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Strongly regular graphs3

Definition
A regular graph is strongly regular if it is edge-regular and co-edge-regular.

The Petersen graph
srg(10, 3, 0, 1)

The 3× 3 rook’s graph
srg(9, 4, 1, 2)



Regularity of subsets4

Definition
A vertex subset S is e-regular if for every vertex x /∈ S we have |N(x) ∩ S | = e.

1-regular subset
No regular cliques

A 1-regular clique
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Neumaier’s question5

Theorem (Neumaier, 1981)
A vertex-transitive and edge-transitive graph with a regular clique is strongly
regular.

Problem (Neumaier)
Is a regular, edge-regular graph with a regular clique necessarily strongly regular?

Definition
A Neumaier graph is a regular, edge-regular graph with a regular clique. It is a
strictly Neumaier graph if it is not strongly regular.
A Neumaier graph has parameters (v , k, λ; e, s) if it is an edge-regular graph
with parameters (v , k, λ), admitting an e-regular clique of size s.
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The main questions6

Remark
There are ‘many’ strongly regular (i.e. non-strictly) Neumaier graphs.

Problem
Do strictly Neumaier graphs exist?

Problem
For which parameter sets (v , k, λ; e, s) do strictly Neumaier graphs exist?
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Feasibility conditions



Counting7

Theorem (folklore; Neumaier, 1981; Evans-Goryainov-Panasenko,
2019)
If there is a Neumaier graph with parameters (v , k , λ; e, s), then
(i) v > k > λ and v − 2k + λ ≥ 0;
(ii) vk ≡ 0 (mod 2), kλ ≡ 0 (mod 2) and vkλ ≡ 0 (mod 6);

(iii) s(k − s + 1) = (v − s)e;
(iv) s(s − 1)(λ− s + 2) = (v − s)e(e − 1);
(v) k − s + e − λ− 1 ≥ 0.
If there is a strictly Neumaier graph with parameters (v , k, λ; e, s), then
moreover
(i*) v − 1 > k and v − 2k + λ ≥ 2;
(v*) k − s + e − λ− 1 ≥ 1;
(vi) λ+ 3 > s ≥ 4;
(vii) 1 ≤ e < s − 1.
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And more counting8

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker, 2021)
If there is a Neumaier graph with parameters (v , k , λ; e, s), then
(v − k − 1)(v − k − 2)− k(v − 2k + λ) ≥ 0.
If there is a strictly Neumaier graph with parameters (v , k, λ; e, s), then
(v − k − 1)(v − k − 2)− k(v − 2k + λ) > 0.
(This result is independent of e and s, true for all edge-regular graphs.)



Table of admissible parameters (strictly)9

v k λ e s

16 9 4 2 4
22 12 5 2 4∗

24 8 2 1 4
25 12 5 2 5

16 9 3 5
26 15 8 3 6
28 9 2 1 4

15 6 2 4
8 3 7

18 11 4 7
33 24 17 6 9

* Non-existence by computer search
Evans-Goryainov-Panasenko and
Abiad-De Boeck-Zeijlemaker.

v k λ e s

34 18 7 2 4
35 10 3 1 5

16 6 2 5
18 9 3 7
22 12 3 5

36 11 2 1 4
15 6 2 6
20 10 3 6
21 12 4 8
25 16 4 6

40 12 2 1 4
21 8 2 4

12 4 10
27 18 6 10
30 22 7 10



Non-existence by ILP10

We can model a (strictly) Neumaier graph with given parameters by an ILP.
I For each pair of vertices {u, v} a variable xuv that is 1 or 0 (edge or not).
I For each pair {u, {v ,w}} a variable yuvw that is 1 or 0 (u adjacent to both

v and w , or not).
I xuv ≥ yuvw , xuw ≥ yuvw
I xuv + xuw − 1 ≤ yuvw

I Linear equations/inequalities to describe (edge-)regularity.
I Clique E → fix xuv = 1 with u, v ∈ E .
I Linear equation (or fixed edges) for clique regularity
I Fixed edge and inequalities to break co-edge-regularity (if necessary).

Corollary (Abiad-DB-Zeijlemaker, 2023)
For strictly Neumaier graphs (25, 16, 9; 3, 5), (28, 18, 11, 4, 7), (33, 24, 17; 6, 9),
(35, 22, 12; 3, 5) and (55, 30, 18; 3, 5) are not admissible as parameter sets.



Existence



Strictly Neumaier graphs do exist11
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How many strictly Neumaier graphs?12

Theorem (Greaves-Koolen, 2018)
There are (infinitely many) strictly Neumaier graphs (with e = 1).

