Neumaier graphs

Maarten De Boeck University of Memphis

(joint work with A. Abiad, W. Castryck, J. Koolen and S. Zeijlemaker)

Algebraic Graph Theory Seminar

October 2, 2023

Neumaier graphs

2 Regularity in graphs

3 Strongly regular graphs

Definition

A regular graph is *strongly regular* if it is edge-regular and co-edge-regular.

The Petersen graph srg(10, 3, 0, 1)

The 3×3 rook's graph srg(9, 4, 1, 2)

Definition

A vertex subset S is *e-regular* if for every vertex $x \notin S$ we have $|N(x) \cap S| = e$.

4 Regularity of subsets

Definition

A vertex subset S is *e*-regular if for every vertex $x \notin S$ we have $|N(x) \cap S| = e$.

1-regular subset No regular cliques

A 1-regular clique

5 Neumaier's question

Theorem (Neumaier, 1981)

A vertex-transitive and edge-transitive graph with a regular clique is strongly regular.

Problem (Neumaier)

Is a regular, edge-regular graph with a regular clique necessarily strongly regular?

5 Neumaier's question

Theorem (Neumaier, 1981)

A vertex-transitive and edge-transitive graph with a regular clique is strongly regular.

Problem (Neumaier)

Is a regular, edge-regular graph with a regular clique necessarily strongly regular?

Definition

A **Neumaier graph** is a regular, edge-regular graph with a regular clique. It is a **strictly Neumaier graph** if it is not strongly regular.

A Neumaier graph has parameters $(v, k, \lambda; e, s)$ if it is an edge-regular graph with parameters (v, k, λ) , admitting an *e*-regular clique of size *s*.

Remark

There are 'many' strongly regular (i.e. non-strictly) Neumaier graphs.

Problem

Do strictly Neumaier graphs exist?

6 The main questions

Remark

There are 'many' strongly regular (i.e. non-strictly) Neumaier graphs.

Problem

Do strictly Neumaier graphs exist?

Problem

For which parameter sets $(v, k, \lambda; e, s)$ do strictly Neumaier graphs exist?

Feasibility conditions

7 Counting

Theorem (folklore; Neumaier, 1981; Evans-Goryainov-Panasenko, 2019)

If there is a Neumaier graph with parameters (v, k, λ ; e, s), then

- (i) $v > k > \lambda$ and $v 2k + \lambda \ge 0$;
- (ii) $vk \equiv 0 \pmod{2}$, $k\lambda \equiv 0 \pmod{2}$ and $vk\lambda \equiv 0 \pmod{6}$;

7 Counting

Theorem (folklore; Neumaier, 1981; Evans-Goryainov-Panasenko, 2019)

If there is a Neumaier graph with parameters $(v, k, \lambda; e, s)$, then (i) $v > k > \lambda$ and $v - 2k + \lambda \ge 0$; (ii) $vk \equiv 0 \pmod{2}$, $k\lambda \equiv 0 \pmod{2}$ and $vk\lambda \equiv 0 \pmod{6}$; (iii) s(k - s + 1) = (v - s)e; (iv) $s(s - 1)(\lambda - s + 2) = (v - s)e(e - 1)$; (v) $k - s + e - \lambda - 1 \ge 0$.

7 Counting

Theorem (folklore; Neumaier, 1981; Evans-Goryainov-Panasenko, 2019)

If there is a Neumaier graph with parameters $(v, k, \lambda; e, s)$, then (i) $v > k > \lambda$ and $v - 2k + \lambda \ge 0$; (ii) $vk \equiv 0 \pmod{2}$, $k\lambda \equiv 0 \pmod{2}$ and $vk\lambda \equiv 0 \pmod{6}$; (iii) s(k - s + 1) = (v - s)e; (iv) $s(s - 1)(\lambda - s + 2) = (v - s)e(e - 1)$; (v) $k - s + e - \lambda - 1 \ge 0$.

