}(1 \leq i \leq D-1)$, and $f_{i}=3(1 \leq i \leq D)$.

Summary of the results

Non-bipartite distance-regular graphs with classical parameters (D, q, α, β) with $q \leq 1$.

Summary of the results

Non-bipartite distance-regular graphs with classical parameters (D, q, α, β) with $q \leq 1$.

- $q \leq-2$ (negative type)

Summary of the results

Non-bipartite distance-regular graphs with classical parameters (D, q, α, β) with $q \leq 1$.

- $q \leq-2$ (negative type)
$\left\{\begin{array}{l}\Gamma \text { has intersection number } a_{1} \neq 0 \text { and is not a near polygon } \times \\ \Gamma \text { has intersection number } a_{1}=0 \times \\ \Gamma \text { is a near polygon }\end{array}\right.$

Summary of the Results

Non-bipartite distance-regular graphs with classical parameters (D, q, α, β) with $q \leq 1$.

- $q \leq-2$ (negative type)
$\left\{\begin{array}{l}\Gamma \text { has intersection number } a_{1} \neq 0 \text { and is not a near polygon } \times \\ \Gamma \text { has intersection number } a_{1}=0 \times \\ \Gamma \text { is a near polygon }\left\{\begin{array}{l}\Gamma \text { is a dual polar graph, } D \geq 4 \\ \Gamma \text { has diameter } D=3 ?\end{array}\right.\end{array}\right.$.

Summary of the results

Non-bipartite distance-regular graphs with classical parameters (D, q, α, β) with $q \leq 1$.

- $q \leq-2$ (negative type)
$\left\{\begin{array}{l}\Gamma \text { has intersection number } a_{1} \neq 0 \text { and is not a near polygon } \times \\ \Gamma \text { has intersection number } a_{1}=0 \times \\ \Gamma \text { is a near polygon }\left\{\begin{array}{l}\Gamma \text { is a dual polar graph, } D \geq 4 \\ \Gamma \text { has diameter } D=3\end{array}\right.\end{array}\right.$.
- $q=1$

Summary of the Results

Non-bipartite distance-regular graphs with classical parameters (D, q, α, β) with $q \leq 1$.

- $q \leq-2$ (negative type)
$\left\{\begin{array}{l}\Gamma \text { has intersection number } a_{1} \neq 0 \text { and is not a near polygon } \times \\ \Gamma \text { has intersection number } a_{1}=0 \times \\ \Gamma \text { is a near polygon }\left\{\begin{array}{l}\Gamma \text { is a dual polar graph, } D \geq 4 \\ \Gamma \text { has diameter } D=3\end{array}\right.\end{array}\right.$.
- $q=1$

$$
\left\{\begin{array}{l}
\text { Johnson graph } J(n, D), n \geq 2 D \times \\
\text { Gosset graph } \times \\
\text { Hamming graph } H(D, n) \text { where } n \geq 3 \\
\text { Halved cube } \frac{1}{2} H(n, 2)
\end{array}\right.
$$

Summary of the Results

Non-bipartite distance-regular graphs with classical parameters (D, q, α, β) with $q \leq 1$.

- $q \leq-2$ (negative type)
$\left\{\begin{array}{l}\Gamma \text { has intersection number } a_{1} \neq 0 \text { and is not a near polygon } \times \\ \Gamma \text { has intersection number } a_{1}=0 \times \\ \Gamma \text { is a near polygon }\left\{\begin{array}{l}\Gamma \text { is a dual polar graph, } D \geq 4 \\ \Gamma \text { has diameter } D=3\end{array}\right.\end{array}\right.$.
- $q=1$

$$
\left\{\begin{array}{l}
\text { Johnson graph } J(n, D), n \geq 2 D \times \\
\text { Gosset graph } \times \\
\text { Hamming graph } H(D, n) \text { where } n \geq 3 \checkmark \\
\text { Halved cube } \frac{1}{2} H(n, 2) \quad\left\{\begin{array}{l}
n \text { even } \times \\
n \geq 7 \text { odd } \checkmark
\end{array}\right. \\
\text { Doob graph } D(n, m) \text { with } n \geq 1, m \geq 0
\end{array}\right.
$$

Part 3

Distance-regular graphs with classical parameters $(D, \alpha, \beta, q \geq 2)$

LOCAL GRAPH

From now on we let Γ be a distance-regular graph with classical parameters (D, α, β, q), where $D \geq 4$, and $q \geq 2$. Fix $x \in X$ and assume that Γ supports a uniform structure with respect to x. Moreover, we assume that every irreducible T-module with endpoint one is thin.

- Let $\Delta=\Delta(x)$ be the subgraph of induced on the set of vertices adjacent to x in Γ. We refer to Δ as the local graph of Γ with respect to x.
- If W is any thin irreducible T-module with endpoint 1 , then $E_{1}^{*} W$ is a one-dimensional eigenspace for $E_{1}^{*} A E_{1}^{*}$, whose eigenvalue η is called the local eigenvalue of $W . \Rightarrow \eta \in\left\{\eta_{2}, \eta_{3}, \ldots, \eta_{k}\right\}$, so $\tilde{\theta_{1}} \leq \eta \leq \tilde{\theta_{D}}$.

