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Overview - This Talk

● Let Γ denote a distance-regular graph with diameter D ≥ 3, valency
k ≥ 3, and assume Γ affords a spin model W .

● Write W = ∑D
i=0 tiAi where Ai is the i th distance-matrix of Γ.

● Assume Γ is not a Hamming graph and ti /∈ {t0,−t0} for 1 ≤ i ≤ D.

● In [Curtin+Nomura 1999] determined the intersection numbers of Γ in
terms of D and two complex parameters q and η. Several parameter
constraints were given in [C+Wolff 2005] which restrict q and η.

● Here, we survey these results and use new constraints to improve the
restrictions. We show that if Γ is not bipartite, then q, η are real with
q > 1 and −1 < η < 0. In fact, either

−1/q(D−1)/2 < η < −1/qD/2 or − 1/qD−1 < η < 0. (1)
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Overview - How to Tell if Two Diagrams are Same Knot?
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Overview - Do They Differ by Reidemeister Moves?

John Caughman September 15, 2023 4 / 36



Overview - Associate the Diagrams with Graphs!
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Overview - How Do Reidemeister Moves Affect Graph?
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Overview - Use a Special Kind of Matrix W
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Overview - Use W to Compute ZW for Each Diagram
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Overview - If ZW different, not same! If ZW same...?
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Overview - Where to Find Spin Models?

● Spin model matrices are found in the adjacency algebras of certain
distance-regular graphs.

● Known examples: Complete graphs, odd cycles, Higman-Sims graph,
even cycles, Hadamard graphs, Hamming graphs, and the double cover of
the Higman-Sims graph.

● About 20 years ago, Curtin & Nomura gave a parameterization of DRGs
that afford a spin model.

● Thereafter, Wolff & I gave constraints on these parameters, but the
work was incomplete (the constraints did not limit the parameters to only
the graphs for which examples were known)

● Recently (very), Terwilliger & Nomura announced new results! Using
Leonard pairs, they show that whether a DRG to afford a spin model is
equivalent to the existence of a certain central element Z in the Terwilliger
algebra, and they show how to construct W from Z .
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Let’s Begin! Define Spin models

Let X be a nonempty finite set.

A spin model on X is a symmetric matrix W ∈ MatX (C) with non-zero
entries such that for all a,b, c ∈ X :

∑y∈X Wyb(Wyc)−1 = ∣X ∣δbc , (2)

∑y∈X WyaWyb(Wyc)−1 = LWab(Wac)−1(Wcb)−1, (3)

for some L ∈ R such that L2 = ∣X ∣.
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Nomura Algebra

Let W denote a spin model on X .

For b, c ∈ X , let ubc denote the vector
in CX which has y -coordinate

(ubc)y =Wyb(Wyc)−1 (y ∈ X ). (4)

Define N(W ) to be the set of all matrices B ∈ MatX (C) that have ubc as
eigenvectors for all b, c ∈ X .

N(W ) is a subalgebra of MatX (C). Jaeger showed in 1998 that
W ∈ N(W ). We refer to N(W ) as the Nomura algebra of W .
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Distance-regular graphs (DRGs)
Let Γ denote a finite, connected, undirected simple graph, with vertex set
X , distance function ∂, and diameter D. For each x ∈ X and i ∈ Z, set

Γi(x) ∶= {y ∈ X ∣ ∂(x , y) = i}.

We say Γ is distance-regular, with intersection numbers phij , whenever
for all integers h, i , j and all x , y ∈ X with ∂(x , y) = h,

∣Γi(x) ∩ Γj(y)∣ = phij .

Note phij = 0 if h > i + j (or i > h + j or j > h + i). Define

ci ∶= pi1i−1, ai ∶= pi1i , bi ∶= pi1i+1

for (0 ≤ i ≤ D) and let k ∶= b0. Note that

ci + ai + bi = k (0 ≤ i ≤ D).
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Bose-Mesner algebra of a DRG Γ

For each i (0 ≤ i ≤ D), let Ai be the matrix in MatX (C) with x , y -entry

(Ai)x ,y = {
1 if ∂(x , y) = i ,
0 if ∂(x , y) /= i (x , y ∈ X ).

We call Ai the i th distance matrix of Γ. Observe that A0 = I and A1 = A,
the adjacency matrix of Γ.