If there is a strictly Neumaier graph with parameters $(v, k, \lambda; e, s)$, then moreover

(*i**) v - 1 > k and $v - 2k + \lambda \ge 2$; (*v**) $k - s + e - \lambda - 1 \ge 1$; (*vi*) $\lambda + 3 > s \ge 4$; (*vii*) $1 \le e < s - 1$.

8 And more counting

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker, 2021)

If there is a Neumaier graph with parameters $(v, k, \lambda; e, s)$, then $(v - k - 1)(v - k - 2) - k(v - 2k + \lambda) \ge 0$. If there is a strictly Neumaier graph with parameters $(v, k, \lambda; e, s)$, then $(v - k - 1)(v - k - 2) - k(v - 2k + \lambda) > 0$. (This result is independent of e and s, true for all edge-regular graphs.)

Table of admissible parameters (strictly)

V	k	λ	е	S
16	9	4	2	4
22	12	5	2	4*
24	8	2	1	4
25	12	5	2	5
	16	9	3	5
26	15	8	3	6
28	9	2	1	4
	15	6	2	4
		8	3	7
	18	11	4	7
33	24	17	6	9

9

* Non-existence by computer search Evans-Goryainov-Panasenko and Abiad-De Boeck-Zeijlemaker.

V	k	λ	е	5
34	18	7	2	4
35	10	3	1	5
	16	6	2	5
	18	9	3	7
	22	12	3	5
36	11	2	1	4
	15	6	2	6
	20	10	3	6
	21	12	4	8
	25	16	4	6
40	12	2	1	4
	21	8	2	4
		12	4	10
	27	18	6	10
	30	22	7	10

10 \setminus Non-existence by ILP

We can model a (strictly) Neumaier graph with given parameters by an ILP.

- For each pair of vertices $\{u, v\}$ a variable x_{uv} that is 1 or 0 (edge or not).
- For each pair {u, {v, w}} a variable y_{uvw} that is 1 or 0 (u adjacent to both v and w, or not).

$$> x_{uv} \ge y_{uvw}, x_{uw} \ge y_{uvw}$$

$$x_{uv} + x_{uw} - 1 \le y_{uvw}$$

- Linear equations/inequalities to describe (edge-)regularity.
- Clique $E \to \text{fix } x_{uv} = 1 \text{ with } u, v \in E$.
- Linear equation (or fixed edges) for clique regularity
- Fixed edge and inequalities to break co-edge-regularity (if necessary).

Corollary (Abiad-DB-Zeijlemaker, 2023)

For strictly Neumaier graphs (25, 16, 9; 3, 5), (28, 18, 11, 4, 7), (33, 24, 17; 6, 9), (35, 22, 12; 3, 5) and (55, 30, 18; 3, 5) are not admissible as parameter sets.

Existence

11 \ Strictly Neumaier graphs do exist

11 \ Strictly Neumaier graphs do exist

12 How many strictly Neumaier graphs?

Theorem (Greaves-Koolen, 2018)

There are (infinitely many) strictly Neumaier graphs (with e = 1).

12 \ How many strictly Neumaier graphs?

Theorem (Greaves-Koolen, 2018)

There are (infinitely many) strictly Neumaier graphs (with e = 1).

Theorem (Evans-Goryainov-Panasenko, 2019)

For every $n \ge 2$, there is a strictly Neumaier graph with parameters $(2^{2n}, (2^{n-1}+1)(2^n-1), 2(2^{n-2}+1)(2^{n-1}-1); 2^{n-1}, 2^n)$

12 \ How many strictly Neumaier graphs?

Theorem (Greaves-Koolen, 2018)

There are (infinitely many) strictly Neumaier graphs (with e = 1).

