Neumaier graphs

Maarten De Boeck
University of Memphis

(joint work with A. Abiad, W. Castryck,
J. Koolen and S. Zeijlemaker)

Algebraic Graph Theory Seminar
October 2, 2023

Neumaier graphs

2 Regularity in graphs

3 Strongly regular graphs

Definition

A regular graph is strongly regular if it is edge-regular and co-edge-regular.

The Petersen graph

$$
\operatorname{srg}(10,3,0,1)
$$

The 3×3 rook's graph $\operatorname{srg}(9,4,1,2)$

4 Regularity of subsets

Definition

A vertex subset S is e-regular if for every vertex $x \notin S$ we have $|N(x) \cap S|=e$.

4 Regularity of subsets

Definition

A vertex subset S is e-regular if for every vertex $x \notin S$ we have $|N(x) \cap S|=e$.

1-regular subset No regular cliques

A 1-regular clique

5 Neumaier's question

Theorem (Neumaier, 1981)

A vertex-transitive and edge-transitive graph with a regular clique is strongly regular.

Problem (Neumaier)

Is a regular, edge-regular graph with a regular clique necessarily strongly regular?

5 Neumaier's question

Theorem (Neumaier, 1981)

A vertex-transitive and edge-transitive graph with a regular clique is strongly regular.

Problem (Neumaier)

Is a regular, edge-regular graph with a regular clique necessarily strongly regular?

Definition

A Neumaier graph is a regular, edge-regular graph with a regular clique. It is a strictly Neumaier graph if it is not strongly regular.
A Neumaier graph has parameters $(v, k, \lambda ; e, s)$ if it is an edge-regular graph with parameters (v, k, λ), admitting an e-regular clique of size s.

6 The main questions

Remark

There are 'many' strongly regular (i.e. non-strictly) Neumaier graphs.

Problem

Do strictly Neumaier graphs exist?

6 The main questions

Remark

There are 'many' strongly regular (i.e. non-strictly) Neumaier graphs.

Problem

Do strictly Neumaier graphs exist?

Problem

For which parameter sets $(v, k, \lambda ; e, s)$ do strictly Neumaier graphs exist?

Feasibility conditions

7 Counting

Theorem (folklore; Neumaier, 1981; Evans-Goryainov-Panasenko, 2019)

If there is a Neumaier graph with parameters $(v, k, \lambda ; e, s)$, then
(i) $v>k>\lambda$ and $v-2 k+\lambda \geq 0$;
(ii) $v k \equiv 0(\bmod 2), k \lambda \equiv 0(\bmod 2)$ and $v k \lambda \equiv 0(\bmod 6)$;

7 Counting

Theorem (folklore; Neumaier, 1981; Evans-Goryainov-Panasenko, 2019)

If there is a Neumaier graph with parameters $(v, k, \lambda ; e, s)$, then
(i) $v>k>\lambda$ and $v-2 k+\lambda \geq 0$;
(ii) $v k \equiv 0(\bmod 2), k \lambda \equiv 0(\bmod 2)$ and $v k \lambda \equiv 0(\bmod 6)$;
(iii) $s(k-s+1)=(v-s) e$;
(iv) $s(s-1)(\lambda-s+2)=(v-s) e(e-1)$;
(v) $k-s+e-\lambda-1 \geq 0$.

7 Counting

Theorem (folklore; Neumaier, 1981; Evans-Goryainov-Panasenko, 2019)

If there is a Neumaier graph with parameters $(v, k, \lambda ; e, s)$, then
(i) $v>k>\lambda$ and $v-2 k+\lambda \geq 0$;
(ii) $v k \equiv 0(\bmod 2), k \lambda \equiv 0(\bmod 2)$ and $v k \lambda \equiv 0(\bmod 6)$;
(iii) $s(k-s+1)=(v-s) e$;
(iv) $s(s-1)(\lambda-s+2)=(v-s) e(e-1)$;
(v) $k-s+e-\lambda-1 \geq 0$.

If there is a strictly Neumaier graph with parameters $(v, k, \lambda ; e, s)$, then moreover
(i*) $v-1>k$ and $v-2 k+\lambda \geq 2$;
(v^{*}) $k-s+e-\lambda-1 \geq 1$;
(vi) $\lambda+3>s \geq 4$;
(vii) $1 \leq e<s-1$.

