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Overview - This Talk

e Let [ denote a distance-regular graph with diameter D > 3, valency
k >3, and assume [ affords a spin model W.
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Overview - This Talk

e Let [ denote a distance-regular graph with diameter D > 3, valency
k >3, and assume [ affords a spin model W.

o Write W = ZP:O t;A; where A; is the it" distance-matrix of T.
e Assume [ is not a Hamming graph and t; ¢ {ty,—to} for 1 <i < D.

e In [Curtin+Nomura 1999] determined the intersection numbers of I in
terms of D and two complex parameters g and 7. Several parameter
constraints were given in [C4+Wolff 2005] which restrict g and 7.

e Here, we survey these results and use new constraints to improve the
restrictions. We show that if I" is not bipartite, then g, n are real with
g>1and -1<n<0. In fact, either

~1/qPV2 ¢y < —1/gPI2 or -1/gPt<p<o. (1)
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Overview - How to Tell if Two Diagrams are Same Knot?
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Overview - Do They Differ by Reidemeister Moves?
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Overview - Associate the Diagrams with Graphs!

Construction of Tait graph:

*  Given a link diagram with O
signed crossings (/

Y

*  Two-color the diagram

*  Construct graph
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Overview - How Do Reidemeister Moves Affect Graph?
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Overview - Use a Special Kind of Matrix W

A spin model is a symmetric n x n matrix W
with entries in Maty( ') that satisfies the
following invariance equations V a,b,c € X :

Type II':
Z Wa-',—x ijx =n 5a,b

xe X
Type |lI:
S W W = W, W W,

xeX
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Overview - Use W to Compute Zyy for Each Diagram

Given:

* W, a spin model in Maty(C) where n = |X].

* L be alink diagram, £, the Tait graph with vertices V.
Then:

+ astateis a function o:V — X

* the partition function is defined to be

1 |V|_1

Zy = ﬁ Z H Wai(v),cr(v')

states edges
cV—->X vyer,
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Overview - If Zy, different, not same! If Z,, same
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Overview - Where to Find Spin Models?

e Spin model matrices are found in the adjacency algebras of certain
distance-regular graphs.
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Overview - Where to Find Spin Models?

e Spin model matrices are found in the adjacency algebras of certain
distance-regular graphs.

e Known examples: Complete graphs, odd cycles, Higman-Sims graph,
even cycles, Hadamard graphs, Hamming graphs, and the double cover of
the Higman-Sims graph.

o About 20 years ago, Curtin & Nomura gave a parameterization of DRGs
that afford a spin model.

o Thereafter, Wolff & | gave constraints on these parameters, but the
work was incomplete (the constraints did not limit the parameters to only
the graphs for which examples were known)

e Recently (very), Terwilliger & Nomura announced new results! Using
Leonard pairs, they show that whether a DRG to afford a spin model is
equivalent to the existence of a certain central element Z in the Terwilliger
algebra, and they show how to construct W from Z.
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Let's Begin! Define Spin models

Let X be a nonempty finite set.

A spin model on X is a symmetric matrix W € Matx(C) with non-zero
entries such that for all a, b, c € X:
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Let's Begin! Define Spin models

Let X be a nonempty finite set.

A spin model on X is a symmetric matrix W € Matx(C) with non-zero
entries such that for all a, b, c € X:

ZyeX Wyb(WyC)_l = |X|5bC7 (2)
ZyeX Wya Wyb( V"/yc)_1 =L Wab( Wac)_l( ch)_17 (3)

for some L € R such that L2 =|X|.
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Nomura Algebra

Let W denote a spin model on X.

John Caughman



Nomura Algebra

Let W denote a spin model on X. For b, c € X, let up. denote the vector
in CX which has y-coordinate

(ubc)y = V‘/yb(VVyc)_1 (y € X)' (4)
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Nomura Algebra

Let W denote a spin model on X. For b, c € X, let up. denote the vector
in CX which has y-coordinate

(ubc)y = VVyb(VVyC)71 (y € X) (4)

Define N(W) to be the set of all matrices B € Matx (C) that have up. as
eigenvectors for all b, c € X.

N(W) is a subalgebra of Matx(C). Jaeger showed in 1998 that
W e N(W). We refer to N(W) as the Nomura algebra of W.
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Distance-regular graphs (DRGs)

Let I denote a finite, connected, undirected simple graph, with vertex set
X, distance function 0, and diameter D. For each x € X and i € Z, set

Fi(x)={yeX|d(x,y)=i}.
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Let I denote a finite, connected, undirected simple graph, with vertex set
X, distance function 0, and diameter D. For each x € X and i € Z, set

Fi(x)={yeX|d(x,y)=i}.

