Eigenvalues of high dimensional Laplacian operators

University of Waterloo
 Virtual Algebraic Graph Theory Seminar
 January 82024

Alan Lew
 Carnegie Mellon University

Simplicial complexes

$V=$ Finite set

Simplicial complexes

$V=$ Finite set
$X \subset 2^{V}$ is called a simplicial complex if:

Simplicial complexes

$V=$ Finite set
$X \subset 2^{V}$ is called a simplicial complex if: $A \in X \Longrightarrow \forall B \subset A, B \in X$

Simplicial complexes

$V=$ Finite set
$X \subset 2^{V}$ is called a simplicial complex if: $A \in X \Longrightarrow \forall B \subset A, B \in X$ A set $A \in X$ is called a simplex (or face) of X

Simplicial complexes

$V=$ Finite set
$X \subset 2^{V}$ is called a simplicial complex if: $A \in X \Longrightarrow \forall B \subset A, B \in X$
A set $A \in X$ is called a simplex (or face) of X
The dimension of a simplex A is $|A|-1$

Simplicial complexes

$V=$ Finite set
$X \subset 2^{V}$ is called a simplicial complex if: $A \in X \Longrightarrow \forall B \subset A, B \in X$
A set $A \in X$ is called a simplex (or face) of X
The dimension of a simplex A is $|A|-1$
The dimension of the complex $\mathrm{X}=$ the maximal dimension of a simplex in X

Simplicial complexes

Geometric interpretation:

$$
X=\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{2,3\},\{1,4\},\{1,2,3\}\}
$$

Simplicial complexes

Geometric interpretation:

$$
X=\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{2,3\},\{1,4\},\{1,2,3\}\}
$$

Simplicial complexes

Geometric interpretation:

$$
X=\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{2,3\},\{1,4\},\{1,2,3\}\}
$$

4

Simplicial complexes

Geometric interpretation:

$$
X=\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{2,3\},\{1,4\},\{1,2,3\}\}
$$

4

Simplicial complexes

Geometric interpretation:

$$
X=\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{2,3\},\{1,4\},\{1,2,3\}\}
$$

3

Simplicial complexes

Geometric interpretation:

$$
X=\{\emptyset,\{\underline{1},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{2,3\},\{1,4\},\{1,2,3\}\}
$$

3

Simplicial complexes

Geometric interpretation:

$$
X=\{\emptyset,\{\underline{ }=\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{2,3\},\{1,4\},\{1,2,3\}\}
$$

Simplicial complexes

Geometric interpretation:
$X=\{\emptyset,\{\underline{1\}},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{2,3\},\{1,4\},\{1,2,3\}\}$

We can study the topology of a simplicial complex

Homology

$\tilde{H}_{k}(X)=$ k-dimensional reduced homology group of X , with real coefficients

Homology

$\tilde{H}_{k}(X)=$ k-dimensional reduced homology group of X , with real coefficients

Informally: $\operatorname{dim}\left(\tilde{H}_{k}(X)\right)$ counts number of k-dimensional "holes" in X

Homology

$\tilde{H}_{k}(X)=$ k-dimensional reduced homology group of X , with real coefficients

Informally: $\operatorname{dim}\left(\tilde{H}_{k}(X)\right)$ counts number of \mathbf{k}-dimensional "holes" in X

Example:

Homology

$\tilde{H}_{k}(X)=\begin{aligned} & \text { k-dimensional reduced homology group of } \mathrm{X} \text {, with } \\ & \text { real coefficients }\end{aligned}$
Informally: $\operatorname{dim}\left(\tilde{H}_{k}(X)\right)$ counts number of k -dimensional "holes" in \mathbf{X}

Example:

Homology

$\tilde{H}_{k}(X)=$ k-dimensional reduced homology group of X, with real coefficients

Informally: $\operatorname{dim}\left(\tilde{H}_{k}(X)\right)$ counts number of k-dimensional "holes" in X

Example:

Counts number of connected components (minus 1)

Homology

$\tilde{H}_{k}(X)=$ k-dimensional reduced homology group of X , with real coefficients

Informally: $\operatorname{dim}\left(\tilde{H}_{k}(X)\right)$ counts number of k-dimensional "holes" in X

Example:

Counts number of connected components (minus 1)

Homology

$\tilde{H}_{k}(X)=$ k-dimensional reduced homology group of X , with real coefficients

Informally: $\operatorname{dim}\left(\tilde{H}_{k}(X)\right)$ counts number of k-dimensional "holes" in X

Example:

Homology

One more example:

Homology

One more example:

Triangulation of a sphere

Homology

One more example:

Triangulation of a sphere

$$
\tilde{H}_{2}(X) \cong \mathbb{R}
$$

High dimensional Laplacians

$$
\text { Assume: } V=[n]=\{1,2, \ldots, n\}
$$

High dimensional Laplacians

Assume: $V=[n]=\{1,2, \ldots, n\}$
$\mathrm{X}(\mathrm{k})=\mathrm{k}$-dimensional simplices of X

High dimensional Laplacians

Assume: $V=[n]=\{1,2, \ldots, n\}$
$\mathrm{X}(\mathrm{k})=\mathrm{k}$-dimensional simplices of X
For $\sigma \in X(k)$ we define

$$
\operatorname{deg}(\sigma)=\begin{aligned}
& \text { Number of }(\mathrm{k}+1) \text {-dimensional } \\
& \text { simplices containing } \sigma
\end{aligned}
$$

High dimensional Laplacians

Assume: $V=[n]=\{1,2, \ldots, n\}$
$\mathrm{X}(\mathrm{k})=\mathrm{k}$-dimensional simplices of X
For $\sigma \in X(k)$ we define

$$
\operatorname{deg}(\sigma)=\begin{aligned}
& \text { Number of }(\mathrm{k}+1) \text {-dimensional } \\
& \text { simplices containing } \sigma
\end{aligned}
$$

High dimensional Laplacians

Assume: $V=[n]=\{1,2, \ldots, n\}$
$\mathrm{X}(\mathrm{k})=\mathrm{k}$-dimensional simplices of X
For $\sigma \in X(k)$ we define

$$
\operatorname{deg}(\sigma)=\begin{aligned}
& \text { Number of }(\mathrm{k}+1) \text {-dimensional } \\
& \text { simplices containing } \sigma
\end{aligned}
$$

High dimensional Laplacians

Let $\sigma, \tau \in X(k)$ such that $|\sigma \cap \tau|=k$.