Local Graph

Remark 1

Let W be a thin irreducible T-module with endpoint 1, it is known that the local eigenvalue of W belongs to $\left\{-q-1, \beta-\alpha-1,-1, \alpha \frac{q^{D-1}-1}{q-1}-1\right\}$.
Now, we further assume that $\alpha \neq 0$ and we have the following.

Theorem 4

Δ is a connected strongly regular graph with eigenvalues

$$
\left\{a_{1}, \alpha \frac{q^{D-1}-1}{q-1}-1,-q-1\right\}
$$

Local Graph

Theorem 5 (B. Fernández, R.Maleki, Š.Miklavič, G. Monzillo 2023)

Assume $\alpha \neq 0$. Let $\left(n=b_{0}, k=a_{1}, \lambda, \mu\right)$ denote the parameters of Δ. Then,

$$
\beta=\alpha \frac{q^{D+1}-1}{q-1}-q
$$

In particular,

$$
\begin{gathered}
n=b_{0}=\frac{\left(q^{D}-1\right)\left(\alpha q^{D+1}-q^{2}+q-\alpha\right)}{(q-1)^{2}}, \quad k=a_{1}=\frac{(q+1)\left(\alpha q^{D}-q-\alpha+1\right)}{q-1} \\
\lambda=\frac{\alpha q^{D}+\alpha q^{2}-q^{2}-\alpha q-q-\alpha+2}{q-1}, \quad \mu=\alpha(q+1)
\end{gathered}
$$

A key Tool

Theorem 6 (A. Neumaier, 1979)

Let G be a strongly regular graph with parameters (n, k, λ, μ) and eigenvalues $k>r>s$. Assume that $s<-1$ is integral. Then, at least one of the following conditions must hold:

1. $r \leq \frac{s(s+1)(\mu+1)}{2}-1$;
2. $\mu=s^{2}$ (in which case G is a Steiner graph derived from a Steiner 2-system in which each line contains s points);
3. $\mu=s(s+1)$ (in which case G is a Latin square graph derived from an s-net).

Two feasible parameter sets

Lemma 2 (B. Fernández, R.Maleki, Š.Miklavič, G. Monzillo 2023)

Let Δ be the local graph of Γ with eigenvalues $a_{1}, \alpha^{\frac{q^{D-1}-1}{q-1}}-1$, and $-q-1$. Then the case (1) in Neumaier's Theorem cannot happen.

Two feasible parameter sets

Lemma 2 (B. Fernández, R.Maleki, Š.Miklavič, G. Monzillo 2023)

Let Δ be the local graph of Γ with eigenvalues $a_{1}, \alpha^{\frac{q^{D-1}-1}{q-1}}-1$, and $-q-1$. Then the case (1) in Neumaier's Theorem cannot happen.

- Cases (2) and (3) are both feasible, and this leads us to the following obsevation.

$$
(D, q, \alpha, \beta)=\left(D, q, q, \frac{q^{2}\left(q^{D}-1\right)}{q-1}\right.
$$

or

$$
(D, q, \alpha, \beta)=\left(D, q, q+1, \frac{q^{D+1}(q+1)-q^{2}-1}{q-1}\right)
$$

More Results

Theorem 7 (B. Fernández, R.Maleki, Š.Miklavič, G. Monzillo 2023)

The family of distance regular graphs with classical parameters
$(D, q, \alpha, \beta)=\left(D, q, q+1, \frac{q^{D+1}(q+1)-q^{2}-1}{q-1}\right)$ does not exist.

Proof.

First of all, for $D \geq 6$ the intersection number p_{33}^{6} is an integer only for $q=2,4$. next, the multiplicity of the second eigenvalue is not an integer.

More Results

Theorem 8 (B. Fernández, R.Maleki, Š.Miklavič, G. Monzillo 2023)

Let $D \not \equiv 0(\bmod 6)$.The family of distance regular graphs with classical parameters $(D, q, \alpha, \beta)=\left(D, q, q, \frac{q^{2}\left(q^{D}-1\right)}{q-1}\right)$ does not exist.

Proof.

First of all, the multiplicity of the second eigenvalue is an integer only for D even. Second, the multiplicity of the third eigenvalue is an integer only when $D \equiv 0$ $(\bmod 6)$.

Main Theorem

Theorem 9 (B. Fernández, R.Maleki, Š.Miklavič, G. Monzillo 2023)

We have that either $\alpha=0$, or $D \equiv 0(\bmod 6)$ and Γ has classical parameters

$$
\left(D, q, q, \frac{q^{2}\left(q^{D}-1\right)}{q-1}\right)
$$

Remark 2

Computational results show that for $D \leq 3000$, the valency k_{D} and the multiplicity f_{D} of the eigenvalue θ_{D} are NOT integers.

A conjecture

Conjecture 1

There exists NO distance-regular graph with classical parameters

$$
\left(D, q, q, \frac{q^{2}\left(q^{D}-1\right)}{q-1}\right)
$$

with $q \geq 2$ and $D \geq 4$.

Remark 3

Assuming the aforementioned conjecture is true, we have distance regular graphs with classical parameters only when $\alpha=0$.