We say I is distance-regular, with intersection numbers p,’J’ whenever
for all integers h,i,j and all x,y € X with 9(x,y) = h,

IFi(x) N ()| = pf.

Note pji =0 if h>i+j (or i>h+jorj>h+i).
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Distance-regular graphs (DRGs)

Let I denote a finite, connected, undirected simple graph, with vertex set
X, distance function 0, and diameter D. For each x € X and i € Z, set

Fi(x)={yeX|d(x,y)=i}.

We say I is distance-regular, with intersection numbers p,’J’ whenever
for all integers h,i,j and all x,y € X with 9(x,y) = h,

IFi(x) N ()| = pf.

Notepg:Oifh>i+j (or i>h+jorj>h+1i). Define

i — ol
i = P11 ai *= P1i bi = p1jiq

for (0<i< D) and let k := by.
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Distance-regular graphs (DRGs)

Let I denote a finite, connected, undirected simple graph, with vertex set
X, distance function 0, and diameter D. For each x € X and i € Z, set

Fi(x)={yeX|d(x,y)=i}.

We say I is distance-regular, with intersection numbers p,’J’ whenever
for all integers h,i,j and all x,y € X with 9(x,y) = h,

IFi(x) T (n)l = pp-
Note pZ:O if h>i+j (ori>h+jorj>h+i). Define
Gi = P{i—la aj = p:{ia bj = Pii+1
for (0<i< D) and let k := by. Note that
ci+a;+b=k (OSiSD).
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Bose-Mesner algebra of a DRG I

For each i (0< i< D), let A; be the matrix in Matx (C) with x, y-entry

N e PEE )

We call A; the it" distance matrix of . Observe that Ag =/ and A; = A,
the adjacency matrix of I'.
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For each i (0< i< D), let A; be the matrix in Matx (C) with x, y-entry

N e PEE )

We call A; the it" distance matrix of . Observe that Ag =/ and A; = A,
the adjacency matrix of I'. For 0 </, j < D we have:

D D
A=A, AA =Y piAs Y An=J.
h=0 h=0
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Bose-Mesner algebra of a DRG I

For each i (0< i< D), let A; be the matrix in Matx (C) with x, y-entry

e A s FEE SR 20}

We call A; the it" distance matrix of . Observe that Ag =/ and A; = A,
the adjacency matrix of I'. For 0 <i,j < D we have:

D D
A=A, AA =Y piAs Y An=J.
h=0 h=0

So Ap, A1, ..., Ap form a basis for a commutative subalgebra M of
Matx (C). M is closed under the entry-wise product o. Each A; is a
polynomial of degree i in A, so A generates M.
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Bose-Mesner algebra of a DRG I

For each i (0< i< D), let A; be the matrix in Matx (C) with x, y-entry

e A s FEE SR 20}

We call A; the it" distance matrix of . Observe that Ag =/ and A; = A,
the adjacency matrix of I'. For 0 <i,j < D we have:

D D
A=A, AA =Y piAs Y An=J.
h=0 h=0

So Agp, A1, ...,Ap form a basis for a commutative subalgebra M of
Matx (C). M is closed under the entry-wise product o. Each A; is a
polynomial of degree i in A, so A generates M.

We call M the Bose-Mesner algebra of I
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Primitive ldempotents for M

It can be shown that M has a second basis Eg, E1, ..., Ep such that:
_ D

Eo=|X|""J, Ef=E;=E, EE=6E Y Ey=1,
h=0

for 0<i,j<D.

We call Eg, E1, ..., Ep the primitive idempotents of I'.
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Primitive ldempotents for M

It can be shown that M has a second basis Eg, E1, ..., Ep such that:
_ D

Eo=|X|""J, Ef=E;=E, EE=6E Y Ey=1,
h=0

for 0<i,j<D.
We call Eg, E1, ..., Ep the primitive idempotents of I'.

The graph I is said to be Q-polynomial (for Eg, Ei, ..., Ep) when each
primitive idempotent E; is a o-polynomial of degree i in Ej.
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Distance distribution diagrams (DDDs for DRGs)
Definition

Let I be a DRG with D > 3. Pick any x,y € X and let h=9(x,y).