High dimensional Laplacians

Let $\sigma, \tau \in X(k)$ such that $|\sigma \cap \tau|=k$.

High dimensional Laplacians

Let $\sigma, \tau \in X(k)$ such that $|\sigma \cap \tau|=k$.
Let i, j be the two elements in $\sigma \triangle \tau$.

High dimensional Laplacians

Let $\sigma, \tau \in X(k)$ such that $|\sigma \cap \tau|=k$.
Let i, j be the two elements in $\sigma \triangle \tau$.

High dimensional Laplacians

Let $\sigma, \tau \in X(k)$ such that $|\sigma \cap \tau|=k$.
Let i, j be the two elements in $\sigma \triangle \tau$.

$$
\begin{gathered}
\epsilon(\sigma, \tau)=\text { number of vertices between } \mathrm{i} \text { and } \mathrm{j} \text { in } \\
\sigma \bigcap \tau
\end{gathered}
$$

High dimensional Laplacians

Let $\sigma, \tau \in X(k)$ such that $|\sigma \cap \tau|=k$.
Let i, j be the two elements in $\sigma \triangle \tau$.

$$
\begin{gathered}
\epsilon(\sigma, \tau)=\text { number of vertices between } \mathrm{i} \text { and } \mathrm{j} \text { in } \\
\sigma \cap \tau
\end{gathered}
$$

High dimensional Laplacians

Let $\sigma, \tau \in X(k)$ such that $|\sigma \cap \tau|=k$.
Let i, j be the two elements in $\sigma \triangle \tau$.

$$
\begin{gathered}
\epsilon(\sigma, \tau)=\text { number of vertices between } \mathrm{i} \text { and } \mathrm{j} \text { in } \\
\sigma \cap \tau
\end{gathered}
$$

High dimensional Laplacians

Let $\sigma, \tau \in X(k)$ such that $|\sigma \cap \tau|=k$.
Let i, j be the two elements in $\sigma \triangle \tau$.

$$
\begin{gathered}
\epsilon(\sigma, \tau)=\text { number of vertices between } \mathrm{i} \text { and } \mathrm{j} \text { in } \\
\sigma \cap \tau
\end{gathered}
$$

High dimensional Laplacians

Let $\sigma, \tau \in X(k)$ such that $|\sigma \cap \tau|=k$.
Let i, j be the two elements in $\sigma \triangle \tau$.
$\epsilon(\sigma, \tau)=$ number of vertices between i and j in $\sigma \cap \tau$

High dimensional Laplacians

k-dimensional Laplacian of x: $\quad L_{k}(X) \in \mathbb{R}^{|X(k)| \times|X(k)|}$

High dimensional Laplacians

k-dimensional Laplacian of $\mathrm{x}: \quad L_{k}(X) \in \mathbb{R}^{|X(k)| \times|X(k)|}$

$$
L_{k}(X)_{\sigma, \tau}=
$$

High dimensional Laplacians

k-dimensional Laplacian of $\mathrm{x}: \quad L_{k}(X) \in \mathbb{R}^{|X(k)| \times|X(k)|}$

$$
\int \operatorname{deg}(\sigma)+k+1 \quad \text { if } \quad \sigma=\tau
$$

High dimensional Laplacians

k-dimensional Laplacian of X: $\quad L_{k}(X) \in \mathbb{R}^{|X(k)| \times|X(k)|}$

$$
L_{k}(X)_{\sigma, \tau}= \begin{cases}\operatorname{deg}(\sigma)+k+1 & \text { if } \quad \sigma=\tau \\ (-1)^{\epsilon(\sigma, \tau)} & \text { if }|\sigma \cap \tau|=k \text { and } \\ & \sigma \cup \tau \notin X(k+1)\end{cases}
$$

High dimensional Laplacians

k-dimensional Laplacian of $\mathrm{x}: \quad L_{k}(X) \in \mathbb{R}^{|X(k)| \times|X(k)|}$

$$
\operatorname{deg}(\sigma)+k+1 \quad \text { if } \quad \sigma=\tau
$$

$$
\text { if } \begin{aligned}
& |\sigma \cap \tau|=k \text { and } \\
& \quad \sigma \cup \tau \notin X(k+1)
\end{aligned}
$$

High dimensional Laplacians

k-dimensional Laplacian of $\mathrm{X}: \quad L_{k}(X) \in \mathbb{R}^{|X(k)| \times|X(k)|}$

$$
L_{k}(X)_{\sigma, \tau}= \begin{cases}\operatorname{deg}(\sigma)+k+1 & \text { if } \sigma=\tau \\ (-1)^{\epsilon(\sigma, \tau)} & \text { if }|\sigma \cap \tau|=k \text { and } \\ & \sigma \cup \tau \notin X(k+1)\end{cases}
$$

High dimensional Laplacians

k-dimensional Laplacian of $\mathrm{x}: \quad L_{k}(X) \in \mathbb{R}^{|X(k)| \times|X(k)|}$

$$
\operatorname{deg}(\sigma)+k+1 \quad \text { if } \quad \sigma=\tau
$$

$$
\text { if } \begin{aligned}
& |\sigma \cap \tau|=k \text { and } \\
& \quad \sigma \cup \tau \notin X(k+1)
\end{aligned}
$$

High dimensional Laplacians

k-dimensional Laplacian of $\mathrm{X}: \quad L_{k}(X) \in \mathbb{R}^{|X(k)| \times|X(k)|}$

$$
\operatorname{deg}(\sigma)+k+1 \quad \text { if } \quad \sigma=\tau
$$

$$
\text { if } \begin{aligned}
& |\sigma \cap \tau|=k \text { and } \\
& \quad \sigma \cup \tau \notin X(k+1)
\end{aligned}
$$