Theorem (Evans-Goryainov-Panasenko, 2019)

For every $n \ge 2$, there is a strictly Neumaier graph with parameters $(2^{2n}, (2^{n-1}+1)(2^n-1), 2(2^{n-2}+1)(2^{n-1}-1); 2^{n-1}, 2^n)$

Theorem (Evans-Goryainov-Panasenko, 2019)

The Neumaier graph with parameters (16, 9, 4; 2, 4) is unique up to isomorphism.

Evans-Goryainov-Panasenko (2019): computer-assisted proof Abiad-De Boeck-Zeijlemaker (2023): computer-free proof

13 A strictly Neumaier graph on 24 vertices

13 A strictly Neumaier graph on 24 vertices

13 A strictly Neumaier graph on 24 vertices

13 \ A strictly Neumaier graph on 24 vertices

14 Evans-Goryainov technique

Inspired by the Greaves-Koolen construction.

Theorem (Evans, 2020 ; Evans-Goryainov-Konstantinova-Mednykh, 2021)

Let $\Gamma_1 = (V_1, E_1), \ldots, \Gamma_t = (V_t, E_t)$ be t edge-regular graphs with parameters (v, k, λ) such that each Γ_i admits a partition in 1-regular cocliques, $C_{i,1}, \ldots, C_{i,k+1}$. The graph $F(\Gamma_1, \ldots, \Gamma_t)$ is the graph

• with as vertex set $V_1 \cup \cdots \cup V_t$,

▶ and where two vertices $x \in C_{i,k}$ and $y \in C_{j,l}$ are adjacent if and only if i = j and $x \sim y$ in Γ_i , or if k = l.

If $t = \frac{(\lambda+2)(k+1)}{v} \in \mathbb{N}$, then $F(\Gamma_1, \ldots, \Gamma_t)$ is a Neumaier graph with parameters $(vt, k + \lambda + 1, \lambda; 1, \lambda + 2)$; it admits a spread of 1-regular cliques.

14 Evans-Goryainov technique

Inspired by the Greaves-Koolen construction.

Theorem (Evans, 2020 ; Abiad-Castryck-DB-Koolen-Zeijlemaker, 2021))

Let $\Gamma_1 = (V_1, E_1), \ldots, \Gamma_t = (V_t, E_t)$ be t edge-regular graphs with parameters (v, k, λ) such that each Γ_i admits a partition in 1-regular cocliques, $C_{i,1}, \ldots, C_{i,k+1}$. The graph $F(\Gamma_1, \ldots, \Gamma_t)$ is the graph

- with as vertex set $V_1 \cup \cdots \cup V_t$,
- ► and where two vertices $x \in C_{i,k}$ and $y \in C_{j,l}$ are adjacent if and only if i = j and $x \sim y$ in Γ_i , or if k = l.

If $t = \frac{(\lambda+2)(k+1)}{v} \in \mathbb{N}$, then $F(\Gamma_1, \ldots, \Gamma_t)$ is a Neumaier graph with parameters $(vt, k + \lambda + 1, \lambda; 1, \lambda + 2)$; it admits a spread of 1-regular cliques. If $t \ge 2$, then $F(\Gamma_1, \ldots, \Gamma_t)$ is a strictly Neumaier graph.

15 \ ERG's with a regular coclique partition?

Theorem (Greaves-Koolen, 2019)

Take V_1, \ldots, V_t distance-regular a-antipodal graphs of diameter 3.

Example

Taylor graphs

▶ Thas-Somma graphs, edge-regular graphs with parameters $(q^{2n+1}, q^{2n} - 1, q^{2n-1} - 2)$ for a prime power q. You need to take q^{2n-2} copies, $n \ge 2$. You get a strictly Neumaier graph with parameters $(q^{4n-1}, q^{2n-1}(q+1) - 2, q^{2n-1} - 2; 1, q^{2n-1})$.

15 **ERG's with a regular coclique partition?**

Theorem (Greaves-Koolen, 2019)

Take V_1, \ldots, V_t distance-regular a-antipodal graphs of diameter 3.