V.
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Distance distribution diagrams (DDDs for DRGs)

Definition

Let I be a DRG with D > 3. Pick any x,y € X and let h=9(x,y). For
0<i,j <D define Qf = Ti(x) nT;(y).
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Distance distribution diagrams (DDDs for DRGs)

Definition

Let ' be a DRG with D > 3. Pick any x,y € X and let h=0(x,y). For
0<i,j <D define Qff = Ti(x) nT;(y). For z € Qf; define

NWi(2) = [[(2) n Q.| %(Z)—IF(Z)ﬂQ,uml NEj(2) =IF(2)nQ

Wi(@) =M@l yyul Hi@ =M@ ot &iz)=I(z)n 0}
SWi2) =N Nk, | Si2) -

I+lj|
I+lj 1|

N(2)n QL SEH2) =M (2)n Q]|

vy
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Distance distribution diagrams (DDDs for DRGs)
Definition

Let ' be a DRG with D > 3. Pick any x,y € X and let h=0(x,y). For
0<i,j <D define Qff = Ti(x) nT;(y). For z € Qf; define

NWi(2) = [[(2) n Q.| %(Z)—IF(Z)HQ,HMI NEj(2) =IF(2)nQ
Wi(z) =IF(2) n Q7 1,,+1| Hj(2) =M (2) n Q)] EN(z) = IF(Z)OQ,W 1]
SWi(2) =[F(z) n QL | (Z) M(2)n QL SE2) =M (2)n Q]

NIANANIANIAREA
LIS
SN

W N\ W 1\ v

Note: The function H is not depicted, but it counts edges from QI’] into itself.

I+lj|

i= 1|

k
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k
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Distance distribution diagrams (DDDs for DRGs)

Lemma

Let T be a DRG with diameter D > 3. Pick any x,y € X and let
h=0(x,y). For0<i,j<D and forzeQU,

(z)+SW (z)+$ (2)
EN2)+ NEG(2) + Nf(2) = b,
NWh(z)+85 h(z) +Hi(z)

I
o

[
&
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Distance distribution diagrams (DDDs for DRGs)

Lemma

Let ' be a DRG with diameter D > 3. Pick any x,y € X and let
h=08(x,y). For0<i,j<D and for z e Qf,

(z)+SW (z)+$ (z) = q, (5)
Ef(2) + NEJ(2) + Nf(2) = by, (6)
Nwh(z)+35 () +H(2) = a, (7)
(z)+S€ (z)+S (z) = ¢, (8)
Nf(2) + NWi(z) +Wi(z) = b, (9)
Ngh(z)+SW (2)+Hi(z) = a. (10)
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Distance distribution diagrams (DDDs for DRGs)

Lemma

Let T be a DRG with diameter D > 3. Pick any x,y € X and let
h=0(x,y). For0<i,j<D and forzeQU,

(z)+SW (z)+S (z) = q, (5)
Ef(2) + NEJ(2) + Nf(2) = by, (6)
NWh(z)+SE (z)+HU(z) = aj, (7)
Ef(2) +SEX2) +SP(2) = q, (8)
Nf(2) + NWi(z) +Wi(z) = b, (9)
NE"(Z)+SW (2)+Hi(z) = a. (10)

v

Equations (5)-(10) are not independent. The sum of (5)-(7) is identical to
the sum of (8)-(10). Any five of the six equations, however, is
independent.

September 15,2023  17/36



Distance-regular graphs that support a spin model

e We say a DRG I affords a spin model W whenever

WeMc N(W).
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Distance-regular graphs that support a spin model

e We say a DRG I affords a spin model W whenever

WeMcN(W).
e When I affords W, there exist complex scalars t; (0 </ < D) such that

W = Zt,'A,', (11)

where Ap, A1, ..., Ap are the distance matrices of I.
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Distance-regular graphs that support a spin model

e We say a DRG I affords a spin model W whenever

WeMc N(W).

e When I affords W, there exist complex scalars t; (0 </ < D) such that

D
W = Z tiA;, (11)
i=0
where Ap, A1, ..., Ap are the distance matrices of I.

e Since the entries of W are nonzero,

ti#0 0<i<D.
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Distance-regular graphs that support a spin model

Assume I affords a spin model W.

For Be Mc N(W), let W(B) € Matx(C) be the matrix with bc-entry
defined by

Bubc:(w(B))bcubc (b,CEX).

John Caughman
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Distance-regular graphs that support a spin model

Assume I affords a spin model W.

For Be Mc N(W), let W(B) € Matx(C) be the matrix with bc-entry
defined by

Bubc:(w(B))bcubc (b,CEX).

By Curtin, there exists an ordering Eg, E1, ..., Ep of the primitive
idempotents of I such that

W(A) =|X|E (0<i<D).

We refer to this as the standard order with respect to W.
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Distance-regular graphs that support a spin model

Assume I affords a spin model W.