0 otherwise

High dimensional Laplacians

zero-dimensional case:

$$
\text { Let } G=(V, E)=(X(0), X(1))
$$

High dimensional Laplacians

zero-dimensional case: \quad Let $\quad G=(V, E)=(X(0), X(1))$

$$
L_{0}(X)_{u, v}= \begin{cases}\operatorname{deg}(u)+1 & \text { if } \mathbf{u}=\mathrm{v} \\ 1 & \text { if }\{u, v\} \notin E \\ 0 & \text { otherwise }\end{cases}
$$

High dimensional Laplacians

zero-dimensional case: Let $G=(V, E)=(X(0), X(1))$
$L_{0}(X)_{u, v}=\left\{\begin{array}{ll}\operatorname{deg}(u)+1 & \text { if } \mathbf{u}=\mathrm{v} \\ 1 & \text { if }\{u, v\} \notin E \\ 0 & \text { otherwise }\end{array} \quad L(G)_{u, v}= \begin{cases}\operatorname{deg}(u) & \text { if } \quad \mathbf{u}=\mathrm{v} \\ -1 & \text { if }\{u, v\} \in E \\ 0 & \text { otherwise }\end{cases}\right.$

High dimensional Laplacians

zero-dimensional case: \quad Let $\quad G=(V, E)=(X(0), X(1))$

$$
\begin{aligned}
& L_{0}(X)_{u, v}= \begin{cases}\operatorname{deg}(u)+1 & \text { if } \quad \mathbf{u}=\mathbf{v} \\
1 & \text { if }\{u, v\} \notin E \\
0 & \text { otherwise }\end{cases} \\
& L(G)_{u, v}= \begin{cases}\operatorname{deg}(u) & \text { if } \quad \mathbf{u}=\mathbf{v} \\
-1 & \text { if }\{u, v\} \in E \\
0 & \text { otherwise }\end{cases} \\
& L_{0}(X)=L(G)+J
\end{aligned}
$$

High dimensional Laplacians

zero-dimensional case: \quad Let $\quad G=(V, E)=(X(0), X(1))$
$L_{0}(X)_{u, v}=\left\{\begin{array}{ll}\operatorname{deg}(u)+1 & \text { if } \quad \mathbf{u}=\mathrm{v} \\ 1 & \text { if }\{u, v\} \notin E \\ 0 & \text { otherwise }\end{array} L(G)_{u, v}= \begin{cases}\operatorname{deg}(u) & \text { if } \quad \mathbf{u}=\mathrm{v} \\ -1 & \text { if }\{u, v\} \in E \\ 0 & \text { otherwise }\end{cases}\right.$
$L_{0}(X)=L(G)+J$

All-ones matrix

High dimensional Laplacians

zero-dimensional case: \quad Let $\quad G=(V, E)=(X(0), X(1))$

$$
L_{0}(X)_{u, v}=\left\{\begin{array}{ll}
\operatorname{deg}(u)+1 & \text { if } \mathbf{u}=\mathbf{v} \\
1 & \text { if }\{u, v\} \notin E \\
0 & \text { otherwise }
\end{array} L(G)_{u, v}= \begin{cases}\operatorname{deg}(u) & \text { if } \mathbf{u}=\mathrm{v} \\
-1 & \text { if }\{u, v\} \in E \\
0 & \text { otherwise }\end{cases}\right.
$$

$$
L_{0}(X)=L(G)+J
$$

$$
\text { Spectrum of } L(G): 0, \lambda_{2}, \cdots, \lambda_{n}
$$

High dimensional Laplacians

zero-dimensional case: \quad Let $\quad G=(V, E)=(X(0), X(1))$

$$
L_{0}(X)_{u, v}=\left\{\begin{array}{ll}
\operatorname{deg}(u)+1 & \text { if } \mathbf{u}=\mathbf{v} \\
1 & \text { if }\{u, v\} \notin E \\
0 & \text { otherwise }
\end{array} L(G)_{u, v}= \begin{cases}\operatorname{deg}(u) & \text { if } \mathbf{u}=\mathrm{v} \\
-1 & \text { if }\{u, v\} \in E \\
0 & \text { otherwise }\end{cases}\right.
$$

$L_{0}(X)=L(G)+J$

All-ones matrix

$$
\left(\begin{array}{ll}
\text { Spectrum of } & L(G): \\
\text { Spectrum of } L_{0}(X): & \lambda_{2}, \cdots, \lambda_{n} \\
\lambda_{2}, \cdots, \lambda_{n}, n
\end{array}\right.
$$

High dimensional Laplacians

Some important properties:
$L_{k}(X)$ is a positive semi-definite matrix

High dimensional Laplacians

Some important properties:
$L_{k}(X)$ is a positive semi-definite matrix

Simplicial Hodge Theorem (Eckmann '44): $\operatorname{Ker}\left(L_{k}(X)\right) \cong \tilde{H}_{k}(X)$

Clique complexes / Independence complexes

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph.
The clique complex of $\mathrm{G}: X(G)=\{U \subset V: U$ is a clique in $G\}$

Clique complexes / Independence complexes

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph.
The clique complex of $\mathrm{G}: ~ X(G)=\{U \subset V: U$ is a clique in $G\}$

Clique complexes / Independence complexes

Let $G=(V, E)$ be a graph.
The clique complex of $\mathrm{G}: ~ X(G)=\{U \subset V: U$ is a clique in $G\}$

Clique complexes / Independence complexes

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph.
The clique complex of $\mathrm{G}: ~ X(G)=\{U \subset V: U$ is a clique in $G\}$

The independence complex of G:

$$
I(G)=\{U \subset V: U \text { is an independent set in } G\}
$$

Clique complexes / Independence complexes

Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph.
The clique complex of $\mathrm{G}: ~ X(G)=\{U \subset V: U$ is a clique in $G\}$

The independence complex of G:

$$
I(G)=\{U \subset V: U \text { is an independent set in } G\}=X(\bar{G})
$$

Some notation

If M is an nxn symmetric matrix, we denote its eigenvalues by

$$
\lambda_{1}^{\uparrow}(M) \leq \lambda_{2}^{\uparrow}(M) \leq \cdots \leq \lambda_{n}^{\uparrow}(M)
$$

