Parameter constraints for distance-regular graphs that afford spin models

John Caughman
Fariborz Maseeh Dept of Mathematics \& Statistics
Portland State University
Portland, Oregon, USA

September 15, 2023

Overview - This Talk

- Let Γ denote a distance-regular graph with diameter $D \geq 3$, valency $k \geq 3$, and assume Γ affords a spin model W.

Overview - This Talk

- Let Γ denote a distance-regular graph with diameter $D \geq 3$, valency $k \geq 3$, and assume Γ affords a spin model W.
- Write $W=\sum_{i=0}^{D} t_{i} A_{i}$ where A_{i} is the $i^{\text {th }}$ distance-matrix of Γ.

Overview - This Talk

- Let Γ denote a distance-regular graph with diameter $D \geq 3$, valency $k \geq 3$, and assume Γ affords a spin model W.
- Write $W=\sum_{i=0}^{D} t_{i} A_{i}$ where A_{i} is the $i^{\text {th }}$ distance-matrix of Γ.
- Assume Γ is not a Hamming graph and $t_{i} \notin\left\{t_{0},-t_{0}\right\}$ for $1 \leq i \leq D$.

Overview - This Talk

- Let Γ denote a distance-regular graph with diameter $D \geq 3$, valency $k \geq 3$, and assume Γ affords a spin model W.
- Write $W=\sum_{i=0}^{D} t_{i} A_{i}$ where A_{i} is the $i^{\text {th }}$ distance-matrix of Γ.
- Assume Γ is not a Hamming graph and $t_{i} \notin\left\{t_{0},-t_{0}\right\}$ for $1 \leq i \leq D$.
- In [Curtin+Nomura 1999] determined the intersection numbers of Γ in terms of D and two complex parameters q and η. Several parameter constraints were given in [C+Wolff 2005] which restrict q and η.

Overview - This Talk

- Let Γ denote a distance-regular graph with diameter $D \geq 3$, valency $k \geq 3$, and assume Γ affords a spin model W.
- Write $W=\sum_{i=0}^{D} t_{i} A_{i}$ where A_{i} is the $i^{\text {th }}$ distance-matrix of Γ.
- Assume Γ is not a Hamming graph and $t_{i} \notin\left\{t_{0},-t_{0}\right\}$ for $1 \leq i \leq D$.
- In [Curtin+Nomura 1999] determined the intersection numbers of Γ in terms of D and two complex parameters q and η. Several parameter constraints were given in [C+Wolff 2005] which restrict q and η.
- Here, we survey these results and use new constraints to improve the restrictions. We show that if Γ is not bipartite, then q, η are real with $q>1$ and $-1<\eta<0$.

Overview - This Talk

- Let Γ denote a distance-regular graph with diameter $D \geq 3$, valency $k \geq 3$, and assume Γ affords a spin model W.
- Write $W=\sum_{i=0}^{D} t_{i} A_{i}$ where A_{i} is the $i^{\text {th }}$ distance-matrix of Γ.
- Assume Γ is not a Hamming graph and $t_{i} \notin\left\{t_{0},-t_{0}\right\}$ for $1 \leq i \leq D$.
- In [Curtin+Nomura 1999] determined the intersection numbers of Γ in terms of D and two complex parameters q and η. Several parameter constraints were given in [C+Wolff 2005] which restrict q and η.
- Here, we survey these results and use new constraints to improve the restrictions. We show that if Γ is not bipartite, then q, η are real with $q>1$ and $-1<\eta<0$. In fact, either

$$
\begin{equation*}
-1 / q^{(D-1) / 2}<\eta<-1 / q^{D / 2} \quad \text { or } \quad-1 / q^{D-1}<\eta<0 . \tag{1}
\end{equation*}
$$

Overview - How to Tell if Two Diagrams are Same Knot?

Overview - Do They Differ by Reidemeister Moves?

Overview - Associate the Diagrams with Graphs!

Construction of Tait graph:

- Given a link diagram with signed crossings

- Two-color the diagram

- Construct graph

Overview - How Do Reidemeister Moves Affect Graph?

Overview - Use a Special Kind of Matrix W

A spin model is a symmetric $n \times n$ matrix W with entries in $\operatorname{Mat}_{x}(\mathbb{C})$ that satisfies the following invariance equations $\forall a, b, c \in X$:

Type II:

$$
\sum_{x \in X} W_{a, x}^{+} W_{b, x}^{-}=n \delta_{a, b}
$$

Type III:

$$
\sum_{x \in X} W_{a, x}^{+} W_{b, x}^{+} W_{c, x}^{-}=\sqrt{n} W_{a, b}^{+} W_{a, c}^{-} W_{b, c}^{-}
$$

Overview - Use W to Compute Z_{W} for Each Diagram

Given:

- W, a spin model in $\operatorname{Mat}_{X}(\mathbb{C})$ where $n=|X|$.
- $\quad \mathrm{L}$ be a link diagram, \mathcal{L}_{L} the Tait graph with vertices V .