For Be Mc N(W), let W(B) € Matx(C) be the matrix with bc-entry
defined by

Bubcz(\IJ(B))bCubC (b,CEX).

By Curtin, there exists an ordering Eg, E1, ..., Ep of the primitive
idempotents of I such that

W(A) =|X|E (0<i<D).

We refer to this as the standard order with respect to W.

By Curtin, I' is Q-polynomial with respect to the standard order. (In fact,
[ is self-dual.)
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Global Definition

In this talk we are interested in DRGs that afford a spin model, so we
make the following definition.

Definition

Let I be a DRG with vertex set X, diameter D > 3, and valency k > 3.

John Caughman September 15, 2023 20/36
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make the following definition.

Definition

Let [ be a DRG with vertex set X, diameter D > 3, and valency k > 3.
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Global Definition

In this talk we are interested in DRGs that afford a spin model, so we
make the following definition.

Definition

Let [ be a DRG with vertex set X, diameter D > 3, and valency k > 3.
Assume [ affords a spin model W = ZP:O t;A; where A; is the ith
distance-matrix of I'. Assume I is not a Hamming graph and t; ¢ {to, —to}
for 1<i<D.
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Global Definition

In this talk we are interested in DRGs that afford a spin model, so we
make the following definition.

Definition

Let I be a DRG with vertex set X, diameter D > 3, and valency k > 3.
Assume [ affords a spin model W = ZP:O t;A; where A; is the it
distance-matrix of I'. Assume I is not a Hamming graph and t; ¢ {tp, —to}
for 1<i<D. Set n; =t 4 t; (1<i<D) and define

g:=n'mp and 7=
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Global Definition

In this talk we are interested in DRGs that afford a spin model, so we
make the following definition.

Definition

Let I be a DRG with vertex set X, diameter D > 3, and valency k > 3.
Assume [ affords a spin model W = ZP:O t;A; where A; is the it
distance-matrix of I'. Assume I is not a Hamming graph and t; ¢ {tp, —to}
for 1<i<D. Set n; =t 4 t; (1<i<D) and define

g:=n'mp and 7=

Note q,n are nonzero complex scalars.
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Global Definition

In this talk we are interested in DRGs that afford a spin model, so we
make the following definition.

Definition

Let I be a DRG with vertex set X, diameter D > 3, and valency k > 3.
Assume [ affords a spin model W = ZP:O t;A; where A; is the it
distance-matrix of I'. Assume I is not a Hamming graph and t; ¢ {tp, —to}
for 1<i<D. Set n; =t 4 t; (1<i<D) and define

g:=n'mp and 7=

Note q,n are nonzero complex scalars. Replacing W by its entrywise
inverse if necessary, we may assume |g| > 1.
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Global Definition

In this talk we are interested in DRGs that afford a spin model, so we
make the following definition.

Definition

Let I be a DRG with vertex set X, diameter D > 3, and valency k > 3.
Assume [ affords a spin model W = Z,-D=o t;A; where A; is the it
distance-matrix of I'. Assume I is not a Hamming graph and t; ¢ {tp, —to}
for 1<i<D. Set n; =t 4 t; (1<i<D) and define

g=ni'nz and 7:=mn.

Note q,n are nonzero complex scalars. Replacing W by its entrywise
inverse if necessary, we may assume |g| > 1. Let Eg, Eq, ..., Ep denote the
standard ordering of the primitive idempotents with respect to W.
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The parameters of [

Curtin and Nomura determined the eigenvalues and intersection numbers
of I' in terms of the diameter D and the scalars g and 7.

Theorem (Curtin+Nomura ‘99)
With the notation above,

y
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of I' in terms of the diameter D and the scalars g and 7.

Theorem (Curtin+Nomura ‘99)
With the notation above,

0i = Go+h(1-g)(1-7’¢" g’ (0<i<D),
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The parameters of [

Curtin and Nomura determined the eigenvalues and intersection numbers
of I' in terms of the diameter D and the scalars g and 7.

Theorem (Curtin+Nomura ‘99)

With the notation above,

0i = Go+h(1-g)(1-7’¢" g’ (0<i<D),

hg™P(1-¢° (A -1Pq" (A +1*g%" ™)
b = i 2 42i-1
(ng' - 1)(1-n2g*1)
i-1-D(q _ i D-iN(1 _ 2 D+i-1
o o L (1 q2)(;l_+1?7q )(1_17767 ) (1<i<D),
(1-n2¢>~1)(1-ng'1)
h(q' - 1)(¢°n-1)(a-n*q")(¢"n* + q)
qP*(n-1)(q'n-q)(g'n-1)

(0<i<D-1),

(0<i<D),

v
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The parameters of [

Curtin and Nomura determined the eigenvalues and intersection numbers
of I' in terms of the diameter D and the scalars g and 7.