Some notation

If M is an nxn symmetric matrix, we denote its eigenvalues by

$$
\lambda_{1}^{\uparrow}(M) \leq \lambda_{2}^{\uparrow}(M) \leq \cdots \leq \lambda_{n}^{\uparrow}(M)
$$

or

$$
\lambda_{1}^{\downarrow}(M) \geq \lambda_{2}^{\downarrow}(M) \geq \cdots \geq \lambda_{n}^{\downarrow}(M)
$$

Laplacian eigenvalues of independence complexes

Theorem (Aharoni, Berger, Meshulam ‘o5): Let G=(V,E) be a graph on n vertices. Then,

$$
\lambda_{1}^{\uparrow}\left(L_{k}(X(G))\right) \geq(k+1) \lambda_{2}^{\uparrow}(L(G))-k n
$$

Laplacian eigenvalues of independence complexes

Theorem (Aharoni, Berger, Meshulam ‘o5): Let G=(V,E) be a graph on n vertices. Then,

$$
\lambda_{1}^{\uparrow}\left(L_{k}(X(G))\right) \geq(k+1) \lambda_{2}^{\uparrow}(L(G))-k n
$$

Equivalently:

$$
\lambda_{1}^{\uparrow}\left(L_{k}(I(G))\right) \geq n-(k+1) \lambda_{1}^{\downarrow}(L(G))
$$

Laplacian eigenvalues of independence complexes

Theorem (Aharoni, Berger, Meshulam ‘o5): Let G=(V,E) be a graph on n vertices.
Then,

$$
\lambda_{1}^{\uparrow}\left(L_{k}(X(G))\right) \geq(k+1) \lambda_{2}^{\uparrow}(L(G))-k n
$$

Equivalently:

$$
\lambda_{1}^{\uparrow}\left(L_{k}(I(G))\right) \geq n-(k+1) \lambda_{1}^{\downarrow}(L(G))
$$

Corollary: If $\quad \lambda_{1}^{\downarrow}(L(G))<\frac{n}{k+1}$ then $\tilde{H}_{k}(I(G))=0$.

Proof idea - Garland's method

For $\phi \in \mathbb{R}^{X(k)}$ and $u \in V$, define $\phi^{u} \in \mathbb{R}^{X(k-1)}$ by

Proof idea - Garland's method

For $\phi \in \mathbb{R}^{X(k)}$ and $u \in V$, define $\phi^{u} \in \mathbb{R}^{X(k-1)}$ by

$$
\left(\phi^{u}\right)_{\tau}= \begin{cases} \pm \phi_{\tau \cup\{u\}} & \text { if } u \notin \tau \text { and } \tau \cup\{u\} \in X \\ 0 & \text { otherwise }\end{cases}
$$

Proof idea - Garland's method

For $\phi \in \mathbb{R}^{X(k)}$ and $u \in V$, define $\phi^{u} \in \mathbb{R}^{X(k-1)}$ by

$$
\left(\phi^{u}\right)_{\tau}=\left\{\begin{array}{cl}
\pm \phi_{\tau \cup\{u\}} & \text { if } u \notin \tau \text { and } \tau \cup\{u\} \in X \\
0 & \text { otherwise }
\end{array}\right.
$$

Properties: $\quad \sum_{u \in V}\left\|\phi^{u}\right\|^{2}=(k+1)\|\phi\|^{2}$

Proof idea - Garland's method

For $\phi \in \mathbb{R}^{X(k)}$ and $u \in V$, define $\phi^{u} \in \mathbb{R}^{X(k-1)}$ by

$$
\left(\phi^{u}\right)_{\tau}=\left\{\begin{array}{cl}
\pm \phi_{\tau \cup\{u\}} & \text { if } u \notin \tau \text { and } \tau \cup\{u\} \in X \\
0 & \text { otherwise }
\end{array}\right.
$$

Properties:

$$
\begin{aligned}
& \sum_{u \in V}\left\|\phi^{u}\right\|^{2}=(k+1)\|\phi\|^{2} \\
& k \phi^{T} L_{k}(X) \phi \geq \sum_{u \in V}\left(\phi^{u}\right)^{T} L_{k-1}(X) \phi^{u}-n\|\phi\|^{2}
\end{aligned}
$$

An improved bound for independence complexes of graphs

Notation: Let M be an nxn symmetric matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$

An improved bound for independence complexes of graphs

Notation: Let M be an nxn symmetric matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$

$$
\mathcal{S}_{k}(M)=\left\{\lambda_{i_{1}}+\cdots+\lambda_{i_{k}}: 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}
$$

An improved bound for independence complexes of graphs

Notation: Let M be an nxn symmetric matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$

$$
\mathcal{S}_{k}(M)=\left\{\lambda_{i_{1}}+\cdots+\lambda_{i_{k}}: 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}
$$

$$
S_{k, i}^{\uparrow}(M)=\begin{aligned}
& \text { i-th smallest } \\
& \text { element in } \mathcal{S}_{k}(M)
\end{aligned}
$$

An improved bound for independence complexes of graphs

Notation: Let M be an nxn symmetric matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$

$$
\begin{array}{r}
\mathcal{S}_{k}(M)=\left\{\lambda_{i_{1}}+\cdots+\lambda_{i_{k}}: 1 \leq i_{1}<\cdots<i_{k} \leq n\right\} \\
S_{k, i}^{\uparrow}(M)=\begin{array}{l}
\text { i-th smallest } \\
\text { element in } \mathcal{S}_{k}(M)
\end{array} \quad S_{k, i}^{\downarrow}(M)=\begin{array}{l}
\text { i-th largest } \\
\text { element in } \mathcal{S}_{k}(M)
\end{array}
\end{array}
$$

An improved bound for independence complexes of graphs

Notation: Let M be an nxn symmetric matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$

$$
\begin{gathered}
\mathcal{S}_{k}(M)=\left\{\lambda_{i_{1}}+\cdots+\lambda_{i_{k}}: 1 \leq i_{1}<\cdots<i_{k} \leq n\right\} \\
S_{k, i}^{\uparrow}(M)=\begin{array}{l}
\text { i-th smallest } \\
\text { element in } \mathcal{S}_{k}(M)
\end{array} \quad S_{k, i}^{\downarrow}(M)=\begin{array}{l}
\text { i-th largest } \\
\text { element in } \mathcal{S}_{k}(M)
\end{array}
\end{gathered}
$$