8 And more counting

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker, 2021)

If there is a Neumaier graph with parameters $(v, k, \lambda ; e, s)$, then $(v-k-1)(v-k-2)-k(v-2 k+\lambda) \geq 0$.
If there is a strictly Neumaier graph with parameters $(v, k, \lambda ; e, s)$, then $(v-k-1)(v-k-2)-k(v-2 k+\lambda)>0$.
(This result is independent of e and s, true for all edge-regular graphs.)

9 Table of admissible parameters (strictly)

v	k	λ	e	s
16	9	4	2	4
22	12	5	2	4^{*}
24	8	2	1	4
25	12	5	2	5
	16	9	3	5
26	15	8	3	6
28	9	2	1	4
	15	6	2	4
		8	3	7
	18	11	4	7
33	24	17	6	9

* Non-existence by computer search Evans-Goryainov-Panasenko and Abiad-De Boeck-Zeijlemaker.

v	k	λ	e	s
34	18	7	2	4
35	10	3	1	5
	16	6	2	5
	18	9	3	7
	22	12	3	5
36	11	2	1	4
	15	6	2	6
	20	10	3	6
	21	12	4	8
	25	16	4	6
40	12	2	1	4
	21	8	2	4
		12	4	10
	27	18	6	10
	30	22	7	10

10 Non-existence by ILP

We can model a (strictly) Neumaier graph with given parameters by an ILP.

- For each pair of vertices $\{u, v\}$ a variable $x_{u v}$ that is 1 or 0 (edge or not).
- For each pair $\{u,\{v, w\}\}$ a variable $y_{u v w}$ that is 1 or 0 (u adjacent to both v and w, or not).
- $x_{u v} \geq y_{u v w}, x_{u w} \geq y_{u v w}$
- $x_{u v}+x_{u w}-1 \leq y_{u v w}$
- Linear equations/inequalities to describe (edge-)regularity.
- Clique $E \rightarrow$ fix $x_{u v}=1$ with $u, v \in E$.
- Linear equation (or fixed edges) for clique regularity
- Fixed edge and inequalities to break co-edge-regularity (if necessary).

Corollary (Abiad-DB-Zeijlemaker, 2023)

For strictly Neumaier graphs ($25,16,9 ; 3,5)$, $(28,18,11,4,7),(33,24,17 ; 6,9)$, $(35,22,12 ; 3,5)$ and $(55,30,18 ; 3,5)$ are not admissible as parameter sets.

Existence

11 Strictly Neumaier graphs do exist

11 Strictly Neumaier graphs do exist

12 How many strictly Neumaier graphs?

Theorem (Greaves-Koolen, 2018)
There are (infinitely many) strictly Neumaier graphs (with $e=1$).

12 How many strictly Neumaier graphs?

Theorem (Greaves-Koolen, 2018)

There are (infinitely many) strictly Neumaier graphs (with $e=1$).

Theorem (Evans-Goryainov-Panasenko, 2019)

For every $n \geq 2$, there is a strictly Neumaier graph with parameters
$\left(2^{2 n},\left(2^{n-1}+1\right)\left(2^{n}-1\right), 2\left(2^{n-2}+1\right)\left(2^{n-1}-1\right) ; 2^{n-1}, 2^{n}\right)$

12 How many strictly Neumaier graphs?

Theorem (Greaves-Koolen, 2018)

There are (infinitely many) strictly Neumaier graphs (with $e=1$).

Theorem (Evans-Goryainov-Panasenko, 2019)

For every $n \geq 2$, there is a strictly Neumaier graph with parameters $\left(2^{2 n},\left(2^{n-1}+1\right)\left(2^{n}-1\right), 2\left(2^{n-2}+1\right)\left(2^{n-1}-1\right) ; 2^{n-1}, 2^{n}\right)$

Theorem (Evans-Goryainov-Panasenko, 2019)

The Neumaier graph with parameters $(16,9,4 ; 2,4)$ is unique up to isomorphism.
Evans-Goryainov-Panasenko (2019): computer-assisted proof Abiad-De Boeck-Zeijlemaker (2023): computer-free proof

13 A strictly Neumaier graph on 24 vertices

13
 A strictly Neumaier graph on 24 vertices

13
 A strictly Neumaier graph on 24 vertices

13 A strictly Neumaier graph on 24 vertices

14 Evans-Goryainov technique

Inspired by the Greaves-Koolen construction.