Theorem (Curtin+Nomura ‘99)
With the notation above,

0i = Go+h(1-g)(1-7’¢" g’ (0<i<D),
i-D(1 _ D=iN(1 _ .2 i-1 3 _D+i-1
(ng' =1)(1-n?q*1)
i-1-D(q _ i D-iN(1 _ 2 D+i-1
o o L (1 q2)(;l__+1?7q )(1_17767 ) (1<i<D),
(1-n2¢>~1)(1-ng'1)
i_ D, _ 024N 4D 2
5 = G [i)l)l(q n-1)(g-1"9")(q"n" +q) (0<i<D),
qP+(n-1)(a'n-q)(g'n-1)
where the scalar h = 7> (1-7q)(y-1)

n(q-1)(1-12qP)(1+nqgP-1)"

v
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d 41 (1<i<D), (12)
S (0<i<2D-2), (13)
g 4 -1 (D-1<i<2D-2). (14) |

John Caughman September 15, 2023 22/36



Old Constraints on g and 7

The expressions above carry some basic implications.

Lemma (Curtin+Nomura ‘99)
With reference to Definition 3, the following hold.

g 41 (1<i<D), (12)
S (0<i<2D-2), (13)
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In 2005, Wolff and | studied the Terwilliger T=T(x) for any DRG T that

affords a spin model.
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Old Constraints on g and 7

The expressions above carry some basic implications.

Lemma (Curtin+Nomura ‘99)
With reference to Definition 3, the following hold.
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gn® 4 -1 (D-1<i<2D~-
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© describe how the adjacency matrix A acts on the irreducible modules

in terms of the parameters q,n
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Old Constraints on g and 7

The expressions above carry some basic implications.

Lemma (Curtin+Nomura ‘99)
With reference to Definition 3, the following hold.

g + 1 (1<i<D),
g 4 1 (0<i<2D-2),
gn® 4 -1 (D-1<i<2D~-

2).

In 2005, Wolff and | studied the Terwilliger T=T(x) for any DRG T that

affords a spin model. We were able to

© describe how the adjacency matrix A acts on the irreducible modules

in terms of the parameters q,n

@ find multiplicities of irreducible T-modules in terms of q,n

© prove q is real and, if I is not bipartite, then g >0 and 7 is real.
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Multiplicities of T-modules in terms of q,n

Theorem (C+W ‘05)

With the notation above, the following are nonnegative integers:
(i) mult(0, D) = 1.
(n+ D" = D@ "'n* + D"’ + 1)
(g — D(gP'n+ D@*'n* + 1)
g+ Dg"” ! = Dig”n - 1)(q” 'n* 4+ 1)
(g — D(g"n* — D@ 'n* + 1) '

(i) mult(l, D — 1) = —

(ii1) mult(l, D —2) =

(iv) mult(2, D — 2)

_ @+ D@® — DG — D@ n* — D(gn + Dg®'n? + (g~ + Dg® 0’ 4+ 1)

n*(q* — (g — gy —U(q” '+ D(gP 2+ D@~ + D@*Pn* + D
(v) mult(2, D — 3)

1+ 9g” = D" = Dig”n = Dign + Dig” ' + Dig” ' + g’ + 1)
n(g — DHgP 'n? — DigP—n + 1)(q29 P+ 1)(q29n +1)

John Caughman September 15, 2023
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These expressions led to identifying special cases.
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Theorem (C+W ‘05)

With the notation above, suppose I is bipartite. Then

geR and b-1p2 -

g n° =-1

John Caughman

September 15, 2023 24 /36



Constraints on g and n from 2005 T-algebra paper

These expressions led to identifying special cases.
Theorem (C+W ‘05)

With the notation above, suppose I is bipartite. Then

geR and qD_ln2 ==l

The case above falls within the parameter classification of bipartite
Q-polynomial DRGs. It remains to consider when [ is not bipartite

John Caughman

September 15, 2023 24 /36



Constraints on g and n from 2005 T-algebra paper

These expressions led to identifying special cases.
Theorem (C+W ‘05)

With the notation above, suppose I is bipartite. Then

geR and qD_ln2 =-1.

The case above falls within the parameter classification of bipartite
Q-polynomial DRGs. It remains to consider when I is not bipartite.

Theorem (C+W ‘05)

With the notation above, suppose I is not bipartite. Then a; # 0 and

g,nelR and qg>1.
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The DDD when [ affords a spin model

Recently, we have revisited some of the older work. In addition to the 6
basic equations given earlier, Curtin and Nomura found two more
equations using the axioms (2), (3) for spin models.