Theorem (Evans-Goryainov-Panasenko, 2019)
For every n ≥ 2, there is a strictly Neumaier graph with parameters(
22n, (2n−1 + 1)(2n − 1), 2(2n−2 + 1)(2n−1 − 1); 2n−1, 2n

)
Theorem (Evans-Goryainov-Panasenko, 2019)
The Neumaier graph with parameters (16, 9, 4; 2, 4) is unique up to isomorphism.

Evans-Goryainov-Panasenko (2019): computer-assisted proof
Abiad-De Boeck-Zeijlemaker (2023): computer-free proof
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A strictly Neumaier graph on 24 vertices13
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Evans-Goryainov technique14

Inspired by the Greaves-Koolen construction.

Theorem (Evans, 2020 ; Evans-Goryainov-Konstantinova-Mednykh,
2021)
Let Γ1 = (V1,E1), . . . , Γt = (Vt ,Et) be t edge-regular graphs with parameters
(v , k , λ) such that each Γi admits a partition in 1-regular cocliques,
Ci,1, . . . ,Ci,k+1. The graph F (Γ1, . . . , Γt) is the graph
I with as vertex set V1 ∪ · · · ∪ Vt ,
I and where two vertices x ∈ Ci,k and y ∈ Cj,l are adjacent if and only if

i = j and x ∼ y in Γi , or if k = l .

If t = (λ+2)(k+1)
v ∈ N, then F (Γ1, . . . , Γt) is a Neumaier graph with parameters

(vt, k + λ+ 1, λ; 1, λ+ 2); it admits a spread of 1-regular cliques.
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Theorem (Evans, 2020 ; Abiad-Castryck-DB-Koolen-Zeijlemaker,
2021))
Let Γ1 = (V1,E1), . . . , Γt = (Vt ,Et) be t edge-regular graphs with parameters
(v , k , λ) such that each Γi admits a partition in 1-regular cocliques,
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v ∈ N, then F (Γ1, . . . , Γt) is a Neumaier graph with parameters

(vt, k + λ+ 1, λ; 1, λ+ 2); it admits a spread of 1-regular cliques.
If t ≥ 2, then F (Γ1, . . . , Γt) is a strictly Neumaier graph.



ERG’s with a regular coclique partition?15

Theorem (Greaves-Koolen, 2019)
Take V1, . . . ,Vt distance-regular a-antipodal graphs of diameter 3.

Example
I Taylor graphs
I Thas-Somma graphs, edge-regular graphs with parameters

(q2n+1, q2n − 1, q2n−1 − 2) for a prime power q. You need to take q2n−2

copies, n ≥ 2. You get a strictly Neumaier graph with parameters
(q4n−1, q2n−1(q + 1)− 2, q2n−1 − 2; 1, q2n−1).

Theorem (Greaves-Koolen, 2018)
Take V1, . . . ,Vt a (specificly described) Cayley graph on (Z/2Z)m × (Fq,+),
with m ∈ {2, 3} and q a prime power with q ≡ 1 (mod 2m+1 − 2).

m = 2: q ∈ {7, 13, 19, 37, 49, . . . }, m = 3: q ∈ {29, 43, 71, 127, . . . }
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A new look at the table (strictly)16

v k λ e s

16 9 4 2 4
24 8 2 1 4∗

25 12 5 2 5
16 9 3 5

26 15 8 3 6
28 9 2 1 4◦

15 6 2 4
8 3 7

18 11 4 7
33 24 17 6 9

∗: 4 vertex-transitive, ≥ 2 non-vertex
transitive (Evans, EGP)

◦: 2 vertex-transitive, ≥ 2 non-vertex
transitive (Evans, EGP)

v k λ e s

34 18 7 2 4
35 10 3 1 5

16 6 2 5
18 9 3 7
22 12 3 5

36 11 2 1 4
15 6 2 6
20 10 3 6
21 12 4 8
25 16 4 6

40 12 2 1 4
21 8 2 4

12 4 10
27 18 6 10
30 22 7 10



A new construction



Example18

A strictly Neumaier graph on 65 vertices was known (indepently found by
several researchers)... to which family does it belong?

Example
I p = 13, q = 5, a = 2
I S65 = {1, 2, 4, 8, 16, 32, 64 = −1, 63, 61, 57, 49, 33}
I Γ65(2) is edge-regular with parameters (65, 12, 3), and has a spread of

1-regular cocliques: cosets of {0, 13, 26, 39, 52} in Z/65Z,+
I t = (λ+2)(k+1)

v = (3+2)(12+1)
65 = 1

I F (Γ65(2)) is a strictly Neumaier graph.
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Theoretically19

Definition
Let a be such that ai ≡ −1 (mod n), where 2i is the order of a in (Z/nZ)∗, ·.
Then Sn(a) = {aj ∈ Z/nZ | 0 ≤ j < 2i}.
Γn(a) is the Cayley graph on Z/nZ,+ with Sn(a) as generating set.