Theorem (Evans, 2020 ; Evans-Goryainov-Konstantinova-Mednykh, 2021)

Let $\Gamma_{1}=\left(V_{1}, E_{1}\right), \ldots, \Gamma_{t}=\left(V_{t}, E_{t}\right)$ be t edge-regular graphs with parameters (v, k, λ) such that each Γ_{i} admits a partition in 1-regular cocliques,
$C_{i, 1}, \ldots, C_{i, k+1}$. The graph $F\left(\Gamma_{1}, \ldots, \Gamma_{t}\right)$ is the graph

- with as vertex set $V_{1} \cup \cdots \cup V_{t}$,
- and where two vertices $x \in C_{i, k}$ and $y \in C_{j, l}$ are adjacent if and only if $i=j$ and $x \sim y$ in Γ_{i}, or if $k=1$.
If $t=\frac{(\lambda+2)(k+1)}{v} \in \mathbb{N}$, then $F\left(\Gamma_{1}, \ldots, \Gamma_{t}\right)$ is a Neumaier graph with parameters ($v t, k+\lambda+1, \lambda ; 1, \lambda+2$); it admits a spread of 1 -regular cliques.

14 Evans-Goryainov technique

Inspired by the Greaves-Koolen construction.

Theorem (Evans, 2020 ; Abiad-Castryck-DB-Koolen-Zeijlemaker, 2021))

Let $\Gamma_{1}=\left(V_{1}, E_{1}\right), \ldots, \Gamma_{t}=\left(V_{t}, E_{t}\right)$ be t edge-regular graphs with parameters (v, k, λ) such that each Γ_{i} admits a partition in 1-regular cocliques,
$C_{i, 1}, \ldots, C_{i, k+1}$. The graph $F\left(\Gamma_{1}, \ldots, \Gamma_{t}\right)$ is the graph

- with as vertex set $V_{1} \cup \cdots \cup V_{t}$,
- and where two vertices $x \in C_{i, k}$ and $y \in C_{j, l}$ are adjacent if and only if $i=j$ and $x \sim y$ in Γ_{i}, or if $k=1$.
If $t=\frac{(\lambda+2)(k+1)}{v} \in \mathbb{N}$, then $F\left(\Gamma_{1}, \ldots, \Gamma_{t}\right)$ is a Neumaier graph with parameters ($v t, k+\lambda+1, \lambda ; 1, \lambda+2$); it admits a spread of 1 -regular cliques.
If $t \geq 2$, then $F\left(\Gamma_{1}, \ldots, \Gamma_{t}\right)$ is a strictly Neumaier graph.

15 ERG's with a regular coclique partition?

Theorem (Greaves-Koolen, 2019)

Take V_{1}, \ldots, V_{t} distance-regular a-antipodal graphs of diameter 3 .

Example

Taylor graphs

- Thas-Somma graphs, edge-regular graphs with parameters $\left(q^{2 n+1}, q^{2 n}-1, q^{2 n-1}-2\right)$ for a prime power q. You need to take $q^{2 n-2}$ copies, $n \geq 2$. You get a strictly Neumaier graph with parameters $\left(q^{4 n-1}, q^{2 n-1}(q+1)-2, q^{2 n-1}-2 ; 1, q^{2 n-1}\right)$.

15 ERG's with a regular coclique partition?

Theorem (Greaves-Koolen, 2019)

Take V_{1}, \ldots, V_{t} distance-regular a-antipodal graphs of diameter 3 .