Theorem (Greaves-Koolen, 2018)

Take V_1, \ldots, V_t a (specificly described) Cayley graph on $(\mathbb{Z}/2\mathbb{Z})^m \times (\mathbb{F}_q, +)$, with $m \in \{2,3\}$ and q a prime power with $q \equiv 1 \pmod{2^{m+1}-2}$.

m = 2: $q \in \{7, 13, 19, 37, 49, \dots\}$, m = 3: $q \in \{29, 43, 71, 127, \dots\}$

16 \setminus A new look at the table (strictly)

- *: 4 vertex-transitive, ≥ 2 non-vertex transitive (Evans, EGP)
- °: 2 vertex-transitive, \geq 2 non-vertex transitive (Evans, EGP)

V	k	λ	е	S
34	18	7	2	4
35	10	3	1	5
	16	6	2	5
	18	9	3	7
	22	12	3	5
36	11	2	1	4
	15	6	2	6
	20	10	3	6
	21	12	4	8
	25	16	4	6
40	12	2	1	4
	21	8	2	4
		12	4	10
	27	18	6	10
	30	22	7	10

A new construction

Example

▶ p = 13, q = 5, a = 2

Example

▶
$$p = 13, q = 5, a = 2$$

$$\blacktriangleright S_{65} = \{1, 2, 4, 8, 16, 32, 64 = -1, 63, 61, 57, 49, 33\}$$

Example

$$p = 13, q = 5, a = 2$$

- $\blacktriangleright S_{65} = \{1, 2, 4, 8, 16, 32, 64 = -1, 63, 61, 57, 49, 33\}$
- ▶ $\Gamma_{65}(2)$ is edge-regular with parameters (65, 12, 3), and has a spread of 1-regular cocliques: cosets of $\{0, 13, 26, 39, 52\}$ in $\mathbb{Z}/65\mathbb{Z}, +$

Example

$$S_{65} = \{1, 2, 4, 8, 16, 32, 64 = -1, 63, 61, 57, 49, 33\}$$

▶ $\Gamma_{65}(2)$ is edge-regular with parameters (65, 12, 3), and has a spread of 1-regular cocliques: cosets of $\{0, 13, 26, 39, 52\}$ in $\mathbb{Z}/65\mathbb{Z}, +$

$$t = \frac{(\lambda+2)(k+1)}{k} = \frac{(3+2)(12+1)}{65} = 1$$

F($\Gamma_{65}(2)$) is a strictly Neumaier graph.

19 \ Theoretically

Definition

Let *a* be such that $a^i \equiv -1 \pmod{n}$, where 2i is the order of *a* in $(\mathbb{Z}/n\mathbb{Z})^*, \cdot$. Then $S_n(a) = \{a^j \in \mathbb{Z}/n\mathbb{Z} \mid 0 \le j < 2i\}$. $\Gamma_n(a)$ is the Cayley graph on $\mathbb{Z}/n\mathbb{Z}$, + with $S_n(a)$ as generating set.

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker, 2021)

Let p > 2 be a prime, $q \in \mathbb{N}$ odd. Let $a \in \mathbb{Z}$ be such that it has order p - 1 in $(\mathbb{Z}/p\mathbb{Z})^*, \cdot$ and such that $a^{\frac{p-1}{2}} \equiv -1 \pmod{pq}$. Then, the Cayley graph $\Gamma_{pq}(a)$ is an edge-regular graph with parameters $(pq, p - 1, \lambda)$, with $\lambda = |S_{pq}(a) \cap (S_{pq}(a) + 1)|$, that has a spread of 1-regular cocliques.

19 \ Theoretically

Definition

Let *a* be such that $a^i \equiv -1 \pmod{n}$, where 2i is the order of *a* in $(\mathbb{Z}/n\mathbb{Z})^*$, \cdot . Then $S_n(a) = \{a^j \in \mathbb{Z}/n\mathbb{Z} \mid 0 \le j < 2i\}$. $\Gamma_n(a)$ is the Cayley graph on $\mathbb{Z}/n\mathbb{Z}$, + with $S_n(a)$ as generating set.