Lemma (Curtin+Nomura '99)
Pick any x,y € X and let O(x,y) = h. Forany0<i,j<D andzeQU,

Ol = SWiz )E+wh( )E+Nwh(z)—+/\/h( )t'+1
J
+NEN(z )= B, &z ) i Ssg.(z)'—+s (z )—+HU( )—
o - SWh(z)—+Wh( ),+1 LMWL+ NP2 22

+N€h(z)—+€h( ) +35U( ) +sh( ) +HU( )f
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The DDD when [ affords a spin model

Using these results, we can show that there is regularity in the DDD in
cells along the boundary. In particular, we show the following.
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Using these results, we can show that there is regularity in the DDD in
cells along the boundary. In particular, we show the following.

Theorem

Pick any x,y € X and let O(x,y) = h. Fix integers i,j >0 such that
i+j=h.
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The DDD when [ affords a spin model

Using these results, we can show that there is regularity in the DDD in
cells along the boundary. In particular, we show the following.

Theorem

Pick any x,y € X and let O(x,y) = h. Fix integers i,j >0 such that

i+j=h. Then for any z € QZ

hoy (@ =1)(¢ -1)(an” -1)(¢°n-1)(¢"n* + q)
M) =~ D (g D@ D@ -D(Prva)
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The DDD when [ affords a spin model

Using these results, we can show that there is regularity in the DDD in
cells along the boundary. In particular, we show the following.

Theorem

Pick any x,y € X and let O(x,y) = h. Fix integers i,j >0 such that

i+j=h. Then for any z € QZ

H(2) = - (¢'-1)(¢/ - 1)(qn* -~ 1)(¢%n - 1)(¢°n* + q)
Y (q-1)(g'n-1)(¢/n-1)(¢°n* - 1)(gPn+q)

For such boundary cells, the other 8 functions in the DDD also depend only
on h,i,j, not on vertices x,y,z. They can be derived in terms of?-[,f’j(z).

(15)
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Constraints on g and 7

We now deduce new constraints on g,n when [ is not bipartite.
Lemma (1)
With the notation above, the following hold.

Q Ifh>0 thenn? <1/qP L.

@ Ifh<0 then n?>1.
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Constraints on g and 7

We now deduce new constraints on g,n when [ is not bipartite.
Lemma (1)

With the notation above, the following hold.

Q Ifh>0 thenn?<1/qP!

@ Ifh<0 then n?>1.

Proof.

Recall g>1. For 1 <i < D, we have

i .2 i1
%_&zﬂq Uﬂ_nq )>Q
q'
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Constraints on g and 7

We now deduce new constraints on g,n when [ is not bipartite.
Lemma (1)
With the notation above, the following hold.

Q Ifh>0 thenn? <1/qP L.

@ Ifh<0 then n?>1.

Proof.

Recall g>1. For 1 <i < D, we have

i .2 i1
00—9,~=h(q 1)(1_ n°q )>0.
q'

Assuming h > 0 and letting i = D above, we see that 72 < 1/qD_1
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Constraints on g and 7

We now deduce new constraints on g,n when [ is not bipartite.
Lemma (1)
With the notation above, the following hold.

Q Ifh>0 thenn? <1/qP L.

@ Ifh<0 then n?>1.

Proof.

Recall g>1. For 1 <i < D, we have

i .2 i1
90—9,~=h(q 1)(1_ n°q )>0.
q'

Assuming h > 0 and letting i = D above, we see that 72 < 1/qD_1
Assuming h < 0 and letting i = 1 above, we see that 7% > 1.
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Constraints on g and 7

Lemma (2)

With the notation above, suppose I is not bipartite. The following hold.
@ For2<i<D, the scalar g'n — q has the same sign as n(n + 1).
@ For2<i< D, the scalar ¢'n? — q has the same sign as 1.
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@ For2<i<D, the scalar g'n — q has the same sign as n(n + 1).
@ For2<i< D, the scalar ¢'n? — q has the same sign as 1.

Proof.

Note c; # 0 for 2<i < D. So for any x,y with d(x,y) =i the set
Q1,792
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Constraints on g and 7

Lemma (2)

With the notation above, suppose I is not bipartite. The following hold.
@ For2<i<D, the scalar g'n — q has the same sign as n(n + 1).
@ For2<i< D, the scalar ¢'n? — q has the same sign as 1.

Proof.