Theorem (Greaves-Koolen, 2018)

Take V_{1}, \ldots, V_{t} a (specificly described) Cayley graph on $(\mathbb{Z} / 2 \mathbb{Z})^{m} \times\left(\mathbb{F}_{q},+\right)$, with $m \in\{2,3\}$ and q a prime power with $q \equiv 1\left(\bmod 2^{m+1}-2\right)$.
$m=2: q \in\{7,13,19,37,49, \ldots\}, m=3: q \in\{29,43,71,127, \ldots\}$

16 A new look at the table (strictly)

v	k	λ	e	s
16	9	4	2	4
24	8	2	1	4^{*}
25	12	5	2	5
	16	9	3	5
26	15	8	3	6
28	9	2	1	4°
	15	6	2	4
		8	3	7
	18	11	4	7
33	24	17	6	9

*: 4 vertex-transitive, ≥ 2 non-vertex transitive (Evans, EGP)
०: 2 vertex-transitive, ≥ 2 non-vertex transitive (Evans, EGP)

v	k	λ	e	s
34	18	7	2	4
35	10	3	1	5
	16	6	2	5
	18	9	3	7
	22	12	3	5
36	11	2	1	4
	15	6	2	6
	20	10	3	6
	21	12	4	8
	25	16	4	6
40	12	2	1	4
	21	8	2	4
		12	4	10
	27	18	6	10
	30	22	7	10

A new construction

18 Example

A strictly Neumaier graph on 65 vertices was known (indepently found by several researchers)... to which family does it belong?

18 Example

A strictly Neumaier graph on 65 vertices was known (indepently found by several researchers)... to which family does it belong?

Example

$$
p=13, q=5, a=2
$$

18 Example

A strictly Neumaier graph on 65 vertices was known (indepently found by several researchers)... to which family does it belong?

Example

$$
\begin{aligned}
& p=13, q=5, a=2 \\
& S_{65}=\{1,2,4,8,16,32,64=-1,63,61,57,49,33\}
\end{aligned}
$$

18 Example

A strictly Neumaier graph on 65 vertices was known (indepently found by several researchers)... to which family does it belong?

Example

$$
p=13, q=5, a=2
$$

$S_{65}=\{1,2,4,8,16,32,64=-1,63,61,57,49,33\}$

- $\Gamma_{65}(2)$ is edge-regular with parameters $(65,12,3)$, and has a spread of 1 -regular cocliques: cosets of $\{0,13,26,39,52\}$ in $\mathbb{Z} / 65 \mathbb{Z},+$

18 Example

A strictly Neumaier graph on 65 vertices was known (indepently found by several researchers)... to which family does it belong?

Example

$p=13, q=5, a=2$
$S_{65}=\{1,2,4,8,16,32,64=-1,63,61,57,49,33\}$

- $\Gamma_{65}(2)$ is edge-regular with parameters $(65,12,3)$, and has a spread of 1 -regular cocliques: cosets of $\{0,13,26,39,52\}$ in $\mathbb{Z} / 65 \mathbb{Z},+$
$t=\frac{(\lambda+2)(k+1)}{v}=\frac{(3+2)(12+1)}{65}=1$
- $F\left(\Gamma_{65}(2)\right)$ is a strictly Neumaier graph.

19 Theoretically

Definition

Let a be such that $a^{i} \equiv-1(\bmod n)$, where $2 i$ is the order of a in $(\mathbb{Z} / n \mathbb{Z})^{*}, \cdot$. Then $S_{n}(a)=\left\{a^{j} \in \mathbb{Z} / n \mathbb{Z} \mid 0 \leq j<2 i\right\}$.
$\Gamma_{n}(a)$ is the Cayley graph on $\mathbb{Z} / n \mathbb{Z}$, + with $S_{n}(a)$ as generating set.

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker, 2021)

Let $p>2$ be a prime, $q \in \mathbb{N}$ odd. Let $a \in \mathbb{Z}$ be such that it has order $p-1$ in $(\mathbb{Z} / p \mathbb{Z})^{*}$, and such that $a^{\frac{p-1}{2}} \equiv-1(\bmod p q)$.
Then, the Cayley graph $\Gamma_{p q}(a)$ is an edge-regular graph with parameters ($p q, p-1, \lambda$), with $\lambda=\left|S_{p q}(a) \cap\left(S_{p q}(a)+1\right)\right|$, that has a spread of 1-regular cocliques.

19 Theoretically

Definition

Let a be such that $a^{i} \equiv-1(\bmod n)$, where $2 i$ is the order of a in $(\mathbb{Z} / n \mathbb{Z})^{*}, \cdot$. Then $S_{n}(a)=\left\{a^{j} \in \mathbb{Z} / n \mathbb{Z} \mid 0 \leq j<2 i\right\}$.
$\Gamma_{n}(a)$ is the Cayley graph on $\mathbb{Z} / n \mathbb{Z}$, + with $S_{n}(a)$ as generating set.

