
Eigenvalues of high dimensional 
Laplacian operators

Alan Lew
Carnegie Mellon University

University of Waterloo
Virtual Algebraic Graph Theory Seminar
January 8 2024



Simplicial complexes

 Finite set



Simplicial complexes

 Finite set

 is called a simplicial complex if:



Simplicial complexes

 Finite set

 is called a simplicial complex if:



Simplicial complexes

 Finite set

 is called a simplicial complex if:

A set                is called a simplex (or face) of 



Simplicial complexes

 Finite set

 is called a simplicial complex if:

A set                is called a simplex (or face) of 

The dimension of a simplex        is  



Simplicial complexes

 Finite set

 is called a simplicial complex if:

A set                is called a simplex (or face) of 

The dimension of a simplex        is  

The dimension of the complex X = the maximal dimension of a simplex in X



Simplicial complexes

Geometric interpretation:



Simplicial complexes

Geometric interpretation:



Simplicial complexes

Geometric interpretation:

1
2

3

4



Simplicial complexes

Geometric interpretation:

1
2

3

4



Simplicial complexes

Geometric interpretation:

1
2

3

4



Simplicial complexes

Geometric interpretation:

1
2

3

4



Simplicial complexes

Geometric interpretation:

1
2

3

4



Simplicial complexes

Geometric interpretation:

1
2

3

4

We can study the 
topology of a simplicial 
complex



Homology
k-dimensional reduced homology group of X, with 
real coefficients 



Homology
k-dimensional reduced homology group of X, with 
real coefficients 

Informally:                             counts number of k-dimensional “holes” in X



Homology
k-dimensional reduced homology group of X, with 
real coefficients 

Informally:                             counts number of k-dimensional “holes” in X

Example:

X=



Homology
k-dimensional reduced homology group of X, with 
real coefficients 

Informally:                             counts number of k-dimensional “holes” in X

Example:

X=



Homology
k-dimensional reduced homology group of X, with 
real coefficients 

Informally:                             counts number of k-dimensional “holes” in X

Example:

X=

Counts number of 
connected components 
(minus 1)



Homology
k-dimensional reduced homology group of X, with 
real coefficients 

Informally:                             counts number of k-dimensional “holes” in X

Example:

X=

Counts number of 
connected components 
(minus 1)



Homology
k-dimensional reduced homology group of X, with 
real coefficients 

Informally:                             counts number of k-dimensional “holes” in X

Example:

X=

Counts number of 
connected components 
(minus 1)

Counts number of 
“unfilled” cycles
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Simplicial Hodge Theorem (Eckmann ‘44): 
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In particular:

 If                                           , then                                            .  

We recover ABM bound:

If                                     then  
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An additional application of additive compounds

Proposition (L 23+): Let G=(V,E) be a graph. Then

Adjacency 
matrix

Proof idea:  Apply Geršgorin’s theorem on k-th additive compound of 
matrix.
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-Can we use additive compounds (or some variant) to relate between 
k-dimensional Laplacian spectrum to (k-1)-dimensional spectrum of a clique 
complex? (this is known for results using Garland’s method)

-The Garland-like argument of ABM can be extended to “generalized clique 
complexes” (L ‘18). Can we use additive compounds to obtain improved results in 
this setting? 



Thank you for listening!


