Fractional 2 Quantum Iremorponisus

Doubly storhastic matrises

A matrix is doubly stochastic if its real, non-negatile, and each row and column sums to 1 . e.g. permutation matrices

A doubly stochastic matrix is necessarily square. \square

The sed of $n \times n$ doubly stachastic matrices ir
(a) a convex polytope
(b) closed under transposes
4) elosed under multipilication

The permutation matrices are the vertices of the polytape.

$$
\begin{aligned}
& \langle M, N\rangle=\operatorname{nv}\left(m^{*} N\right) \\
& (P, P)=n \\
& (P, S\rangle<n, S \neq P \\
& \Rightarrow P \text { is a vertex }
\end{aligned}
$$

Fractional isomorphisms

Graphs X,Y; adjaceney matriver
$A \& B$.
x a y are fractionally is omorphic
ib there is a doubly stechastic matrox S such that $A S=S B$.

- isomorphisms are fractional is omerphisar
- Any two k-regular graphs on n vertices are fractionally is om orphic.

$$
\begin{aligned}
S & =\frac{L}{n} J \\
A S & =\frac{k}{n} J \quad \rho B=\frac{h}{n} J
\end{aligned}
$$

If $A S=S B$, then $B S^{\top}=S^{\top} A$.
So fractional isomorphism is an equivalence relation,

If $A S=S A$, then S is a fractional automorphism.

$$
\text { If } \begin{aligned}
A S & =S B \& B S^{T}=S^{\top} A . \text { then } \\
S S^{\top} A & =S B S^{\top}=A S S^{T}
\end{aligned}
$$

and so SS^{\top} is a fractional automarohism of X.
We use $f(x)$ to denote the set of all fractional automorphism of X.

A graph is compact if all vertices of $\rho(x)$ are permutation matrices. Tinhofer

Theorem If $x \& y$ are fractionally is omarphic graphs on n vertices, there ir a permutation matrix P such that

$$
\begin{aligned}
& P\left[\frac{1}{1} A_{1} \cdots A_{1}^{n-1}\right]=\left[1, P_{2} \cdots B_{n}^{n-1} \frac{1}{2}\right] . \\
& r k=\text { \# main eigenvalues }
\end{aligned}
$$

Lemma If Re S are doubly stochastic and $y=R_{x}, x=S_{y}$, then $y=P_{x}$ for some permutation matrix P.

Equitable partitions

Suppose π is a partition of $V(X)$
with normalised characteristic matrix N. (So N is $2 x / \pi /$ and $N^{2} N=I$.)

$$
\text { e.g. } N=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 / \sqrt{2} & 0 \\
0 & 1 / 2 & 0 \\
e & 0 & 1 / \sqrt{3} \\
0 & 0 & 1 / \sqrt{3} \\
0 & 0 & 1 / \sqrt{3}
\end{array}\right) \quad \begin{aligned}
& \\
&
\end{aligned}
$$

The following are equivalent.
(a) π is equitable.
function on $U(\alpha)$ Instant
(b) the column space of N is on cells of π
A-invariknt.
(c) $A N=N C$ for some $|\pi| x|\pi|$ matrix C.
(Orbit partitions are equitable.)

The projection onto the column space of N is $N N^{\top}$, which is doubly stochastic. And col (N) is A.inuarianb if \& only if $A \& N N^{\top}$ commute.

So equitable partitions gie elements of $\rho(x)$.

Fractional isomorphisms give equitable partitions

We can view a doubly stochastic matrix S as a weighted adjacency matrix of a directed graph.

Because S is doubly stochastic, any weak amponent is strongly connected.

So we may assume S has the block-diagonal form

$$
\left[\begin{array}{ccc}
S_{1} & & 0 \\
0 & \ddots & S_{c}
\end{array}\right]
$$

where the diagonal blocks are doubly stochastic a irreducible.

If S is non-negabive $\&$ irreducible, its largest eigenvalue is simple. So each S_{i} has spectral radius 1 , with eigenvector $\frac{1}{\sim}$.

The strong components of S partition $V(X)$. If N is the normalized chavacteristic matrix of this partition, $N N^{\top}$ is projection on $\operatorname{ker}(S-I)$.

Claim $N N^{T}$ is a polynomial in S, hence the partition given by S is equitable.

A graph X is controllable if $\langle A, J\rangle=$ Mat $_{n \times n}$ (a) Almost all graphs are controllable O'Rourke Lemma If X is controllable, $f(x)=\{I\}$.

Quantum permutations

A quantum permutation is an $n \times n$ mab-x P. with entries from the ring Mat ${ }_{d \times d}$ (C) puck that:
(a) $P_{i j}$ is a projection for all ie j
(b) $\sum_{r} P_{i r}=I_{d}=\sum_{s} P_{s, j}$
egg. any permutation

$$
(d=1)
$$

Remark if $Q_{1, \ldots}, Q_{k}$ awe $d \times d$ projections and $\sum_{r} Q_{r}=I$, then $Q ; Q_{j}=0$ if $i \neq j$.