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker, 2021)

Let $p>2$ be a prime, $q \in \mathbb{N}$ odd. Let $a \in \mathbb{Z}$ be such that it has order $p-1$ in $(\mathbb{Z} / p \mathbb{Z})^{*}, \cdot$ and such that $a^{\frac{p-1}{2}} \equiv-1(\bmod p q)$.
Then, the Cayley graph $\Gamma_{p q}(a)$ is an edge-regular graph with parameters ($p q, p-1, \lambda)$, with $\lambda=\left|S_{p q}(a) \cap\left(S_{p q}(a)+1\right)\right|$, that has a spread of 1-regular cocliques.

Remark

In general we need that $\frac{(\lambda+2)(k+1)}{v}=\frac{\left|S_{p q}(a) \cap\left(S_{p q}(a)+1\right)\right|+2}{q}$ is an integer. In other words, $\left|S_{p q}(a) \cap\left(S_{p q}(a)+1\right)\right| \equiv-2(\bmod q)$.

20 Overview of new examples

q	p	a	t	v	k	λ	s
5	13	2	1	65	16	3	5
	37	2	1	185	40	3	5
	61	17	4	1220	79	18	20
	149	13	4	2980	167	18	20
		2	7	5215	182	33	35
	79	54	1	553	84	5	7
	103	45	1	721	108	5	7
	127	12	2	1778	139	12	14
	139	26	4	3892	165	26	28
11	131	2	1	1441	140	9	11
13	61	2	1	793	72	11	13
	397	6	2	10322	421	24	26
		20	2	10322	421	24	26

20 Overview of new examples

q	p	a	t	v	k	λ	s
25	1021	77	2	51050	1069	48	50
	122	2	51050	1069	48	50	
	1181	42	2	59050	1229	48	50
	1301	3	2	65050	1349	48	50
	73	2	65050	1349	48	50	
	1381	42	2	69050	1429	48	50
	123	2	69050	1429	48	50	
	1621	88	2	81050	1669	48	50
		113	2	81050	1669	48	50
	1741	197	2	87050	1789	48	50
	2141	58	2	107050	2189	48	50
	112	2	107050	2189	48	50	

The admissible q 's: some number theory

21 Main questions about construction

Problem

For which q can we find primes p and a corresponding integer a such that the construction produces a strictly Neumaier graph?

21 Main questions about construction

Problem

For which q can we find primes p and a corresponding integer a such that the construction produces a strictly Neumaier graph?

Does this construction produce an infinite number of examples?

- Are there q 's for which it produces an infinite number of examples?
- Are there an infinite number of q 's for which it produces an infinite number of examples?
We need to look at $\left|S_{p q}(a) \cap\left(S_{p q}(a)+1\right)\right|(\bmod q)$. Is it -2 ?

22 An explicit formula

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker, 2021)

$\left|S_{p q}(a) \cap\left(S_{p q}(a)+1\right)\right|=\frac{1}{n^{2}}\left((p+1)|B|+\sum_{1 \leq i \leq j<n-i} 2\left(2-\delta_{i, j}\right) \Re\left(c_{i, j} J\left(\chi^{i}, \chi^{j}\right)\right)\right)$
where $c_{i, j}=\sum_{b \in B} \psi(b)^{-i} \psi(1-b)^{-j}$ and $\delta_{i, j}$ is the Kronecker symbol.

22 An explicit formula

Notation

- $\alpha=a(\bmod p), \beta=a(\bmod q), n$ is the order of β in $(\mathbb{Z} / q \mathbb{Z})^{*}$
- $\xi: \mathbb{F}_{p}^{*} \rightarrow\langle\beta\rangle: \alpha^{j} \mapsto \beta^{j}$ and $\psi:\langle\beta\rangle \rightarrow \mu_{n}: \beta^{j} \mapsto e^{2 \pi \mathrm{i} / / n}$ and $\chi=\psi \circ \xi$
- $B=\{b \in\langle\beta\rangle \mid b-1 \in\langle\beta\rangle\}$
- J is the Jacobi sum of two characters: $J(\chi, \lambda)=\sum_{c \in \mathbb{F}_{p}} \chi(c) \lambda(1-c)$