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker, 2021)

Let p > 2 be a prime, $q \in \mathbb{N}$ odd. Let $a \in \mathbb{Z}$ be such that it has order p - 1 in $(\mathbb{Z}/p\mathbb{Z})^*$, \cdot and such that $a^{\frac{p-1}{2}} \equiv -1 \pmod{pq}$. Then, the Cayley graph $\Gamma_{pq}(a)$ is an edge-regular graph with parameters $(pq, p - 1, \lambda)$, with $\lambda = |S_{pq}(a) \cap (S_{pq}(a) + 1)|$, that has a spread of 1-regular cocliques.

Remark

In general we need that $\frac{(\lambda+2)(k+1)}{v} = \frac{|S_{pq}(a) \cap (S_{pq}(a)+1)|+2}{q}$ is an integer. In other words, $|S_{pq}(a) \cap (S_{pq}(a)+1)| \equiv -2 \pmod{q}$.

20 Overview of new examples

q	p	а	t	v	k	λ	S
5	13	2	1	65	16	3	5
	37	2	1	185	40	3	5
	61	17	4	1220	79	18	20
	149	13	4	2980	167	18	20
		2	7	5215	182	33	35
7	79	54	1	553	84	5	7
	103	45	1	721	108	5	7
	127	12	2	1778	139	12	14
	139	26	4	3892	165	26	28
11	131	2	1	1441	140	9	11
13	61	2	1	793	72	11	13
	397	6	2	10322	421	24	26
		20	2	10322	421	24	26

20 Overview of new examples

q	р	а	t	v	k	λ	S
25	1021	77	2	51050	1069	48	50
		122	2	51050	1069	48	50
	1181	42	2	59050	1229	48	50
	1301	3	2	65050	1349	48	50
		73	2	65050	1349	48	50
	1381	42	2	69050	1429	48	50
		123	2	69050	1429	48	50
	1621	88	2	81050	1669	48	50
		113	2	81050	1669	48	50
	1741	197	2	87050	1789	48	50
	2141	58	2	107050	2189	48	50
		112	2	107050	2189	48	50

The admissible q's: some number theory

21 Main questions about construction

Problem

For which q can we find primes p and a corresponding integer a such that the construction produces a strictly Neumaier graph?

21 \ Main questions about construction

Problem

For which q can we find primes p and a corresponding integer a such that the construction produces a strictly Neumaier graph?

- Does this construction produce an infinite number of examples?
- Are there q's for which it produces an infinite number of examples?
- Are there an infinite number of q's for which it produces an infinite number of examples?

We need to look at $|S_{pq}(a) \cap (S_{pq}(a) + 1)| \pmod{q}$. Is it -2?

22 An explicit formula

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker, 2021)

$$|S_{pq}(a) \cap (S_{pq}(a)+1)| = \frac{1}{n^2} \left((p+1) |B| + \sum_{1 \le i \le j < n-i} 2(2-\delta_{i,j}) \Re(c_{i,j}J(\chi^i,\chi^j)) \right)$$

where $c_{i,j} = \sum_{b \in B} \psi(b)^{-i} \psi(1-b)^{-j}$ and $\delta_{i,j}$ is the Kronecker symbol.