Proof. We have $I=I^{2}=\sum_{i}^{T} Q_{i}+\sum_{i \neq j} Q_{i} Q_{j}$
Hence $0=\sum_{1 \neq j} Q_{i} Q_{j}$ and so

$$
0=\operatorname{tr}\left(\sum_{i \neq j} Q_{i} \varphi_{j}\right)=\sum_{i \neq j} \operatorname{tr}\left(Q_{i} \varphi_{j}\right)
$$

Idenco $\operatorname{rr}\left(Q_{i} Q_{j}\right)=0$ \& so $Q_{i}, Q_{j}=0$.

1) A quantum permutation is unitary.
2) The product of two quantum permutations is net, in general, a quantum permutation.
3) If $L=\left(L_{i, j}\right)$,s an $n \times n$ Latin square and $u_{1} \ldots, u_{n}$ is an orthonormal basis of \mathbb{C}^{d}, then

$$
\text { (if } L_{i j}=k \text {, then }
$$

$$
P=\left(u_{L_{i j}} u_{L_{i j}}^{*}\right)
$$

$$
P_{i j}=u_{k} u_{k}^{k} \mid
$$

is a quantum permutation.

Remark: If u_{1}, \ldots, u_{n} is an orthonormal basis, then $\sum_{r} u_{r} u_{r}^{*}=I$.

Converse?

We say a quanfrim permutatoen P of index d is a quontrim antomoiphism of X if $A \otimes I_{d}$ and P commute. \tilde{A}

Operations on quantum permutations: coproduct: $(P \notin Q)_{i, j}:=\sum_{r} P_{i r} \otimes Q_{r j}$ direct sum: $(\rho \oplus Q)_{i, j}:=P_{i j} \oplus Q_{i j} \quad\left(\begin{array}{ll}P_{i j} & 0 \\ 0 & Q_{i j}\end{array}\right)$

Theorem If P, Q are quantum antomorphisin of X, so are $P \& Q$ and $P \oplus Q$.

What make a quantum permutation quantum? Suppose $P=\left(P_{i}, j\right)$ is a quantum automorphism. If the entries of P commute, there is a change of basis that diagonalizes them - so we may assume $P_{\text {is }}$ is diagonal O1. It follows that P is the direct soon of permutations, which commute with x if P does.

So if we want something not classical, the algebra generated by the entries of P must not be commutative.

Measuring quantum permutions. A measurement is a sequence of projection Q_{1}, \ldots, Q_{m} such that $\sum_{i} \varphi_{i}=I$. A stake is given by a density mabrix D, ie., a positive semidefinite matrix such that $f(D)=1$. The outcome of a measurement is an element of $\{1, \ldots, m\}$. We observe i with probability $\left\langle\varphi_{i}, D\right\rangle=t,\left(Q_{i} D\right)$.

Each row \& each column of a quantum permutation is a measurement. If P is a quantum permutation of index d \& D is a density matrix of order $d x d$, wa define the $n \times n$ matrix $\{(P, D)\}$ by

$$
\langle\langle P, D\rangle\rangle_{i, j}=\left\langle P_{i, j}, D\right\rangle
$$

Theorem $\langle\langle P, D\rangle\rangle$ is doubly stochastic.
If P is a quantum automorphism of X,
then $<P, D>\in \rho(X)$.
Theorem $\left\langle P_{1} \pitchfork P_{2}, D_{1}\left(\otimes V_{2}\right\rangle\right\rangle=\left\langle\left\langle P_{1} D_{1}\right\rangle\left\langle\left\langle P_{2}, D_{2}\right\rangle\right.\right.$

$$
\left.\left.\left\langle\left\langle P_{1} 巴 P_{2}, a D_{1} \oplus(1-a) D_{2}\right\rangle\right\rangle=a\left\langle P_{1}, D_{1}\right\rangle\right\rangle+(1-a)\left\langle P_{2}, D_{2}\right\rangle\right)
$$

oses

The matrices $([A, D)\}$, where P run aver the quantum automorphisms of X and D runs over density matrices form a convey subset of $\rho(X)$. It is a monoid $\&$ is transpose-closed.

1) If $\operatorname{tr}\left(P_{i j}\right)=1$ for $a l l i, j$ and $D=\frac{1}{d} I_{d}$, then $\left\langle\langle P, D\rangle=\frac{1}{n} J\right.$ and X is regular.
2) If X is controllable, its only guasturn automorphism is the identity.
3) Most trees admit non-classical quantum automorphisms (Junk, Schmidt, Weber)
4) Quantum isomorphic trees are isomorphic.
and

Some references:

1) Godsil. Compact graphs and equitable partitions

$$
\text { LAA } 255 \text { (1997), 259-266 }
$$

2) Ramana, Scheinerman, Ullman. Fractional isomerphism of graphs. Discrete Math 132 (1994), 247-265
3) Tinhoter. Graph isomerphiom and theorems of Birkhoff type. Computing 36 (1986), 285-300.
4) Tinhofer. A note on compact graphs. Discrete Applied Math. 30 (1991), 253-264
5) Wang a Li. On compact graphs.

Acta Math. Sinica, English Series. 21 (2005), 1082-1092
6) Atserias +5 . Quantum and non-signalling graph isomorphisms. arxiv:1611.09837v3
7) Lupina, Maň̌inska, Roberson. Non-local games and quartum permutation groups.

$$
\text { arxiv: } 1712.0182022
$$