Then:

- a state is a function $\sigma: V \rightarrow X$.
- the partition function is defined to be

$$
Z_{W}=\left(\frac{1}{\sqrt{n}}\right)^{|V|-1} \sum_{\substack{\text { states } \\ \sigma: V \rightarrow X}} \prod_{\substack{\text { edges } \\ v, v^{\prime} \in \mathcal{L}_{L}}} W_{\sigma(v), \sigma\left(v^{\prime}\right)}^{ \pm}
$$

Overview - If Z_{W} different, not same! If Z_{W} same...?

Overview - Where to Find Spin Models?

- Spin model matrices are found in the adjacency algebras of certain distance-regular graphs.

Overview - Where to Find Spin Models?

- Spin model matrices are found in the adjacency algebras of certain distance-regular graphs.
- Known examples: Complete graphs, odd cycles, Higman-Sims graph, even cycles, Hadamard graphs, Hamming graphs, and the double cover of the Higman-Sims graph.

Overview - Where to Find Spin Models?

- Spin model matrices are found in the adjacency algebras of certain distance-regular graphs.
- Known examples: Complete graphs, odd cycles, Higman-Sims graph, even cycles, Hadamard graphs, Hamming graphs, and the double cover of the Higman-Sims graph.
- About 20 years ago, Curtin \& Nomura gave a parameterization of DRGs that afford a spin model.

Overview - Where to Find Spin Models?

- Spin model matrices are found in the adjacency algebras of certain distance-regular graphs.
- Known examples: Complete graphs, odd cycles, Higman-Sims graph, even cycles, Hadamard graphs, Hamming graphs, and the double cover of the Higman-Sims graph.
- About 20 years ago, Curtin \& Nomura gave a parameterization of DRGs that afford a spin model.
- Thereafter, Wolff \& I gave constraints on these parameters, but the work was incomplete (the constraints did not limit the parameters to only the graphs for which examples were known)

Overview - Where to Find Spin Models?

- Spin model matrices are found in the adjacency algebras of certain distance-regular graphs.
- Known examples: Complete graphs, odd cycles, Higman-Sims graph, even cycles, Hadamard graphs, Hamming graphs, and the double cover of the Higman-Sims graph.
- About 20 years ago, Curtin \& Nomura gave a parameterization of DRGs that afford a spin model.
- Thereafter, Wolff \& I gave constraints on these parameters, but the work was incomplete (the constraints did not limit the parameters to only the graphs for which examples were known)
- Recently (very), Terwilliger \& Nomura announced new results! Using Leonard pairs, they show that whether a DRG to afford a spin model is equivalent to the existence of a certain central element Z in the Terwilliger algebra, and they show how to construct W from Z.

Let's Begin! Define Spin models

Let X be a nonempty finite set.
A spin model on X is a symmetric matrix $W \in \operatorname{Mat}_{X}(\mathbb{C})$ with non-zero entries such that for all $a, b, c \in X$:

Let's Begin! Define Spin models

Let X be a nonempty finite set.
A spin model on X is a symmetric matrix $W \in \operatorname{Mat}_{X}(\mathbb{C})$ with non-zero entries such that for all $a, b, c \in X$:

$$
\begin{gather*}
\sum_{y \in X} W_{y b}\left(W_{y c}\right)^{-1}=|X| \delta_{b c} \tag{2}\\
\sum_{y \in X} W_{y a} W_{y b}\left(W_{y c}\right)^{-1}=L W_{a b}\left(W_{a c}\right)^{-1}\left(W_{c b}\right)^{-1} \tag{3}
\end{gather*}
$$

for some $L \in \mathbb{R}$ such that $L^{2}=|X|$.

Nomura Algebra

Let W denote a spin model on X.