22 An explicit formula

Notation

- ▶ $\alpha = a \pmod{p}$, $\beta = a \pmod{q}$, *n* is the order of β in $(\mathbb{Z}/q\mathbb{Z})^*$
- $\blacktriangleright \ \xi : \mathbb{F}_p^* \to \langle \beta \rangle : \alpha^j \mapsto \beta^j \text{ and } \psi : \langle \beta \rangle \to \mu_n : \beta^j \mapsto e^{2\pi i j/n} \text{ and } \chi = \psi \circ \xi$

$$\blacktriangleright B = \{ b \in \langle \beta \rangle | b - 1 \in \langle \beta \rangle \}$$

▶ J is the Jacobi sum of two characters: $J(\chi, \lambda) = \sum_{c \in \mathbb{F}_n} \chi(c) \lambda(1-c)$

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker, 2021)

$$|S_{pq}(a) \cap (S_{pq}(a)+1)| = \frac{1}{n^2} \left((p+1) |B| + \sum_{1 \le i \le j < n-i} 2(2-\delta_{i,j}) \Re(c_{i,j}J(\chi^i,\chi^j)) \right)$$

where $c_{i,j} = \sum_{b \in B} \psi(b)^{-i} \psi(1-b)^{-j}$ and $\delta_{i,j}$ is the Kronecker symbol.

23 To give you an idea

Example (q = 5)

If $\beta = -1$, then $B = \emptyset$, so $|S \cap (S + 1)| = 0$. For $\beta = 2$, we have $\psi(\beta) = \mathbf{i}$ and must have $p \equiv 5 \pmod{8}$. We find that

$$|S \cap (S+1)| = \frac{1}{16} \left(3p + 3 + 2\Re((-1+2i)J(\chi,\chi)) + 4\Re((1-2i)J(\chi,\chi^2)) \right).$$

23 To give you an idea

Example (q = 5)

If $\beta = -1$, then $B = \emptyset$, so $|S \cap (S + 1)| = 0$. For $\beta = 2$, we have $\psi(\beta) = \mathbf{i}$ and must have $p \equiv 5 \pmod{8}$. We find that

$$|S \cap (S+1)| = \frac{1}{16} \left(3p + 3 + 2\Re((-1+2i)J(\chi,\chi)) + 4\Re((1-2i)J(\chi,\chi^2)) \right).$$

There are x, y such that

$$p = x^2 + y^2,$$
 $x \equiv 1 \pmod{4},$ $y \equiv x \alpha^{\frac{p-1}{4}} \pmod{p}.$

We can express the Jacobi sums in terms x and y and find that

$$|S \cap (S+1)| = \frac{3}{16}(p+1+2x+4y).$$

24 A sledgehammer from number theory

Theorem (Dirichlet, Neukirch)

Let $R = \mathbb{Z}[\mathbf{i}]$ or $R = \mathbb{Z}[\zeta_6]$ and consider $m \in R \setminus \{0\}$. Let $a \in R$ be coprime with m. Then there exist infinitely many prime elements $\pi \in R$ such that $m \mid \pi - a$.

24 \ A sledgehammer from number theory

Theorem (Dirichlet, Neukirch)

Let $R = \mathbb{Z}[\mathbf{i}]$ or $R = \mathbb{Z}[\zeta_6]$ and consider $m \in R \setminus \{0\}$. Let $a \in R$ be coprime with m. Then there exist infinitely many prime elements $\pi \in R$ such that $m \mid \pi - a$.

Example (q = 5, continued)

We want

$$|S \cap (S+1)| = \frac{3}{16}(x^2 + y^2 + 1 + 2x + 4y) \equiv 3 \pmod{5}$$

$$\iff x^2 + 2x + y^2 + 4y \equiv 0 \pmod{5}.$$

There are infinitely many prime elements $\pi \in \mathbb{Z}[i]$ such that $20 \mid \pi - (5 + 6i)$. Any $p = \pi \overline{\pi}$ satisfies the conditions.

25 Infinite infiniteness

Theorem

If q = 5 or $q = \ell_1^{e_1} \cdots \ell_k^{e_k} \ge 7$ such that all primes ℓ_i satisfy $\ell_i \equiv 1 \mod 6$, then there is an infinite number of primes p and integers a such that $|S_{pq}(a) \cap (S_{pq}(a) + 1)| \equiv -2 \pmod{q}$. Consequently, for an infinite number of q's the construction produces an infinite number of strictly Neumaier graphs!