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker, 2021)
Let p > 2 be a prime, q ∈ N odd. Let a ∈ Z be such that it has order p − 1 in
(Z/pZ)∗, · and such that a

p−1
2 ≡ −1 (mod pq).

Then, the Cayley graph Γpq(a) is an edge-regular graph with parameters
(pq, p − 1, λ), with λ = |Spq(a) ∩ (Spq(a) + 1)|, that has a spread of 1-regular
cocliques.

Remark

In general we need that (λ+2)(k+1)
v =

|Spq(a)∩(Spq(a)+1)|+2
q is an integer. In other

words, |Spq(a) ∩ (Spq(a) + 1)| ≡ −2 (mod q).



Theoretically19

Definition
Let a be such that ai ≡ −1 (mod n), where 2i is the order of a in (Z/nZ)∗, ·.
Then Sn(a) = {aj ∈ Z/nZ | 0 ≤ j < 2i}.
Γn(a) is the Cayley graph on Z/nZ,+ with Sn(a) as generating set.

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker, 2021)
Let p > 2 be a prime, q ∈ N odd. Let a ∈ Z be such that it has order p − 1 in
(Z/pZ)∗, · and such that a

p−1
2 ≡ −1 (mod pq).

Then, the Cayley graph Γpq(a) is an edge-regular graph with parameters
(pq, p − 1, λ), with λ = |Spq(a) ∩ (Spq(a) + 1)|, that has a spread of 1-regular
cocliques.

Remark

In general we need that (λ+2)(k+1)
v =

|Spq(a)∩(Spq(a)+1)|+2
q is an integer. In other

words, |Spq(a) ∩ (Spq(a) + 1)| ≡ −2 (mod q).



Overview of new examples20

q p a t v k λ s

5 13 2 1 65 16 3 5
37 2 1 185 40 3 5
61 17 4 1220 79 18 20
149 13 4 2980 167 18 20

2 7 5215 182 33 35
7 79 54 1 553 84 5 7

103 45 1 721 108 5 7
127 12 2 1778 139 12 14
139 26 4 3892 165 26 28

11 131 2 1 1441 140 9 11
13 61 2 1 793 72 11 13

397 6 2 10322 421 24 26
20 2 10322 421 24 26



Overview of new examples20

q p a t v k λ s

25 1021 77 2 51050 1069 48 50
122 2 51050 1069 48 50

1181 42 2 59050 1229 48 50
1301 3 2 65050 1349 48 50

73 2 65050 1349 48 50
1381 42 2 69050 1429 48 50

123 2 69050 1429 48 50
1621 88 2 81050 1669 48 50

113 2 81050 1669 48 50
1741 197 2 87050 1789 48 50
2141 58 2 107050 2189 48 50

112 2 107050 2189 48 50



The admissible q’s: some number theory



Main questions about construction21

Problem
For which q can we find primes p and a corresponding integer a such that the
construction produces a strictly Neumaier graph?

I Does this construction produce an infinite number of examples?
I Are there q’s for which it produces an infinite number of examples?
I Are there an infinite number of q’s for which it produces an infinite number

of examples?
We need to look at |Spq(a) ∩ (Spq(a) + 1)| (mod q). Is it −2?
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An explicit formula22

Notation
I α = a (mod p), β = a (mod q), n is the order of β in (Z/qZ)∗

I ξ : F∗p → 〈β〉 : αj 7→ βj and ψ : 〈β〉 → µn : βj 7→ e2πij/n and χ = ψ ◦ ξ
I B = {b ∈ 〈β〉|b − 1 ∈ 〈β〉}
I J is the Jacobi sum of two characters: J(χ, λ) =

∑
c∈Fp

χ(c)λ(1− c)

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker, 2021)

|Spq(a)∩(Spq(a)+1)| =
1
n2

(p + 1) |B|+
∑

1≤i≤j<n−i

2(2− δi,j)<(ci,jJ(χi , χj))


where ci,j =

∑
b∈B ψ(b)−iψ(1− b)−j and δi,j is the Kronecker symbol.
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To give you an idea23

Example (q = 5)
If β = −1, then B = ∅, so |S ∩ (S + 1)| = 0.
For β = 2, we have ψ(β) = i and must have p ≡ 5 (mod 8). We find that

|S ∩ (S + 1) | =
1
16
(
3p + 3 + 2<((−1 + 2i)J(χ, χ)) + 4<((1− 2i)J(χ, χ2))

)
.