Nomura Algebra

Let W denote a spin model on X. For $b, c \in X$, let $\mathbf{u}_{b c}$ denote the vector in \mathbb{C}^{X} which has y-coordinate

$$
\begin{equation*}
\left(\mathbf{u}_{b c}\right)_{y}=W_{y b}\left(W_{y c}\right)^{-1} \quad(y \in X) \tag{4}
\end{equation*}
$$

Nomura Algebra

Let W denote a spin model on X. For $b, c \in X$, let $\mathbf{u}_{b c}$ denote the vector in \mathbb{C}^{X} which has y-coordinate

$$
\begin{equation*}
\left(\mathbf{u}_{b c}\right)_{y}=W_{y b}\left(W_{y c}\right)^{-1} \quad(y \in X) \tag{4}
\end{equation*}
$$

Define $N(W)$ to be the set of all matrices $B \in \operatorname{Mat}_{X}(\mathbb{C})$ that have $\mathbf{u}_{b c}$ as eigenvectors for all $b, c \in X$.

Nomura Algebra

Let W denote a spin model on X. For $b, c \in X$, let $\mathbf{u}_{b c}$ denote the vector in \mathbb{C}^{X} which has y-coordinate

$$
\begin{equation*}
\left(\mathbf{u}_{b c}\right)_{y}=W_{y b}\left(W_{y c}\right)^{-1} \quad(y \in X) \tag{4}
\end{equation*}
$$

Define $N(W)$ to be the set of all matrices $B \in \operatorname{Mat}_{X}(\mathbb{C})$ that have $\mathbf{u}_{b c}$ as eigenvectors for all $b, c \in X$.
$N(W)$ is a subalgebra of $\mathrm{Mat}_{X}(\mathbb{C})$. Jaeger showed in 1998 that $W \in N(W)$. We refer to $N(W)$ as the Nomura algebra of W.

Distance-regular graphs (DRGs)

Let Γ denote a finite, connected, undirected simple graph, with vertex set X, distance function ∂, and diameter D. For each $x \in X$ and $i \in \mathbb{Z}$, set

$$
\Gamma_{i}(x):=\{y \in X \mid \partial(x, y)=i\} .
$$

Distance-regular graphs (DRGs)

Let Γ denote a finite, connected, undirected simple graph, with vertex set X, distance function ∂, and diameter D. For each $x \in X$ and $i \in \mathbb{Z}$, set

$$
\Gamma_{i}(x):=\{y \in X \mid \partial(x, y)=i\} .
$$

We say Γ is distance-regular, with intersection numbers $p_{i j}^{h}$, whenever for all integers h, i, j and all $x, y \in X$ with $\partial(x, y)=h$,

$$
\left|\Gamma_{i}(x) \cap \Gamma_{j}(y)\right|=p_{i j}^{h} .
$$

Note $p_{i j}^{h}=0$ if $h>i+j($ or $i>h+j$ or $j>h+i)$.

Distance-regular graphs (DRGs)

Let Γ denote a finite, connected, undirected simple graph, with vertex set X, distance function ∂, and diameter D. For each $x \in X$ and $i \in \mathbb{Z}$, set

$$
\Gamma_{i}(x):=\{y \in X \mid \partial(x, y)=i\} .
$$

We say Γ is distance-regular, with intersection numbers $p_{i j}^{h}$, whenever for all integers h, i, j and all $x, y \in X$ with $\partial(x, y)=h$,

$$
\left|\Gamma_{i}(x) \cap \Gamma_{j}(y)\right|=p_{i j}^{h} .
$$

Note $p_{i j}^{h}=0$ if $h>i+j($ or $i>h+j$ or $j>h+i)$. Define

$$
c_{i}:=p_{1 i-1}^{i}, \quad a_{i}:=p_{1 i}^{i}, \quad b_{i}:=p_{1 i+1}^{i}
$$

for $(0 \leq i \leq D)$ and let $k:=b_{0}$.

Distance-regular graphs (DRGs)

Let Γ denote a finite, connected, undirected simple graph, with vertex set X, distance function ∂, and diameter D. For each $x \in X$ and $i \in \mathbb{Z}$, set

$$
\Gamma_{i}(x):=\{y \in X \mid \partial(x, y)=i\} .
$$

We say Γ is distance-regular, with intersection numbers $p_{i j}^{h}$, whenever for all integers h, i, j and all $x, y \in X$ with $\partial(x, y)=h$,

$$
\left|\Gamma_{i}(x) \cap \Gamma_{j}(y)\right|=p_{i j}^{h} .
$$

Note $p_{i j}^{h}=0$ if $h>i+j($ or $i>h+j$ or $j>h+i)$. Define

$$
c_{i}:=p_{1 i-1}^{i}, \quad a_{i}:=p_{1 i}^{i}, \quad b_{i}:=p_{1 i+1}^{i}
$$

for $(0 \leq i \leq D)$ and let $k:=b_{0}$. Note that

$$
c_{i}+a_{i}+b_{i}=k \quad(0 \leq i \leq D)
$$

Bose-Mesner algebra of a DRG Г

For each $i(0 \leq i \leq D)$, let A_{i} be the matrix in $\operatorname{Mat}_{x}(\mathbb{C})$ with x, y-entry

$$
\left(A_{i}\right)_{x, y}=\left\{\begin{array}{ll}
1 & \text { if } \partial(x, y)=i, \\
0 & \text { if } \partial(x, y) \neq i
\end{array} \quad(x, y \in X) .\right.
$$