Theorem ($\mathrm{L} \times 23+$): Let $G=(\mathrm{V}, \mathrm{E})$ be a graph on n vertices. Then

$$
\lambda_{i}^{\uparrow}\left(L_{k}(I(G))\right) \geq n-S_{k+1, i}^{\downarrow}(L(G))
$$

An improved bound for independence complexes of graphs

Corollary (L' ${ }^{23+}$): Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a graph on n vertices. Then

$$
\operatorname{dim}\left(\tilde{H}_{k}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{k+1}(L(G)): \lambda \geq n\right\}\right|
$$

An improved bound for independence complexes of graphs

Corollary (L'23+): Let G=(V,E) be a graph on n vertices. Then

$$
\operatorname{dim}\left(\tilde{H}_{k}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{k+1}(L(G)): \lambda \geq n\right\}\right|
$$

In particular:

$$
\text { If } \sum_{i=1}^{k+1} \lambda_{i}^{\downarrow}(L(G))<n, \text { then } \tilde{H}_{k}(I(G))=0
$$

An improved bound for independence complexes of graphs

Corollary (L ‘23+): Let G=(V,E) be a graph on n vertices. Then

$$
\operatorname{dim}\left(\tilde{H}_{k}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{k+1}(L(G)): \lambda \geq n\right\}\right|
$$

In particular:
If $\sum_{i=1}^{k+1} \lambda_{i}^{\downarrow}(L(G))<n$, then $\tilde{H}_{k}(I(G))=0$.
We recover $A B M$ bound:

$$
\text { If } \lambda_{1}^{\downarrow}(L(G))<\frac{n}{k+1} \text { then } \tilde{H}_{k}(I(G))=0
$$

Extremal example

Extremal example

Eigenvalues of L(G): 0,0,o,2,2,2

Extremal example

$$
\operatorname{dim}\left(\tilde{H}_{k}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{k+1}(L(G)): \lambda \geq n\right\}\right|
$$

Eigenvalues of L(G): 0,0,o,2,2,2

Extremal example

$$
\operatorname{dim}\left(\tilde{H}_{k}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{k+1}(L(G)): \lambda \geq n\right\}\right|
$$

Eigenvalues of L(G): $0,0,0,2,2,2$

$$
\operatorname{dim}\left(\tilde{H}_{0}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{1}(L(G)): \lambda \geq 6\right\}\right|
$$

Extremal example

$$
\operatorname{dim}\left(\tilde{H}_{k}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{k+1}(L(G)): \lambda \geq n\right\}\right|
$$

Eigenvalues of L(G): 0,0,0,2,2,2

$$
\operatorname{dim}\left(\tilde{H}_{0}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{1}(L(G)): \lambda \geq 6\right\}\right|=0
$$

Extremal example

$$
\operatorname{dim}\left(\tilde{H}_{k}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{k+1}(L(G)): \lambda \geq n\right\}\right|
$$

Eigenvalues of L(G): 0,0,0,2,2,2

$$
\begin{aligned}
& \operatorname{dim}\left(\tilde{H}_{0}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{1}(L(G)): \lambda \geq 6\right\}\right|=0 \\
& \operatorname{dim}\left(\tilde{H}_{1}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{2}(L(G)): \lambda \geq 6\right\}\right|
\end{aligned}
$$

Extremal example

$$
\operatorname{dim}\left(\tilde{H}_{k}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{k+1}(L(G)): \lambda \geq n\right\}\right|
$$

Eigenvalues of L(G): 0,0,0,2,2,2

$$
\begin{aligned}
\operatorname{dim}\left(\tilde{H}_{0}(I(G))\right) & \leq\left|\left\{\lambda \in \mathcal{S}_{1}(L(G)): \lambda \geq 6\right\}\right|=0 \\
\operatorname{dim}\left(\tilde{H}_{1}(I(G))\right) & \leq\left|\left\{\lambda \in \mathcal{S}_{2}(L(G)): \lambda \geq 6\right\}\right|=0
\end{aligned}
$$

Extremal example

$$
\operatorname{dim}\left(\tilde{H}_{k}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{k+1}(L(G)): \lambda \geq n\right\}\right|
$$

Eigenvalues of L(G): 0,0,0,2,2,2

$$
\begin{aligned}
& \operatorname{dim}\left(\tilde{H}_{0}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{1}(L(G)): \lambda \geq 6\right\}\right|=0 \\
& \operatorname{dim}\left(\tilde{H}_{1}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{2}(L(G)): \lambda \geq 6\right\}\right|=0 \\
& \operatorname{dim}\left(\tilde{H}_{2}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{3}(L(G)): \lambda \geq 6\right\}\right|
\end{aligned}
$$

Extremal example

$$
\operatorname{dim}\left(\tilde{H}_{k}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{k+1}(L(G)): \lambda \geq n\right\}\right|
$$

Eigenvalues of L(G): 0,0,0,2,2,2

$$
\begin{gathered}
\operatorname{dim}\left(\tilde{H}_{0}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{1}(L(G)): \lambda \geq 6\right\}\right|=0 \\
\operatorname{dim}\left(\tilde{H}_{1}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{2}(L(G)): \lambda \geq 6\right\}\right|=0 \\
\operatorname{dim}\left(\tilde{H}_{2}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{3}(L(G)): \lambda \geq 6\right\}\right|=1
\end{gathered}
$$

Extremal example

$\operatorname{dim}\left(\tilde{H}_{k}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{k+1}(L(G)): \lambda \geq n\right\}\right|$

Eigenvalues of L(G): 0,0,0,2,2,2

$$
\begin{gathered}
\operatorname{dim}\left(\tilde{H}_{0}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{1}(L(G)): \lambda \geq 6\right\}\right|=0 \\
\operatorname{dim}\left(\tilde{H}_{1}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{2}(L(G)): \lambda \geq 6\right\}\right|=0 \\
\operatorname{dim}\left(\tilde{H}_{2}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{3}(L(G)): \lambda \geq 6\right\}\right|=1
\end{gathered}
$$