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker, 2021)

$\left|S_{p q}(a) \cap\left(S_{p q}(a)+1\right)\right|=\frac{1}{n^{2}}\left((p+1)|B|+\sum_{1 \leq i \leq j<n-i} 2\left(2-\delta_{i, j}\right) \Re\left(c_{i, j} J\left(\chi^{i}, \chi^{j}\right)\right)\right)$
where $c_{i, j}=\sum_{b \in B} \psi(b)^{-i} \psi(1-b)^{-j}$ and $\delta_{i, j}$ is the Kronecker symbol.

23 To give you an idea

Example ($q=5$)

If $\beta=-1$, then $B=\emptyset$, so $|S \cap(S+1)|=0$.
For $\beta=2$, we have $\psi(\beta)=\mathbf{i}$ and must have $p \equiv 5(\bmod 8)$. We find that

$$
|S \cap(S+1)|=\frac{1}{16}\left(3 p+3+2 \Re((-1+2 \mathbf{i}) J(\chi, \chi))+4 \Re\left((1-2 \mathbf{i}) J\left(\chi, \chi^{2}\right)\right)\right) .
$$

23 To give you an idea

Example ($q=5$)

If $\beta=-1$, then $B=\emptyset$, so $|S \cap(S+1)|=0$.
For $\beta=2$, we have $\psi(\beta)=\mathbf{i}$ and must have $p \equiv 5(\bmod 8)$. We find that

$$
|S \cap(S+1)|=\frac{1}{16}\left(3 p+3+2 \Re((-1+2 \mathbf{i}) J(\chi, \chi))+4 \Re\left((1-2 \mathbf{i}) J\left(\chi, \chi^{2}\right)\right)\right) .
$$

There are x, y such that

$$
p=x^{2}+y^{2}, \quad x \equiv 1 \quad(\bmod 4), \quad y \equiv x \alpha^{\frac{p-1}{4}} \quad(\bmod p) .
$$

We can express the Jacobi sums in terms x and y and find that

$$
|S \cap(S+1)|=\frac{3}{16}(p+1+2 x+4 y)
$$

24 A sledgehammer from number theory

Theorem (Dirichlet, Neukirch)

Let $R=\mathbb{Z}[\mathbf{i}]$ or $R=\mathbb{Z}\left[\zeta_{6}\right]$ and consider $m \in R \backslash\{0\}$. Let $a \in R$ be coprime with m. Then there exist infinitely many prime elements $\pi \in R$ such that $m \mid \pi-a$.

24 A sledgehammer from number theory

Theorem (Dirichlet, Neukirch)

Let $R=\mathbb{Z}[\mathbf{i}]$ or $R=\mathbb{Z}\left[\zeta_{6}\right]$ and consider $m \in R \backslash\{0\}$. Let $a \in R$ be coprime with m. Then there exist infinitely many prime elements $\pi \in R$ such that $m \mid \pi-a$.

Example ($q=5$, continued)

We want

$$
\begin{aligned}
& |S \cap(S+1)|=\frac{3}{16}\left(x^{2}+y^{2}+1+2 x+4 y\right) \equiv 3 \quad(\bmod 5) \\
\Longleftrightarrow & x^{2}+2 x+y^{2}+4 y \equiv 0 \quad(\bmod 5) .
\end{aligned}
$$

There are infinitely many prime elements $\pi \in \mathbb{Z}[i]$ such that $20 \mid \pi-(5+6 \mathbf{i})$. Any $p=\pi \bar{\pi}$ satisfies the conditions.

25 Infinite infiniteness

Theorem

If $q=5$ or $q=\ell_{1}^{e_{1}} \cdots \ell_{k}^{e_{k}} \geq 7$ such that all primes ℓ_{i} satisfy $\ell_{i} \equiv 1 \bmod 6$, then there is an infinite number of primes p and integers a such that $\left|S_{p q}(a) \cap\left(S_{p q}(a)+1\right)\right| \equiv-2(\bmod q)$.
Consequently, for an infinite number of q's the construction produces an infinite number of strictly Neumaier graphs!