We call A_{i} the $i^{\text {th }}$ distance matrix of Γ. Observe that $A_{0}=I$ and $A_{1}=A$, the adjacency matrix of Γ.

Bose-Mesner algebra of a DRG Г

For each $i(0 \leq i \leq D)$, let A_{i} be the matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ with x, y-entry

$$
\left(A_{i}\right)_{x, y}=\left\{\begin{array}{ll}
1 & \text { if } \partial(x, y)=i, \\
0 & \text { if } \partial(x, y) \neq i
\end{array} \quad(x, y \in X)\right.
$$

We call A_{i} the $i^{t h}$ distance matrix of Γ. Observe that $A_{0}=I$ and $A_{1}=A$, the adjacency matrix of Γ. For $0 \leq i, j \leq D$ we have:

$$
A_{i}^{t}=A_{i}, \quad A_{i} A_{j}=\sum_{h=0}^{D} p_{i j}^{h} A_{h}, \quad \sum_{h=0}^{D} A_{h}=J .
$$

Bose-Mesner algebra of a DRG 「

For each $i(0 \leq i \leq D)$, let A_{i} be the matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ with x, y-entry

$$
\left(A_{i}\right)_{x, y}=\left\{\begin{array}{ll}
1 & \text { if } \partial(x, y)=i, \\
0 & \text { if } \partial(x, y) \neq i
\end{array} \quad(x, y \in X) .\right.
$$

We call A_{i} the $i^{t h}$ distance matrix of Γ. Observe that $A_{0}=I$ and $A_{1}=A$, the adjacency matrix of Γ. For $0 \leq i, j \leq D$ we have:

$$
A_{i}^{t}=A_{i}, \quad A_{i} A_{j}=\sum_{h=0}^{D} p_{i j}^{h} A_{h}, \quad \sum_{h=0}^{D} A_{h}=J .
$$

So $A_{0}, A_{1}, \ldots, A_{D}$ form a basis for a commutative subalgebra M of Mat ${ }_{X}(\mathbb{C}) . M$ is closed under the entry-wise product \circ. Each A_{i} is a polynomial of degree i in A, so A generates M.

Bose-Mesner algebra of a DRG 「

For each $i(0 \leq i \leq D)$, let A_{i} be the matrix in $\operatorname{Mat}_{X}(\mathbb{C})$ with x, y-entry

$$
\left(A_{i}\right)_{x, y}=\left\{\begin{array}{ll}
1 & \text { if } \partial(x, y)=i, \\
0 & \text { if } \partial(x, y) \neq i
\end{array} \quad(x, y \in X)\right.
$$

We call A_{i} the $i^{\text {th }}$ distance matrix of Γ. Observe that $A_{0}=I$ and $A_{1}=A$, the adjacency matrix of Γ. For $0 \leq i, j \leq D$ we have:

$$
A_{i}^{t}=A_{i}, \quad A_{i} A_{j}=\sum_{h=0}^{D} p_{i j}^{h} A_{h}, \quad \sum_{h=0}^{D} A_{h}=J .
$$

So $A_{0}, A_{1}, \ldots, A_{D}$ form a basis for a commutative subalgebra M of Mat ${ }_{X}(\mathbb{C}) . M$ is closed under the entry-wise product \circ. Each A_{i} is a polynomial of degree i in A, so A generates M.

We call M the Bose-Mesner algebra of Γ.

Primitive Idempotents for M

It can be shown that M has a second basis $E_{0}, E_{1}, \ldots, E_{D}$ such that:

$$
E_{0}=|X|^{-1} J, \quad E_{i}^{t}=\bar{E}_{i}=E_{i}, \quad E_{i} E_{j}=\delta_{i j} E_{i}, \quad \sum_{h=0}^{D} E_{h}=I,
$$

for $0 \leq i, j \leq D$.
We call $E_{0}, E_{1}, \ldots, E_{D}$ the primitive idempotents of Γ.