For 0 ≤ i , j ≤ D we have:

At
i = Ai , AiAj =

D

∑
h=0

phij Ah,
D

∑
h=0

Ah = J.

So A0,A1, ...,AD form a basis for a commutative subalgebra M of
MatX (C). M is closed under the entry-wise product ○. Each Ai is a
polynomial of degree i in A, so A generates M.

We call M the Bose-Mesner algebra of Γ.
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Primitive Idempotents for M

It can be shown that M has a second basis E0,E1, ...,ED such that:

E0 = ∣X ∣−1J, E t
i = E i = Ei , EiEj = δijEi ,

D

∑
h=0

Eh = I ,

for 0 ≤ i , j ≤ D.

We call E0,E1, ...,ED the primitive idempotents of Γ.

The graph Γ is said to be Q-polynomial (for E0,E1, ...,ED) when each
primitive idempotent Ei is a ○-polynomial of degree i in E1.
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Distance distribution diagrams (DDDs for DRGs)

Definition

Let Γ be a DRG with D ≥ 3. Pick any x , y ∈ X and let h = ∂(x , y).

For
0 ≤ i , j ≤ D define Ωh

ij = Γi(x) ∩ Γj(y). For z ∈ Ωh
ij define

NWh
ij(z) = ∣Γ(z) ∩Ωh

i,j+1∣ N h
ij (z) = ∣Γ(z) ∩Ωh

i+1,j+1∣ NE
h
ij(z) = ∣Γ(z) ∩Ωh

i+1,j ∣
Wh

ij (z) = ∣Γ(z) ∩Ωh
i−1,j+1∣ Hh

ij(z) = ∣Γ(z) ∩Ωh
i,j ∣ Ehij (z) = ∣Γ(z) ∩Ωh

i+1,j−1∣
SWh

ij(z) = ∣Γ(z) ∩Ωh
i−1,j ∣ Shij (z) = ∣Γ(z) ∩Ωh

i−1,j−1∣ SEhij(z) = ∣Γ(z) ∩Ωh
i,j−1∣
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Distance distribution diagrams (DDDs for DRGs)

Lemma

Let Γ be a DRG with diameter D ≥ 3. Pick any x , y ∈ X and let
h = ∂(x , y). For 0 ≤ i , j ≤ D and for z ∈ Ωh

ij ,

Wh
ij (z) + SWh

ij(z) + Shij (z) = ci , (5)

Ehij (z) +NEhij(z) +N h
ij (z) = bi , (6)

NWh
ij(z) + SEhij(z) +Hh

ij(z) = ai , (7)

Ehij (z) + SEhij(z) + Shij (z) = cj , (8)

N h
ij (z) +NWh

ij(z) +Wh
ij (z) = bj , (9)

NEhij(z) + SWh
ij(z) +Hh
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Distance-regular graphs that support a spin model

● We say a DRG Γ affords a spin model W whenever

W ∈M ⊆ N(W ).

● When Γ affords W , there exist complex scalars ti (0 ≤ i ≤ D) such that

W =
D

∑
i=0

tiAi , (11)

where A0,A1, . . . ,AD are the distance matrices of Γ.

● Since the entries of W are nonzero,

ti /= 0 0 ≤ i ≤ D.
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Distance-regular graphs that support a spin model

Assume Γ affords a spin model W .

For B ∈M ⊆ N(W ), let Ψ(B) ∈ MatX (C) be the matrix with bc-entry
defined by

Bubc = (Ψ(B))bcubc (b, c ∈ X ).

By Curtin, there exists an ordering E0,E1, . . . ,ED of the primitive
idempotents of Γ such that

Ψ(Ai) = ∣X ∣Ei (0 ≤ i ≤ D).

We refer to this as the standard order with respect to W .

By Curtin, Γ is Q-polynomial with respect to the standard order. (In fact,
Γ is self-dual.)
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Global Definition

In this talk we are interested in DRGs that afford a spin model, so we
make the following definition.

Definition

Let Γ be a DRG with vertex set X , diameter D ≥ 3, and valency k ≥ 3.

Assume Γ affords a spin model W = ∑D
i=0 tiAi where Ai is the i th

distance-matrix of Γ. Assume Γ is not a Hamming graph and ti /∈ {t0,−t0}
for 1 ≤ i ≤ D. Set ηi = t−1i−1ti (1 ≤ i ≤ D) and define

q ∶= η−11 η2 and η ∶= η1.