25 Infinite infiniteness

Theorem

If $q=5$ or $q=\ell_{1}^{e_{1}} \cdots \ell_{k}^{e_{k}} \geq 7$ such that all primes ℓ_{i} satisfy $\ell_{i} \equiv 1 \bmod 6$, then there is an infinite number of primes p and integers a such that $\left|S_{p q}(a) \cap\left(S_{p q}(a)+1\right)\right| \equiv-2(\bmod q)$.
Consequently, for an infinite number of q's the construction produces an infinite number of strictly Neumaier graphs!

Theorem

For $q=5$, the density of the primes p for which we can find an integer a such that $\left|S_{p q}(a) \cap\left(S_{p q}(a)+1\right)\right| \equiv-2(\bmod q)$, equals $\frac{7}{64}$. For $q=7$ this density equals $\frac{1}{12}$.

26 Non-admissible q's

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker)

This construction produces no new examples of (strictly) Neumaier graphs if $3 \mid q$.

26 Non-admissible q's

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker)

This construction produces no new examples of (strictly) Neumaier graphs if $3 \mid q$.

Definition

A Fermat prime is a prime of the form $2^{2^{n}}+1$ for some integer n. The known Fermat primes are $3,5,17,257$ and 65537 . It is conjectured there are no others.

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker)

If q is divisible by both a Fermat prime $p^{\prime} \geq 5$ and prime $p^{\prime \prime} \equiv 3(\bmod 4)$, then $\left|S_{p q}(a) \cap\left(S_{p q}(a)+1\right)\right|=0$ for any p and a satisfying the conditions.

Example

No examples for $q=35,55,95,119, \ldots$.

Bonus track

28 A Latin square graph

Example

Given the Latin square

$$
\begin{array}{lllll}
a & b & c & d & e \\
b & a & d & e & c \\
c & e & a & b & d \\
d & c & e & a & b \\
e & d & b & c & a
\end{array}
$$

we define the Latin square graph Γ with

- Vertices $\{1, \ldots, 5\}^{2}$
- $(i, j) \sim\left(i^{\prime}, j^{\prime}\right)$ iff
$i=i^{\prime}$,
$j=j^{\prime}$, or
> same entry on (i, j) and $\left(i^{\prime}, j^{\prime}\right)$.
Γ is an strongly-regular Neumaier graph with parameters $(25,12,5 ; 2,5)$.

29 A switching

A subgraph of Γ

29 A switching

A subgraph of Γ

29 A switching

A switched subgraph of Γ

30 A new strictly Neumaier graph

Example (Abiad-DB-Zeijlemaker)

The graph 「 that results from switching the subgraph is a strictly Neumaier graph with parameters $(25,12,5 ; 2,5)$.

30 A new strictly Neumaier graph

Example (Abiad-DB-Zeijlemaker)

The graph 「 that results from switching the subgraph is a strictly Neumaier graph with parameters $(25,12,5 ; 2,5)$.

Remark

This was the first known strictly Neumaier graph with $e \notin\left\{1, \frac{s}{2}\right\}$. Among those, it is still the only one known which is not vertex-transitive.

Open questions

31 General questions

Problem

Which sets are admissible as parameter sets of strictly Neumaier graphs? Which for vertex-transitive strictly Neumaier graphs?

31 General questions

Problem

Which sets are admissible as parameter sets of strictly Neumaier graphs? Which for vertex-transitive strictly Neumaier graphs?

Problem

Can we generalise the given constructions to other rings/Latin squares?

31 General questions

Problem

Which sets are admissible as parameter sets of strictly Neumaier graphs? Which for vertex-transitive strictly Neumaier graphs?

Problem

Can we generalise the given constructions to other rings/Latin squares?

Problem

Can a strictly Neumaier graph have five eigenvalues?

31 General questions

Problem

Which sets are admissible as parameter sets of strictly Neumaier graphs? Which for vertex-transitive strictly Neumaier graphs?

Problem

Can we generalise the given constructions to other rings/Latin squares?

Problem

Can a strictly Neumaier graph have five eigenvalues?
UPDATE (Sept. 19, 2023) YES - (Goryainov-Koolen)
An example with parameters ($48,14,2 ; 1,4$).

32 Q\&A

Thank you for your attention

32 Q\&A

Thank you for your attention

Questions?