Primitive Idempotents for M

It can be shown that M has a second basis $E_{0}, E_{1}, \ldots, E_{D}$ such that:

$$
E_{0}=|X|^{-1} J, \quad E_{i}^{t}=\bar{E}_{i}=E_{i}, \quad E_{i} E_{j}=\delta_{i j} E_{i}, \quad \sum_{h=0}^{D} E_{h}=I,
$$

for $0 \leq i, j \leq D$.
We call $E_{0}, E_{1}, \ldots, E_{D}$ the primitive idempotents of Γ.
The graph Γ is said to be Q-polynomial (for $E_{0}, E_{1}, \ldots, E_{D}$) when each primitive idempotent E_{i} is a o-polynomial of degree i in E_{1}.

Distance distribution diagrams (DDDs for DRGs)

Definition

Let Γ be a DRG with $D \geq 3$. Pick any $x, y \in X$ and let $h=\partial(x, y)$.

Distance distribution diagrams (DDDs for DRGs)

Definition

Let Γ be a DRG with $D \geq 3$. Pick any $x, y \in X$ and let $h=\partial(x, y)$. For $0 \leq i, j \leq D$ define $\Omega_{i j}^{h}=\Gamma_{i}(x) \cap \Gamma_{j}(y)$.

Distance distribution diagrams (DDDs for DRGs)

Definition

Let Γ be a DRG with $D \geq 3$. Pick any $x, y \in X$ and let $h=\partial(x, y)$. For $0 \leq i, j \leq D$ define $\Omega_{i j}^{h}=\Gamma_{i}(x) \cap \Gamma_{j}(y)$. For $z \in \Omega_{i j}^{h}$ define

$$
\begin{array}{lll}
\mathcal{N} \mathcal{W}_{i j}^{h}(z)=\left|\Gamma(z) \cap \Omega_{i, j+1}^{h}\right| & \mathcal{N}_{i j}^{h}(z)=\left|\Gamma(z) \cap \Omega_{i+1, j+1}^{h}\right| & \mathcal{N} \mathcal{E}_{i j}^{h}(z)=\left|\Gamma(z) \cap \Omega_{i+1, j}^{h}\right| \\
\mathcal{W}_{i j}^{h}(z)=\left|\Gamma(z) \cap \Omega_{i-1, j+1}^{h}\right| & \mathcal{H}_{i j}^{h}(z)\left|\Gamma(z) \cap \Omega_{i, j}^{h}\right| & \mathcal{E}_{i j}^{h}(z)=\left|\Gamma(z) \cap \Omega_{i+1, j-1}^{h}\right| \\
\mathcal{S} \mathcal{W}_{i j}^{h}(z)=\left|\Gamma(z) \cap \Omega_{i-1, j}^{h}\right| & \mathcal{S}_{i j}^{h}(z)=\left|\Gamma(z) \cap \Omega_{i-1, j-1}^{h}\right| & \mathcal{S} \mathcal{E}_{i j}^{h}(z)=\left|\Gamma(z) \cap \Omega_{i, j-1}^{h}\right|
\end{array}
$$

Distance distribution diagrams (DDDs for DRGs)

Definition

Let Γ be a DRG with $D \geq 3$. Pick any $x, y \in X$ and let $h=\partial(x, y)$. For $0 \leq i, j \leq D$ define $\Omega_{i j}^{h}=\Gamma_{i}(x) \cap \Gamma_{j}(y)$. For $z \in \Omega_{i j}^{h}$ define

$$
\begin{array}{lll}
\mathcal{N}_{i j}^{h}(z)=\left|\Gamma(z) \cap \Omega_{i, j+1}^{h}\right| & \mathcal{N}_{i j}^{h}(z)=\left|\Gamma(z) \cap \Omega_{i+1, j+1}^{h}\right| & \mathcal{N} \mathcal{E}_{i j}^{h}(z)=\left|\Gamma(z) \cap \Omega_{i+1, j}^{h}\right| \\
\mathcal{W}_{i j}^{h}(z)=\left|\Gamma(z) \cap \Omega_{i-1, j+1}^{h}\right| & \mathcal{H}_{i j}^{h}(z)=\left|\Gamma(z) \cap \Omega_{i, j}^{h}\right| & \mathcal{E}_{i j}^{h}(z)=\left|\Gamma(z) \cap \Omega_{i+1, j-1}^{h}\right| \\
\mathcal{S} \mathcal{W}_{i j}^{h}(z)=\left|\Gamma(z) \cap \Omega_{i-1, j}^{h}\right| & \mathcal{S}_{i j}^{h}(z)=\left|\Gamma(z) \cap \Omega_{i-1, j-1}^{h}\right| & \mathcal{S} \mathcal{E}_{i j}^{h}(z)=\left|\Gamma(z) \cap \Omega_{i, j-1}^{h}\right|
\end{array}
$$

Note: The function \mathcal{H} is not depicted, but it counts edges from $\Omega_{i j}^{h}$ into itself.