Note q, η are nonzero complex scalars. Replacing W by its entrywise
inverse if necessary, we may assume ∣q∣ ≥ 1. Let E0,E1, ...,ED denote the
standard ordering of the primitive idempotents with respect to W .
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The parameters of Γ
Curtin and Nomura determined the eigenvalues and intersection numbers
of Γ in terms of the diameter D and the scalars q and η.

Theorem (Curtin+Nomura ‘99)

With the notation above,

θi = θ0 + h(1 − qi)(1 − η2qi−1)q−i (0 ≤ i ≤ D),

bi =
hqi−D(1 − qD−i)(1 − η2qi−1)(1 + η3qD+i−1)

(ηqi − 1)(1 − η2q2i−1)
(0 ≤ i ≤ D − 1),

ci =
hηqi−1−D(1 − qi)(1 + ηqD−i)(1 − η2qD+i−1)

(1 − η2q2i−1)(1 − ηqi−1)
(1 ≤ i ≤ D),

ai =
h(qi − 1)(qDη − 1)(q − η2qi)(qDη2 + q)

qD+1(η − 1)(qiη − q)(qiη − 1)
(0 ≤ i ≤ D),

where the scalar h = qD(1−η2q)(η−1)
η(q−1)(1−η2qD)(1+ηqD−1)

.

John Caughman September 15, 2023 21 / 36



The parameters of Γ
Curtin and Nomura determined the eigenvalues and intersection numbers
of Γ in terms of the diameter D and the scalars q and η.

Theorem (Curtin+Nomura ‘99)

With the notation above,

θi = θ0 + h(1 − qi)(1 − η2qi−1)q−i (0 ≤ i ≤ D),

bi =
hqi−D(1 − qD−i)(1 − η2qi−1)(1 + η3qD+i−1)

(ηqi − 1)(1 − η2q2i−1)
(0 ≤ i ≤ D − 1),

ci =
hηqi−1−D(1 − qi)(1 + ηqD−i)(1 − η2qD+i−1)

(1 − η2q2i−1)(1 − ηqi−1)
(1 ≤ i ≤ D),

ai =
h(qi − 1)(qDη − 1)(q − η2qi)(qDη2 + q)

qD+1(η − 1)(qiη − q)(qiη − 1)
(0 ≤ i ≤ D),

where the scalar h = qD(1−η2q)(η−1)
η(q−1)(1−η2qD)(1+ηqD−1)

.

John Caughman September 15, 2023 21 / 36



The parameters of Γ
Curtin and Nomura determined the eigenvalues and intersection numbers
of Γ in terms of the diameter D and the scalars q and η.

Theorem (Curtin+Nomura ‘99)

With the notation above,

θi = θ0 + h(1 − qi)(1 − η2qi−1)q−i (0 ≤ i ≤ D),

bi =
hqi−D(1 − qD−i)(1 − η2qi−1)(1 + η3qD+i−1)

(ηqi − 1)(1 − η2q2i−1)
(0 ≤ i ≤ D − 1),

ci =
hηqi−1−D(1 − qi)(1 + ηqD−i)(1 − η2qD+i−1)

(1 − η2q2i−1)(1 − ηqi−1)
(1 ≤ i ≤ D),

ai =
h(qi − 1)(qDη − 1)(q − η2qi)(qDη2 + q)

qD+1(η − 1)(qiη − q)(qiη − 1)
(0 ≤ i ≤ D),

where the scalar h = qD(1−η2q)(η−1)
η(q−1)(1−η2qD)(1+ηqD−1)

.

John Caughman September 15, 2023 21 / 36



The parameters of Γ
Curtin and Nomura determined the eigenvalues and intersection numbers
of Γ in terms of the diameter D and the scalars q and η.

Theorem (Curtin+Nomura ‘99)

With the notation above,

θi = θ0 + h(1 − qi)(1 − η2qi−1)q−i (0 ≤ i ≤ D),

bi =
hqi−D(1 − qD−i)(1 − η2qi−1)(1 + η3qD+i−1)

(ηqi − 1)(1 − η2q2i−1)
(0 ≤ i ≤ D − 1),

ci =
hηqi−1−D(1 − qi)(1 + ηqD−i)(1 − η2qD+i−1)

(1 − η2q2i−1)(1 − ηqi−1)
(1 ≤ i ≤ D),

ai =
h(qi − 1)(qDη − 1)(q − η2qi)(qDη2 + q)

qD+1(η − 1)(qiη − q)(qiη − 1)
(0 ≤ i ≤ D),

where the scalar h = qD(1−η2q)(η−1)
η(q−1)(1−η2qD)(1+ηqD−1)

.