Note c; # 0 for 2<i < D. So for any x, y with d(x,y) =i the set
Qj ;1 #@. Forany weQj,,, the integer z := H]_; ,(w) satisfies
0< ziLay.
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Constraints on g and 7

Lemma (2)

With the notation above, suppose I is not bipartite. The following hold.
@ For2<i<D, the scalar g'n — q has the same sign as n(n + 1).
@ For2<i< D, the scalar ¢'n? — q has the same sign as 1.

Proof.

Note c; # 0 for 2<i < D. So for any x, y with d(x,y) =i the set
Qj ;1 #@. Forany weQj,, the integer z := H]_; ,(w) satisfies
0<z,<al But a; £ 0, so

Z__ @-am o oy o F_ l@nP-a)

a (n+1)(g'n-q) a (n+1)(g'n-q)
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Constraints on g and 7

Lemma (2)

With the notation above, suppose I is not bipartite. The following hold.
@ For2<i<D, the scalar g'n — q has the same sign as n(n + 1).
@ For2<i< D, the scalar ¢'n? — q has the same sign as 1.

Proof.

Note c; # 0 for 2<i < D. So for any x, y with d(x,y) =i the set
Qi 17#@. Forany we Qi 11, the integer z; := Hi_y1(w) satisfies
0<z,<al But a; £ 0, so

' i_ ; in2 _
a__@-an o g (- F._@1-9
a  (n+1)(g'n-q) a (n+1)(g'n-q)
Since g > 1, the result follows by induction on i. Ol
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Constraints on g and 7

Lemma (3)
With the notation above, suppose I is not bipartite. The following holds.
@ For2<i<D, the scalar g'n -1 has the same sign as qn — 1.
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Constraints on g and 7

Lemma (3)
With the notation above, suppose I is not bipartite. The following holds.
@ For2<i<D, the scalar g'n -1 has the same sign as qn — 1.

Proof.
For each i (2 < i< D), the scalar

i1, = [ = c2q(q'n-1)
2 )= b= D - 0

is a positive integer.
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Constraints on g and 7

Lemma (3)
With the notation above, suppose I is not bipartite. The following holds.
@ For2<i<D, the scalar g'n -1 has the same sign as qn — 1.

Proof.
For each i (2 < i< D), the scalar

. 2q(g'n-1)
i 21(2) =L;i= 7

g " (g+1)(a'n-q)
is a positive integer. Since ¢, g, and g + 1 are all positive, the result
follows by induction on /. O

v
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Main Results

Lemma (4)

With the notation above, suppose I is not bipartite. The following hold.
Q Ifn>0 thenn>1/q.
Q I/fn<0 thenn>-1.
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With the notation above, suppose I is not bipartite. The following hold.
Q Ifn>0 thenn>1/q.

Q I/fn<0 thenn>-1.

Proof.

When i = 2, the scalars g°n — q and 7(n + 1) have the same sign. O
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Main Results

Lemma (4)

With the notation above, suppose I is not bipartite. The following hold.
Q Ifn>0 thenn>1/q.

Q Ifn<0 thenn>-1.

Proof.
When i = 2, the scalars g°n — q and 7(n + 1) have the same sign. O
1
-1 0 q
1 | 1
| 1 /|
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Main Results

Lemma (5)

With the notation above, suppose I is not bipartite. The following holds.

1 1
Q (n+ qD_l)(nz —gp) <0
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Main Results

Lemma (5)

With the notation above, suppose I is not bipartite. The following holds.
1 1
@ (n+ )~ 5)<0.
qP-1 qP

Proof.
By (12) we have

_(n+1)(g°n-1) (g7’ - 1)(an +q)
n(an-1)(gPn+q)(gPn? - 1)

> 0.

o
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Main Results

Lemma (5)

With the notation above, suppose I is not bipartite. The following holds.
1 1
@ (n+ )~ 5)<0.
qP-1 qP

Proof.
By (12) we have

_(n+1)(g°n-1) (g7’ - 1)(an +q)
n(an-1)(gPn+q)(gPn? - 1)

> 0.

When i = D, Lemma (3) says (gPn —1) has same sign as (qn —1).
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Main Results

Lemma (5)
With the notation above, suppose I is not bipartite. The following holds.
1 1
@ (n+ )~ 5)<0.
qP-1 qP

Proof.
By (12) we have
(n+1)(qgPn-1)(gn?- 1)(an +q)

R R - T |

When i = D, Lemma (3) says (gPn —1) has same sign as (qn —1).
When i =2, Lemma (2) says (qn® — 1) has same sign as 7.

v
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Main Results

Lemma (5)
With the notation above, suppose I is not bipartite. The following holds.