Distance distribution diagrams (DDDs for DRGs)

Lemma

Let Γ be a DRG with diameter $D \geq 3$. Pick any $x, y \in X$ and let $h=\partial(x, y)$. For $0 \leq i, j \leq D$ and for $z \in \Omega_{i j}^{h}$,

$$
\begin{align*}
\mathcal{W}_{i j}^{h}(z)+\mathcal{S} \mathcal{W}_{i j}^{h}(z)+\mathcal{S}_{i j}^{h}(z) & =c_{i}, \tag{5}\\
\mathcal{E}_{i j}^{h}(z)+\mathcal{N} \mathcal{E}_{i j}^{h}(z)+\mathcal{N}_{i j}^{h}(z) & =b_{i}, \tag{6}\\
\mathcal{N} \mathcal{W}_{i j}^{h}(z)+\mathcal{S} \mathcal{E}_{i j}^{h}(z)+\mathcal{H}_{i j}^{h}(z) & =a_{i}, \tag{7}
\end{align*}
$$

Distance distribution diagrams (DDDs for DRGs)

Lemma

Let Γ be a $D R G$ with diameter $D \geq 3$. Pick any $x, y \in X$ and let $h=\partial(x, y)$. For $0 \leq i, j \leq D$ and for $z \in \Omega_{i j}^{h}$,

$$
\begin{align*}
\mathcal{W}_{i j}^{h}(z)+\mathcal{S} \mathcal{W}_{i j}^{h}(z)+\mathcal{S}_{i j}^{h}(z) & =c_{i}, \tag{5}\\
\mathcal{E}_{i j}^{h}(z)+\mathcal{N} \mathcal{E}_{i j}^{h}(z)+\mathcal{N}_{i j}^{h}(z) & =b_{i}, \tag{6}\\
\mathcal{N} \mathcal{W}_{i j}^{h}(z)+\mathcal{S} \mathcal{E}_{i j}^{h}(z)+\mathcal{H}_{i j}^{h}(z) & =a_{i}, \tag{7}\\
\mathcal{E}_{i j}^{h}(z)+\mathcal{S} \mathcal{E}_{i j}^{h}(z)+\mathcal{S}_{i j}^{h}(z) & =c_{j}, \tag{8}\\
\mathcal{N}_{i j}^{h}(z)+\mathcal{N} \mathcal{W}_{i j}^{h}(z)+\mathcal{W}_{i j}^{h}(z) & =b_{j}, \tag{9}\\
\mathcal{N} \mathcal{E}_{i j}^{h}(z)+\mathcal{S} \mathcal{W}_{i j}^{h}(z)+\mathcal{H}_{i j}^{h}(z) & =a_{j} . \tag{10}
\end{align*}
$$

Distance distribution diagrams (DDDs for DRGs)

Lemma

Let Γ be a $D R G$ with diameter $D \geq 3$. Pick any $x, y \in X$ and let $h=\partial(x, y)$. For $0 \leq i, j \leq D$ and for $z \in \Omega_{i j}^{h}$,

$$
\begin{align*}
\mathcal{W}_{i j}^{h}(z)+\mathcal{S} \mathcal{W}_{i j}^{h}(z)+\mathcal{S}_{i j}^{h}(z) & =c_{i}, \tag{5}\\
\mathcal{E}_{i j}^{h}(z)+\mathcal{N} \mathcal{E}_{i j}^{h}(z)+\mathcal{N}_{i j}^{h}(z) & =b_{i}, \tag{6}\\
\mathcal{N} \mathcal{W}_{i j}^{h}(z)+\mathcal{S} \mathcal{E}_{i j}^{h}(z)+\mathcal{H}_{i j}^{h}(z) & =a_{i}, \tag{7}\\
\mathcal{E}_{i j}^{h}(z)+\mathcal{S} \mathcal{E}_{i j}^{h}(z)+\mathcal{S}_{i j}^{h}(z) & =c_{j}, \tag{8}\\
\mathcal{N}_{i j}^{h}(z)+\mathcal{N} \mathcal{W}_{i j}^{h}(z)+\mathcal{W}_{i j}^{h}(z) & =b_{j}, \tag{9}\\
\mathcal{N} \mathcal{E}_{i j}^{h}(z)+\mathcal{S} \mathcal{W}_{i j}^{h}(z)+\mathcal{H}_{i j}^{h}(z) & =a_{j} . \tag{10}
\end{align*}
$$

Equations (5)-(10) are not independent. The sum of (5)-(7) is identical to the sum of (8)-(10). Any five of the six equations, however, is independent.