John Caughman September 15, 2023 21 / 36



Old Constraints on q and η

The expressions above carry some basic implications.

Lemma (Curtin+Nomura ‘99)

With reference to Definition 3, the following hold.

qi /= 1 (1 ≤ i ≤ D), (12)

qiη2 /= 1 (0 ≤ i ≤ 2D − 2), (13)

qiη3 /= −1 (D − 1 ≤ i ≤ 2D − 2). (14)

In 2005, Wolff and I studied the Terwilliger T=T(x) for any DRG Γ that
affords a spin model. We were able to

1 describe how the adjacency matrix A acts on the irreducible modules
in terms of the parameters q,η

2 find multiplicities of irreducible T-modules in terms of q,η

3 prove q is real and, if Γ is not bipartite, then q > 0 and η is real.
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Multiplicities of T -modules in terms of q,η

Theorem (C+W ‘05)

With the notation above, the following are nonnegative integers:
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Constraints on q and η from 2005 T -algebra paper

These expressions led to identifying special cases.

Theorem (C+W ‘05)

With the notation above, suppose Γ is bipartite. Then

q ∈ R and qD−1η2 = −1.

The case above falls within the parameter classification of bipartite
Q-polynomial DRGs. It remains to consider when Γ is not bipartite.

Theorem (C+W ‘05)

With the notation above, suppose Γ is not bipartite. Then a1 /= 0 and

q, η ∈ R and q > 1.
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The DDD when Γ affords a spin model

Recently, we have revisited some of the older work.

In addition to the 6
basic equations given earlier, Curtin and Nomura found two more
equations using the axioms (2), (3) for spin models.

Lemma (Curtin+Nomura ‘99)

Pick any x , y ∈ X and let ∂(x , y) = h. For any 0 ≤ i , j ≤ D and z ∈ Ωh
ij ,

θh
ti
tj
= SWh

ij(z)
ti−1
tj
+Wh

ij (z)
ti−1
tj+1
+NWh

ij(z)
ti
tj+1
+N h

ij (z)
ti+1
tj+1

+NEhij(z)
ti+1
tj
+ Ehij (z)

ti+1
tj−1
+ SEhij(z)

ti
tj−1
+ Shij (z)

ti−1
tj−1
+Hh

ij(z)
ti
tj

θh
tj

ti
= SWh

ij(z)
tj

ti−1
+Wh

ij (z)
tj+1

ti−1
+NWh

ij(z)
tj+1

ti
+N h

ij (z)
tj+1

ti+1

+NEhij(z)
tj

ti+1
+ Ehij (z)

tj−1

ti+1
+ SEhij(z)

tj−1

ti
+ Shij (z)

tj−1

ti−1
+Hh

ij(z)
tj

ti
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ij(z)
ti
tj+1
+N h

ij (z)
ti+1
tj+1

+NEhij(z)
ti+1
tj
+ Ehij (z)

ti+1
tj−1
+ SEhij(z)

ti
tj−1
+ Shij (z)

ti−1
tj−1
+Hh

ij(z)
ti
tj

θh
tj

ti
= SWh

ij(z)
tj

ti−1
+Wh

ij (z)
tj+1

ti−1
+NWh

ij(z)
tj+1

ti
+N h

ij (z)
tj+1

ti+1

+NEhij(z)
tj

ti+1
+ Ehij (z)

tj−1

ti+1
+ SEhij(z)

tj−1

ti
+ Shij (z)

tj−1

ti−1
+Hh

ij(z)
tj

ti
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The DDD when Γ affords a spin model

Using these results, we can show that there is regularity in the DDD in
cells along the boundary. In particular, we show the following.

Theorem

Pick any x , y ∈ X and let ∂(x , y) = h. Fix integers i , j ≥ 0 such that
i + j = h. Then for any z ∈ Ωh

ij ,

Hh
ij(z) = −

(qi − 1)(qj − 1)(qη2 − 1)(qDη − 1)(qDη2 + q)
(q − 1)(qiη − 1)(qjη − 1)(qDη2 − 1)(qDη + q)

. (15)

For such boundary cells, the other 8 functions in the DDD also depend only
on h, i , j , not on vertices x , y , z. They can be derived in terms of Hh

ij(z).
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Constraints on q and η

We now deduce new constraints on q,η when Γ is not bipartite.