1 1
o (n+qD_1>< 2—q—D><o.

Proof.
By (12) we have
_(n+1)(g°n-1)(gn* -1)(¢°n* + q)

a; = > 0.
' n(gn-1)(g°n+q)(gPn?-1)

When i = D, Lemma (3) says (gPn —1) has same sign as (qn —1).
When i =2, Lemma (2) says (qn® — 1) has same sign as 7.
Note (gPn? + q) is positive since g > 1.

v

John Caughman September 15, 2023 31/36



Main Results

Lemma (5)
With the notation above, suppose I is not bipartite. The following holds.

1 1
o (n+qD_1>< 2_q_D)<0_

Proof.
By (12) we have

__(+D(@7n-D(a* -1 ("0’ +q)
n(qn-1)(gPn+q)(gPn? - 1) '

When i = D, Lemma (3) says (gPn —1) has same sign as (qn —1).

When i =2, Lemma (2) says (qn® — 1) has same sign as 7.

Note (gPn? + q) is positive since g > 1. So (¢°n + q)(gPn? - 1) has the
same sign as —(n + 1), which is negative by Lemma (4). O

v
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Main Results

We can now resolve the sign of 7.

Lemma (6)

With the notation above, suppose I is not bipartite. The following hold.
Q n<0.

Q@ h>0.
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Main Results

We can now resolve the sign of 7.

Lemma (6)

With the notation above, suppose I is not bipartite. The following hold.
Q@ n<0.

Q@ h>0.

Proof.
(1). If » >0 we obtain the contradiction D < 2, since by Lemmas (4),(5)

1 < 1
—_— /’7 —
q2 qP
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Main Results

We can now resolve the sign of 7.

Lemma (6)

With the notation above, suppose I is not bipartite. The following hold.
Q@ n<0.

Q@ h>0.

Proof.
(1). If » >0 we obtain the contradiction D < 2, since by Lemmas (4),(5)

1 o 1
E— 7] _'
q? qP

(2). Since 17 < 0 we have 7? < 1, which implies h > 0.

John Caughman

September 15, 2023 32/36



Main Results

Lemma (7)
With the notation above, suppose I is not bipartite. The following hold.
1 1
(1] 77<—W orn>—ﬁ.
Qn>————-.
q(0-D/2
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Main Results

Lemma (7)

With the notation above, suppose I is not bipartite. The following hold.

1 1
(1] 7]<—W OI”I7>—F.

1
Q@n>-—— .
q(0-D/2 ]
Proof.
1 1 1
1). L - .
(1). Lemma (5) says (n+ 5o5)(1+ —5) (1= 575) <0
September 15, 2023  33/36



Main Results

Lemma (7)
With the notation above, suppose I is not bipartite. The following hold.
(1) n<—% orn>—L.
qP/2 qP-1
Q@ n>—— .
q(O-1)/2
Proof.
(1). Lemma (5) says (n + ;_1 )(n+ ;/2)(17— Dl/z) <0.
q q q

1 1
BUtT]<OSO (7]+F)(77+W)>0
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Main Results

Lemma (7)
With the notation above, suppose I is not bipartite. The following hold.
(1) n<—% orn>—L.
qP/2 qP-1
Q@ n>—— .
q(O-1)/2 J
Proof.
(1). Lemma (5) says (n+ ; 2)(n + El) )(n- L ) <O.
qP- qP/? qPP2
But n<0so (n+ #)(774'#) > 0.
(2). Since <0, Lemma (2) at i = D says q°n? - g <0. O
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Putting the pieces together, we have the following.
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Corollary

With the notation above, suppose I is not bipartite. Then q, n are real
with g > 1 and either
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Main Corollary

Putting the pieces together, we have the following.
Corollary

With the notation above, suppose I is not bipartite. Then q, n are real
with g > 1 and either

—1/q(D_1)/2<77<—1/qD/2 or —l/qD_1<77<O.
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Main Corollary

Putting the pieces together, we have the following.
Corollary

With the notation above, suppose I is not bipartite. Then q, n are real
with g > 1 and either

—1/q(D_1)/2<77<—1/qD/2 or —1/qD_1<77<O.

-1 -1 -1
7 577 e
e T
T | T
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Main Corollary

Putting the pieces together, we have the following.

Corollary

With the notation above, suppose I is not bipartite. Then q, n are real
with g > 1 and either

—1/q(D_1)/2<77<—1/qD/2 or —1/qD_1<77<O.
-1 -1 -1 0
-~ [ /I' T
\ n

o What's next? Use integrality!
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The End

Thank you!

John Caughman
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