Distance-regular graphs that support a spin model

- We say a DRG 「 affords a spin model W whenever

$$
W \in M \subseteq N(W)
$$

Distance-regular graphs that support a spin model

- We say a DRG 「 affords a spin model W whenever

$$
W \in M \subseteq N(W)
$$

- When Γ affords W, there exist complex scalars $t_{i}(0 \leq i \leq D)$ such that

$$
\begin{equation*}
W=\sum_{i=0}^{D} t_{i} A_{i} \tag{11}
\end{equation*}
$$

where $A_{0}, A_{1}, \ldots, A_{D}$ are the distance matrices of Γ.

Distance-regular graphs that support a spin model

- We say a DRG 「 affords a spin model W whenever

$$
W \in M \subseteq N(W)
$$

- When Γ affords W, there exist complex scalars $t_{i}(0 \leq i \leq D)$ such that

$$
\begin{equation*}
W=\sum_{i=0}^{D} t_{i} A_{i} \tag{11}
\end{equation*}
$$

where $A_{0}, A_{1}, \ldots, A_{D}$ are the distance matrices of Γ.

- Since the entries of W are nonzero,

$$
t_{i} \neq 0 \quad 0 \leq i \leq D
$$

Distance-regular graphs that support a spin model

Assume 「 affords a spin model W.
For $B \in M \subseteq N(W)$, let $\Psi(B) \in \operatorname{Mat}_{X}(\mathbb{C})$ be the matrix with bc-entry defined by

$$
B \mathbf{u}_{b c}=(\Psi(B))_{b c} \mathbf{u}_{b c} \quad(b, c \in X)
$$

Distance-regular graphs that support a spin model

Assume Γ affords a spin model W.
For $B \in M \subseteq N(W)$, let $\Psi(B) \in \operatorname{Mat}_{X}(\mathbb{C})$ be the matrix with bc-entry defined by

$$
B \mathbf{u}_{b c}=(\Psi(B))_{b c} \mathbf{u}_{b c} \quad(b, c \in X)
$$

By Curtin, there exists an ordering $E_{0}, E_{1}, \ldots, E_{D}$ of the primitive idempotents of Γ such that

$$
\Psi\left(A_{i}\right)=|X| E_{i} \quad(0 \leq i \leq D)
$$

We refer to this as the standard order with respect to W.

Distance-regular graphs that support a spin model

Assume Γ affords a spin model W.
For $B \in M \subseteq N(W)$, let $\Psi(B) \in \operatorname{Mat}_{X}(\mathbb{C})$ be the matrix with bc-entry defined by

$$
B \mathbf{u}_{b c}=(\Psi(B))_{b c} \mathbf{u}_{b c} \quad(b, c \in X)
$$

By Curtin, there exists an ordering $E_{0}, E_{1}, \ldots, E_{D}$ of the primitive idempotents of Γ such that

$$
\Psi\left(A_{i}\right)=|X| E_{i} \quad(0 \leq i \leq D)
$$

We refer to this as the standard order with respect to W.
By Curtin, Γ is Q-polynomial with respect to the standard order. (In fact, Γ is self-dual.)

Global Definition

In this talk we are interested in DRGs that afford a spin model, so we make the following definition.

Definition

Let Γ be a DRG with vertex set X, diameter $D \geq 3$, and valency $k \geq 3$.

Global Definition

In this talk we are interested in DRGs that afford a spin model, so we make the following definition.

Definition

Let Γ be a DRG with vertex set X, diameter $D \geq 3$, and valency $k \geq 3$. Assume Γ affords a spin model $W=\sum_{i=0}^{D} t_{i} A_{i}$ where A_{i} is the $i^{t h}$ distance-matrix of Γ.

Global Definition

In this talk we are interested in DRGs that afford a spin model, so we make the following definition.

Definition

Let Γ be a DRG with vertex set X, diameter $D \geq 3$, and valency $k \geq 3$. Assume Γ affords a spin model $W=\sum_{i=0}^{D} t_{i} A_{i}$ where A_{i} is the $i^{t h}$ distance-matrix of Γ. Assume Γ is not a Hamming graph and $t_{i} \notin\left\{t_{0},-t_{0}\right\}$ for $1 \leq i \leq D$.