Lemma (1)

With the notation above, the following hold.

1 If h > 0 then η2 < 1/qD−1.
2 If h < 0 then η2 > 1.

Proof.

Recall q > 1. For 1 ≤ i ≤ D, we have

θ0 − θi =
h(qi − 1)(1 − η2qi−1)

qi
> 0.

Assuming h > 0 and letting i = D above, we see that η2 < 1/qD−1.
Assuming h < 0 and letting i = 1 above, we see that η2 > 1.
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Constraints on q and η

Lemma (2)

With the notation above, suppose Γ is not bipartite. The following hold.

1 For 2 ≤ i ≤ D, the scalar qiη − q has the same sign as η(η + 1).
2 For 2 ≤ i ≤ D, the scalar qiη2 − q has the same sign as η.

Proof.

Note ci /= 0 for 2 ≤ i ≤ D. So for any x , y with ∂(x , y) = i the set
Ωi
i−1,1 /= ∅. For any w ∈ Ωi

i−1,1, the integer zi ∶= Hi
i−1,1(w) satisfies

0 ≤ zi ≤ a1. But a1 /= 0, so

zi
a1
= (qi − q)η
(η + 1)(qiη − q)

> 0 and 1 − zi
a1
= (qiη2 − q)
(η + 1)(qiη − q)

> 0.

Since q > 1, the result follows by induction on i .
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Constraints on q and η

Lemma (3)

With the notation above, suppose Γ is not bipartite. The following holds.

1 For 2 ≤ i ≤ D, the scalar qiη − 1 has the same sign as qη − 1.

Proof.

For each i (2 ≤ i ≤ D), the scalar

S i−1i ,2 (z) = Li =
c2q(qiη − 1)
(q + 1)(qiη − q)

is a positive integer. Since c2, q, and q + 1 are all positive, the result
follows by induction on i .
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Main Results

Lemma (4)

With the notation above, suppose Γ is not bipartite. The following hold.

1 If η > 0 then η > 1/q.
2 If η < 0 then η > −1.

Proof.

When i = 2, the scalars q2η − q and η(η + 1) have the same sign.
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Main Results

Lemma (5)

With the notation above, suppose Γ is not bipartite. The following holds.

1 (η + 1

qD−1
)(η2 − 1

qD
) < 0.

Proof.

By (12) we have

a1 = −
(η + 1)(qDη − 1)(qη2 − 1)(qDη2 + q)

η(qη − 1)(qDη + q)(qDη2 − 1)
> 0.

When i = D, Lemma (3) says (qDη − 1) has same sign as (qη − 1).
When i = 2, Lemma (2) says (qη2 − 1) has same sign as η.
Note (qDη2 + q) is positive since q > 1. So (qDη + q)(qDη2 − 1) has the
same sign as −(η + 1), which is negative by Lemma (4).
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Main Results

We can now resolve the sign of η.

Lemma (6)

With the notation above, suppose Γ is not bipartite. The following hold.

1 η < 0.
2 h > 0.

Proof.

(1). If η > 0 we obtain the contradiction D < 2, since by Lemmas (4),(5)

1

q2
< η2 < 1

qD
.

(2). Since η < 0 we have η2 < 1, which implies h > 0.
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Main Results

Lemma (7)

With the notation above, suppose Γ is not bipartite. The following hold.

1 η < − 1

qD/2
or η > − 1

qD−1
.

2 η > − 1

q(D−1)/2
.

Proof.

(1). Lemma (5) says (η + 1

qD−1
)(η + 1

qD/2
)(η − 1

qD/2
) < 0.

But η < 0 so (η + 1

qD−1
)(η + 1

qD/2
) > 0.

(2). Since η < 0, Lemma (2) at i = D says qDη2 − q < 0.
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Main Corollary

Putting the pieces together, we have the following.

Corollary

With the notation above, suppose Γ is not bipartite. Then q, η are real
with q > 1 and either

−1/q(D−1)/2 < η < −1/qD/2 or − 1/qD−1 < η < 0.

● What’s next? Use integrality!
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The End

Thank you!
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