There are x , y such that

p = x2 + y2, x ≡ 1 (mod 4), y ≡ xα
p−1
4 (mod p) .

We can express the Jacobi sums in terms x and y and find that

|S ∩ (S + 1) | =
3
16

(p + 1 + 2x + 4y) .
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A sledgehammer from number theory24

Theorem (Dirichlet, Neukirch)
Let R = Z[i] or R = Z[ζ6] and consider m ∈ R \ {0}. Let a ∈ R be coprime with
m. Then there exist infinitely many prime elements π ∈ R such that m | π − a.

Example (q = 5, continued)
We want

|S ∩ (S + 1) | =
3
16

(x2 + y2 + 1 + 2x + 4y) ≡ 3 (mod 5)

⇐⇒ x2 + 2x + y2 + 4y ≡ 0 (mod 5) .

There are infinitely many prime elements π ∈ Z[i ] such that 20 | π − (5 + 6i).
Any p = ππ satisfies the conditions.
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Infinite infiniteness25

Theorem
If q = 5 or q = `e11 · · · `

ek
k ≥ 7 such that all primes `i satisfy `i ≡ 1 mod 6, then

there is an infinite number of primes p and integers a such that
|Spq(a) ∩ (Spq(a) + 1)| ≡ −2 (mod q).
Consequently, for an infinite number of q’s the construction produces an infinite
number of strictly Neumaier graphs!

Theorem
For q = 5, the density of the primes p for which we can find an integer a such
that |Spq(a) ∩ (Spq(a) + 1)| ≡ −2 (mod q), equals 7

64 . For q = 7 this density
equals 1

12 .



Infinite infiniteness25

Theorem
If q = 5 or q = `e11 · · · `

ek
k ≥ 7 such that all primes `i satisfy `i ≡ 1 mod 6, then

there is an infinite number of primes p and integers a such that
|Spq(a) ∩ (Spq(a) + 1)| ≡ −2 (mod q).
Consequently, for an infinite number of q’s the construction produces an infinite
number of strictly Neumaier graphs!

Theorem
For q = 5, the density of the primes p for which we can find an integer a such
that |Spq(a) ∩ (Spq(a) + 1)| ≡ −2 (mod q), equals 7

64 . For q = 7 this density
equals 1

12 .



Non-admissible q’s26

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker)
This construction produces no new examples of (strictly) Neumaier graphs if 3|q.

Definition
A Fermat prime is a prime of the form 22n

+ 1 for some integer n. The known
Fermat primes are 3, 5, 17, 257 and 65537. It is conjectured there are no others.

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker)
If q is divisible by both a Fermat prime p′ ≥ 5 and prime p′′ ≡ 3 (mod 4), then
|Spq(a) ∩ (Spq(a) + 1)| = 0 for any p and a satisfying the conditions.

Example
No examples for q = 35, 55, 95, 119, . . . .
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Bonus track



A Latin square graph28

Example
Given the Latin square

a b c d e
b a d e c
c e a b d
d c e a b
e d b c a

we define the Latin square graph Γ with
I Vertices {1, . . . , 5}2

I (i , j) ∼ (i ′, j ′) iff
I i = i ′,
I j = j ′, or
I same entry on (i , j) and (i ′, j ′).

Γ is an strongly-regular Neumaier graph with parameters (25, 12, 5; 2, 5).



A switching29

A subgraph of Γ

(3, 2) (4, 2) (5, 2)

(2, 4) (2, 5) (2, 3)

(3, 4) (4, 5) (5, 3)
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A switching29

A switched subgraph of Γ

(3, 2) (4, 2) (5, 2)

(2, 4) (2, 5) (2, 3)

(3, 4) (4, 5) (5, 3)



A new strictly Neumaier graph30

Example (Abiad-DB-Zeijlemaker)
The graph Γ that results from switching the subgraph is a strictly Neumaier
graph with parameters (25, 12, 5; 2, 5).

Remark
This was the first known strictly Neumaier graph with e /∈

{
1, s2
}
. Among

those, it is still the only one known which is not vertex-transitive.
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Open questions



General questions31

Problem
Which sets are admissible as parameter sets of strictly Neumaier graphs? Which
for vertex-transitive strictly Neumaier graphs?

Problem
Can we generalise the given constructions to other rings/Latin squares?

Problem
Can a strictly Neumaier graph have five eigenvalues?
UPDATE (Sept. 19, 2023) YES - (Goryainov-Koolen)
An example with parameters (48, 14, 2; 1, 4).
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