25 Infinite infiniteness

Theorem

If q = 5 or $q = \ell_1^{e_1} \cdots \ell_k^{e_k} \ge 7$ such that all primes ℓ_i satisfy $\ell_i \equiv 1 \mod 6$, then there is an infinite number of primes p and integers a such that $|S_{pq}(a) \cap (S_{pq}(a) + 1)| \equiv -2 \pmod{q}$. Consequently, for an infinite number of q's the construction produces an infinite number of strictly Neumaier graphs!

Theorem

For q = 5, the density of the primes p for which we can find an integer a such that $|S_{pq}(a) \cap (S_{pq}(a) + 1)| \equiv -2 \pmod{q}$, equals $\frac{7}{64}$. For q = 7 this density equals $\frac{1}{12}$.

26 Non-admissible q's

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker)

This construction produces no new examples of (strictly) Neumaier graphs if 3|q.

26 Non-admissible *q*'s

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker)

This construction produces no new examples of (strictly) Neumaier graphs if 3|q.

Definition

A Fermat prime is a prime of the form $2^{2^n} + 1$ for some integer *n*. The known Fermat primes are 3, 5, 17, 257 and 65537. It is conjectured there are no others.

Theorem (Abiad-Castryck-DB-Koolen-Zeijlemaker)

If q is divisible by both a Fermat prime $p' \ge 5$ and prime $p'' \equiv 3 \pmod{4}$, then $|S_{pq}(a) \cap (S_{pq}(a) + 1)| = 0$ for any p and a satisfying the conditions.

Example

No examples for $q = 35, 55, 95, 119, \ldots$

Bonus track

28 A Latin square graph

Example

Given the Latin square

а	b	С	d	е
b	а	d	е	С
с	е	а	b	d
d	С	е	а	b
е	d	b	с	а

we define the Latin square graph Γ with

▶ Vertices $\{1, \ldots, 5\}^2$ ▶ $(i, j) \sim (i', j')$ iff ▶ i = i',▶ j = j', or ▶ same entry on (i, j) and (i', j').

 Γ is an strongly-regular Neumaier graph with parameters (25, 12, 5; 2, 5).

A subgraph of Γ

A subgraph of Γ

30 A new strictly Neumaier graph

Example (Abiad-DB-Zeijlemaker)

The graph Γ that results from switching the subgraph is a strictly Neumaier graph with parameters (25, 12, 5; 2, 5).

30 A new strictly Neumaier graph

Example (Abiad-DB-Zeijlemaker)

The graph Γ that results from switching the subgraph is a strictly Neumaier graph with parameters (25, 12, 5; 2, 5).

Remark

This was the first known strictly Neumaier graph with $e \notin \{1, \frac{s}{2}\}$. Among those, it is still the only one known which is not vertex-transitive.

 ${\sf Open \ questions}$

Problem

Which sets are admissible as parameter sets of strictly Neumaier graphs? Which for vertex-transitive strictly Neumaier graphs?

Problem

Which sets are admissible as parameter sets of strictly Neumaier graphs? Which for vertex-transitive strictly Neumaier graphs?

Problem

Can we generalise the given constructions to other rings/Latin squares?

Problem

Which sets are admissible as parameter sets of strictly Neumaier graphs? Which for vertex-transitive strictly Neumaier graphs?

Problem

Can we generalise the given constructions to other rings/Latin squares?

Problem

Can a strictly Neumaier graph have five eigenvalues?

Problem

Which sets are admissible as parameter sets of strictly Neumaier graphs? Which for vertex-transitive strictly Neumaier graphs?

Problem

Can we generalise the given constructions to other rings/Latin squares?

Problem

Can a strictly Neumaier graph have five eigenvalues? UPDATE (Sept. 19, 2023) YES - (Goryainov-Koolen) An example with parameters (48, 14, 2; 1, 4).

Thank you for your attention

Thank you for your attention

Questions?