Extremal example

$$
\operatorname{dim}\left(\tilde{H}_{k}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{k+1}(L(G)): \lambda \geq n\right\}\right|
$$

Eigenvalues of L(G): 0,0,0,2,2,2

$$
\begin{gathered}
\operatorname{dim}\left(\tilde{H}_{0}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{1}(L(G)): \lambda \geq 6\right\}\right|=0 \\
\operatorname{dim}\left(\tilde{H}_{1}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{2}(L(G)): \lambda \geq 6\right\}\right|=0 \\
\operatorname{dim}\left(\tilde{H}_{2}(I(G))\right) \leq\left|\left\{\lambda \in \mathcal{S}_{3}(L(G)): \lambda \geq 6\right\}\right|=1
\end{gathered}
$$

Additive compound matrices

Let V be a vector space.
Exterior product: $v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}$ for $v_{1}, \ldots, v_{k} \in V$

Additive compound matrices

Let V be a vector space.
Exterior product: $v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}$ for $v_{1}, \ldots, v_{k} \in V$
$(\alpha u+\beta v) \wedge w=\alpha(u \wedge w)+\beta(v \wedge w)$

Additive compound matrices

Let V be a vector space.
Exterior product: $v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}$ for $v_{1}, \ldots, v_{k} \in V$

$$
\begin{aligned}
& (\alpha u+\beta v) \wedge w=\alpha(u \wedge w)+\beta(v \wedge w) \\
& v_{\pi(1)} \wedge v_{\pi(2)} \wedge \cdots \wedge v_{\pi(k)}=\operatorname{sgn}(\pi) v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}
\end{aligned}
$$

Additive compound matrices

Let V be a vector space.
Exterior product: $v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}$ for $v_{1}, \ldots, v_{k} \in V$

$$
\begin{aligned}
& (\alpha u+\beta v) \wedge w=\alpha(u \wedge w)+\beta(v \wedge w) \\
& v_{\pi(1)} \wedge v_{\pi(2)} \wedge \cdots \wedge v_{\pi(k)}=\operatorname{sgn}(\pi) v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}
\end{aligned} \quad u \wedge v=-v \wedge u
$$

Additive compound matrices

Let V be a vector space.
Exterior product: $v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}$ for $v_{1}, \ldots, v_{k} \in V$

$$
\begin{aligned}
& (\alpha u+\beta v) \wedge w=\alpha(u \wedge w)+\beta(v \wedge w) \\
& v_{\pi(1)} \wedge v_{\pi(2)} \wedge \cdots \wedge v_{\pi(k)}=\operatorname{sgn}(\pi) v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}
\end{aligned}
$$

$$
u \wedge v=-v \wedge u
$$

$$
u \wedge v \wedge w=v \wedge w \wedge u
$$

Additive compound matrices

Let V be a vector space.
Exterior product: $v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}$ for $v_{1}, \ldots, v_{k} \in V$
$(\alpha u+\beta v) \wedge w=\alpha(u \wedge w)+\beta(v \wedge w)$ $v_{\pi(1)} \wedge v_{\pi(2)} \wedge \cdots \wedge v_{\pi(k)}=\operatorname{sgn}(\pi) v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}$

$$
u \wedge v=-v \wedge u
$$

Exterior powers:

$$
u \wedge v \wedge w=v \wedge w \wedge u
$$

$\wedge^{k} V=$ the k-th exterior power of V $=$ vector space spanned by $v_{1} \wedge v_{2} \wedge \cdots \wedge v_{k}$ for $v_{1}, \ldots, v_{k} \in V$.

Additive compound matrices

If e_{1}, \ldots, e_{n} is a basis of V , then

$$
\left\{e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{k}}: 1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n\right\}
$$

is a basis of $\wedge^{k} V$.

Additive compound matrices

If e_{1}, \ldots, e_{n} is a basis of V , then

$$
\left\{e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{k}}: 1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n\right\}
$$

is a basis of $\wedge^{k} V$. So $\operatorname{dim}\left(\wedge^{k} V\right)=\binom{n}{k}$.

Additive compound matrices

If e_{1}, \ldots, e_{n} is a basis of V , then

$$
\left\{e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{k}}: 1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n\right\}
$$

is a basis of $\wedge^{k} V$. So $\operatorname{dim}\left(\wedge^{k} V\right)=\binom{n}{k}$.
Let $A: V \rightarrow V$ be a linear operator. Define $A^{[k]}: \wedge^{k} V \rightarrow \wedge^{k} V$ by

$$
A^{[k]}\left(v_{1} \wedge \cdots \wedge v_{k}\right)=\sum_{i=1}^{k} v_{1} \wedge \cdots \wedge A v_{i} \wedge \cdots \wedge v_{k}
$$

Additive compound matrices

If e_{1}, \ldots, e_{n} is a basis of V , then

$$
\left\{e_{i_{1}} \wedge e_{i_{2}} \wedge \cdots \wedge e_{i_{k}}: 1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n\right\}
$$

is a basis of $\wedge^{k} V$. So $\operatorname{dim}\left(\wedge^{k} V\right)=\binom{n}{k}$.
Let $A: V \rightarrow V$ be a linear operator. Define $A^{[k]}: \wedge^{k} V \rightarrow \wedge^{k} V$ by

$$
A^{A^{[k]}\left(v_{1} \wedge \cdots \wedge v_{k}\right)=\sum_{i=1}^{k} v_{1} \wedge \cdots \wedge A v_{i} \wedge \cdots \wedge v_{k}}
$$

Additive compound matrices

Properties:

If A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then the eigenvalues of $A^{[k]}$ are

$$
\mathcal{S}_{k}(A)=\left\{\lambda_{i_{1}}+\cdots+\lambda_{i_{k}}: 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}
$$

Additive compound matrices

Properties:

If A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then the eigenvalues of $A^{[k]}$ are

$$
\mathcal{S}_{k}(A)=\left\{\lambda_{i_{1}}+\cdots+\lambda_{i_{k}}: 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}
$$

Matrix representation of $A^{[k]}$:

Additive compound matrices

Properties:
If A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then the eigenvalues of $A^{[k]}$ are

$$
\mathcal{S}_{k}(A)=\left\{\lambda_{i_{1}}+\cdots+\lambda_{i_{k}}: 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}
$$

Matrix representation of $A^{[k] \text { : }}$
$A_{\sigma, \tau}^{[k]}=$

Additive compound matrices

Properties:

If A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then the eigenvalues of $A^{[k]}$ are

$$
\mathcal{S}_{k}(A)=\left\{\lambda_{i_{1}}+\cdots+\lambda_{i_{k}}: 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}
$$

Matrix representation of $A^{[k]}$:
$A_{\sigma, \tau}^{[k]}= \begin{cases}\sum_{i \in \sigma} A_{i i} & \text { if } \sigma=\tau \\ & \end{cases}$

Additive compound matrices

Properties:

If A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then the eigenvalues of $A^{[k]}$ are

$$
\mathcal{S}_{k}(A)=\left\{\lambda_{i_{1}}+\cdots+\lambda_{i_{k}}: 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}
$$

Matrix representation of $A^{[k]}$:
$A_{\sigma, \tau}^{[k]}= \begin{cases}\sum_{i \in \sigma} A_{i i} & \text { if } \sigma=\tau \\ (-1)^{\epsilon(\sigma, \tau)} A_{i j} & \text { if }|\sigma \cap \tau|=k-1, \sigma \backslash \tau=\{i\}, \tau \backslash \sigma=\{j\}\end{cases}$

Additive compound matrices

Properties:

If A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then the eigenvalues of $A^{[k]}$ are

$$
\mathcal{S}_{k}(A)=\left\{\lambda_{i_{1}}+\cdots+\lambda_{i_{k}}: 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}
$$

Matrix representation of $A^{[k]}$:

$$
A_{\sigma, \tau}^{[k]}= \begin{cases}\sum_{i \in \sigma} A_{i i} & \text { if } \sigma=\tau \\ (-1)^{\epsilon(\sigma, \tau)} A_{i j} & \text { if }|\sigma \cap \tau|=k-1, \sigma \backslash \tau=\{i\}, \tau \backslash \sigma=\{j\}\end{cases}
$$

Additive compound matrices

Properties:

If A has eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then the eigenvalues of $A^{[k]}$ are

$$
\mathcal{S}_{k}(A)=\left\{\lambda_{i_{1}}+\cdots+\lambda_{i_{k}}: 1 \leq i_{1}<\cdots<i_{k} \leq n\right\}
$$

Matrix representation of $A^{[k]}$:
$A_{\sigma, \tau}^{[k]}= \begin{cases}\sum_{i \in \sigma} A_{i i} & \text { if } \sigma=\tau \\ (-1)^{\epsilon(\sigma, \tau)} A_{i j} & \text { if }|\sigma \cap \tau|=k-1, \sigma \backslash \tau=\{i\}, \tau \backslash \sigma=\{j\} \\ 0 & \text { otherwise }\end{cases}$

Additive compound of Laplacian matrix

$$
L_{0}(X(G))_{u, v}= \begin{cases}\operatorname{deg}(u)+1 & \text { if } \mathrm{u}=\mathrm{v} \\ 1 & \text { if }\{u, v\} \notin E \\ 0 & \text { otherwise }\end{cases}
$$

Additive compound of Laplacian matrix

$$
\begin{aligned}
& L_{0}(X(G))_{u, v}= \begin{cases}\operatorname{deg}(u)+1 & \text { if } \mathrm{u}=\mathrm{v} \\
1 & \text { if }\{u, v\} \notin E \\
0 & \text { otherwise }\end{cases} \\
& L_{0}(X(G))_{\sigma, \tau}^{[k+1]}=\left\{\begin{array}{cc}
\sum_{v \in \sigma} \operatorname{deg}(v)+k+1 & \text { if } \sigma=\tau \\
(-1)^{\ell(\sigma, \tau)} & \text { if }|\sigma \cap \tau|=k \text { and } \\
0 & \sigma \triangle \tau \notin E
\end{array}\right. \\
& 0
\end{aligned}
$$

Additive compound of Laplacian matrix

$$
L_{0}(X(G))_{\sigma, \tau}^{[k+1]}=\left\{\begin{array}{cl}
\sum_{v \in \sigma} \operatorname{deg}(v)+k+1 & \text { if } \sigma=\tau \\
(-1)^{\epsilon(\sigma, \tau)} & \text { if }|\sigma \cap \tau|=k \text { and } \\
0 \triangle \tau \notin E \\
0 & \text { otherwise }
\end{array}\right.
$$

Additive compound of Laplacian matrix

$$
\begin{aligned}
& L_{0}(X(G))_{\sigma, \tau}^{[k+1]}=\left\{\begin{array}{cl}
\sum_{v \in \sigma} \operatorname{deg}(v)+k+1 & \text { if } \quad \sigma=\tau \\
(-1)^{\epsilon(\sigma, \tau)} & \text { if } \quad|\sigma \cap \tau|=k \text { and } \\
0 \triangle \tau \notin E \\
0 & \text { otherwise }
\end{array}\right. \\
& L_{k}(X(G))_{\sigma, \tau}=\left\{\begin{array}{cl}
\operatorname{deg}(\sigma)+k+1 & \text { if } \sigma=\tau \\
(-1)^{\epsilon(\sigma, \tau)} & \text { if }|\sigma \cap \tau|=k \text { and } \\
0 & \sigma \triangle \tau \notin E \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Additive compound of Laplacian matrix

$$
\binom{n}{k+1} \times\left(\begin{array}{c}
n \\
\text { matrix } \\
k+1
\end{array}\right)
$$

$$
L_{0}(X(G))_{\sigma, \tau}^{[k+1]}=\left\{\begin{array}{cl}
\sum_{v \in \sigma} \operatorname{deg}(v)+k+1 & \text { if } \sigma=\tau \\
(-1)^{\epsilon(\sigma, \tau)} & \text { if }|\sigma \cap \tau|=k \text { and } \\
0 & \sigma \triangle \tau \notin E \\
0 & \text { otherwise }
\end{array}\right.
$$

Additive compound of Laplacian matrix

$$
\left(\begin{array}{c}
n \\
k+1 \\
\text { matrix }
\end{array}\right) \times\binom{ n}{k+1}
$$

$$
L_{0}(X(G))_{\sigma, \tau}^{[k+1]}=\left\{\begin{array}{cl}
\sum_{v \in \sigma}^{\operatorname{deg}(v)+k+1} & \text { if } \quad \sigma=\tau \\
(-1)^{\epsilon(\sigma, \tau)} & \text { if } \begin{array}{c}
|\sigma \cap \tau|=k \text { and } \\
0
\end{array} \\
0 \triangle \tau \notin E
\end{array}\right.
$$

Additive compound of Laplacian matrix

$\tilde{L}=$ Principal submatrix of $L_{0}(X(G))^{[k+1]}$ obtained by removing all rows and columns except those corresponding to simplices in $\mathrm{X}(\mathrm{G})$

Additive compound of Laplacian matrix

$$
\begin{aligned}
\tilde{L} & \left.=\text { Principal submatrix of } L_{0}(X(G))\right)^{[k+1]} \text { obtained by removing all } \\
& \text { rows and columns except those corresponding to simplices in } X(G)
\end{aligned}
$$

$L_{k}(X(G))=\tilde{L}+R$

Additive compound of Laplacian matrix

$$
\begin{aligned}
\tilde{L}= & \text { Principal submatrix of } \left.L_{0}(X(G))\right)^{[k+1]} \text { obtained by removing all } \\
& \text { rows and columns except those corresponding to simplices in } X(G)
\end{aligned}
$$

Additive compound of Laplacian matrix

$$
\begin{aligned}
\tilde{L}= & \text { Principal submatrix of } \left.L_{0}(X(G))\right)^{[k+1]} \text { obtained by removing all } \\
& \text { rows and columns except those corresponding to simplices in } X(G)
\end{aligned}
$$

Additive compound of Laplacian matrix

$$
\tilde{L}=\begin{aligned}
& \text { Principal submatrix of } L_{0}(X(G)) \\
& \text { rows and columns except those corresponding to simplices in X(G) }
\end{aligned}
$$

$\longrightarrow \lambda_{i}^{\uparrow}\left(L_{k}(X(G))\right) \geq S_{k+1, i}^{\uparrow}\left(L_{0}(X(G))\right)-k n$

Additive compound of Laplacian matrix

$$
\begin{aligned}
\tilde{L}= & \text { Principal submatrix of } L_{0}(X(G))^{[k+1]} \text { obtained by removing all } \\
& \text { rows and columns except those corresponding to simplices in } X(G)
\end{aligned}
$$

$$
L_{k}(X(G))=\tilde{L}+R<\begin{gathered}
\text { Diagonal matrix with elements } \\
R_{\sigma, \sigma}=\operatorname{deg}(\sigma)-\sum_{v \in \sigma} \operatorname{deg}(v) \\
R_{\sigma, \sigma} \geq-k n
\end{gathered}
$$

$$
\longrightarrow \lambda_{i}^{\uparrow}\left(L_{k}(X(G))\right) \geq S_{k+1, i}^{\uparrow}\left(L_{0}(X(G))\right)-k n
$$

$$
\longrightarrow \lambda_{i}^{\uparrow}\left(L_{k}(I(G))\right) \geq n-S_{k+1, i}^{\downarrow}(L(G))
$$

An additional application of additive compounds

Proposition (L 23+): Let G=(V,E) be a graph. Then

$$
\sum_{i=1}^{k} \lambda_{i}^{\downarrow}(L(G)) \leq 2 \cdot \max _{\sigma \in\binom{V}{k}}|\{e \in E: e \cap \sigma \neq \emptyset\}|
$$

An additional application of additive compounds

Proposition (L 23+): Let G=(V,E) be a graph. Then

$$
\begin{aligned}
& \sum_{i=1}^{k} \lambda_{i}^{\downarrow}(L(G)) \leq 2 \cdot \max _{\sigma \in\binom{V}{k}}|\{e \in E: e \cap \sigma \neq \emptyset\}| \\
& \sum_{i=1}^{k} \lambda_{i}^{\downarrow}(A(G)) \leq \max _{\sigma \in\binom{V}{k}}|\{e \in E:|e \cap \sigma|=1\}|
\end{aligned}
$$

An additional application of additive compounds

Proposition (L 23+): Let G=(V,E) be a graph. Then

An additional application of additive compounds

Proposition (L 23+): Let G=(V,E) be a graph. Then

$$
\sum_{i=1}^{k} \lambda_{i}^{\downarrow}(L(G)) \leq 2 \cdot \max _{\sigma \in\binom{V}{k}}|\{e \in E: e \cap \sigma \neq \emptyset\}|
$$

$$
\underset{i=1}{\substack{\text { Adjacency } \\ \text { matrix }}}>\sum_{i} \lambda_{i}^{\downarrow}(A(G)) \leq \max _{\sigma \in\binom{V}{k}}|\{e \in E:|e \cap \sigma|=1\}|
$$

Proof idea: Apply Geršgorin's theorem on k-th additive compound of matrix.

Some open problems

-Can we use additive compounds (or some variant) to relate between k -dimensional Laplacian spectrum to (k -1)-dimensional spectrum of a clique complex?

Some open problems

-Can we use additive compounds (or some variant) to relate between k -dimensional Laplacian spectrum to ($\mathrm{k}-1$)-dimensional spectrum of a clique complex? (this is known for results using Garland's method)

Some open problems

-Can we use additive compounds (or some variant) to relate between k -dimensional Laplacian spectrum to ($\mathrm{k}-1$)-dimensional spectrum of a clique complex? (this is known for results using Garland's method)
-The Garland-like argument of ABM can be extended to "generalized clique complexes" (L‘18).

Some open problems

-Can we use additive compounds (or some variant) to relate between k -dimensional Laplacian spectrum to ($\mathrm{k}-1$)-dimensional spectrum of a clique complex? (this is known for results using Garland's method)
-The Garland-like argument of ABM can be extended to "generalized clique complexes" (L '18). Can we use additive compounds to obtain improved results in this setting?

Thank you for listening!