Global Definition

In this talk we are interested in DRGs that afford a spin model, so we make the following definition.

Definition

Let Γ be a DRG with vertex set X, diameter $D \geq 3$, and valency $k \geq 3$. Assume Γ affords a spin model $W=\sum_{i=0}^{D} t_{i} A_{i}$ where A_{i} is the $i^{t h}$ distance-matrix of Γ. Assume Γ is not a Hamming graph and $t_{i} \notin\left\{t_{0},-t_{0}\right\}$ for $1 \leq i \leq D$. Set $\eta_{i}=t_{i-1}^{-1} t_{i}(1 \leq i \leq D)$ and define

$$
q:=\eta_{1}^{-1} \eta_{2} \quad \text { and } \quad \eta:=\eta_{1} .
$$

Global Definition

In this talk we are interested in DRGs that afford a spin model, so we make the following definition.

Definition

Let Γ be a DRG with vertex set X, diameter $D \geq 3$, and valency $k \geq 3$. Assume Γ affords a spin model $W=\sum_{i=0}^{D} t_{i} A_{i}$ where A_{i} is the $i^{t h}$ distance-matrix of Γ. Assume Γ is not a Hamming graph and $t_{i} \notin\left\{t_{0},-t_{0}\right\}$ for $1 \leq i \leq D$. Set $\eta_{i}=t_{i-1}^{-1} t_{i}(1 \leq i \leq D)$ and define

$$
q:=\eta_{1}^{-1} \eta_{2} \quad \text { and } \quad \eta:=\eta_{1} .
$$

Note q, η are nonzero complex scalars.

Global Definition

In this talk we are interested in DRGs that afford a spin model, so we make the following definition.

Definition

Let Γ be a DRG with vertex set X, diameter $D \geq 3$, and valency $k \geq 3$. Assume Γ affords a spin model $W=\sum_{i=0}^{D} t_{i} A_{i}$ where A_{i} is the $i^{t h}$ distance-matrix of Γ. Assume Γ is not a Hamming graph and $t_{i} \notin\left\{t_{0},-t_{0}\right\}$ for $1 \leq i \leq D$. Set $\eta_{i}=t_{i-1}^{-1} t_{i}(1 \leq i \leq D)$ and define

$$
q:=\eta_{1}^{-1} \eta_{2} \quad \text { and } \quad \eta:=\eta_{1}
$$

Note q, η are nonzero complex scalars. Replacing W by its entrywise inverse if necessary, we may assume $|q| \geq 1$.

Global Definition

In this talk we are interested in DRGs that afford a spin model, so we make the following definition.

Definition

Let Γ be a DRG with vertex set X, diameter $D \geq 3$, and valency $k \geq 3$. Assume Γ affords a spin model $W=\sum_{i=0}^{D} t_{i} A_{i}$ where A_{i} is the $i^{t h}$ distance-matrix of Γ. Assume Γ is not a Hamming graph and $t_{i} \notin\left\{t_{0},-t_{0}\right\}$ for $1 \leq i \leq D$. Set $\eta_{i}=t_{i-1}^{-1} t_{i}(1 \leq i \leq D)$ and define

$$
q:=\eta_{1}^{-1} \eta_{2} \quad \text { and } \quad \eta:=\eta_{1}
$$

Note q, η are nonzero complex scalars. Replacing W by its entrywise inverse if necessary, we may assume $|q| \geq 1$. Let $E_{0}, E_{1}, \ldots, E_{D}$ denote the standard ordering of the primitive idempotents with respect to W.

The parameters of Γ

Curtin and Nomura determined the eigenvalues and intersection numbers of Γ in terms of the diameter D and the scalars q and η.
Theorem (Curtin+Nomura '99)
With the notation above,

The parameters of Γ

Curtin and Nomura determined the eigenvalues and intersection numbers of Γ in terms of the diameter D and the scalars q and η.

Theorem (Curtin+Nomura '99)

With the notation above,

$$
\theta_{i}=\theta_{0}+h\left(1-q^{i}\right)\left(1-\eta^{2} q^{i-1}\right) q^{-i} \quad(0 \leq i \leq D),
$$

The parameters of Γ

Curtin and Nomura determined the eigenvalues and intersection numbers of Γ in terms of the diameter D and the scalars q and η.

Theorem (Curtin+Nomura '99)

With the notation above,

$$
\begin{aligned}
& \theta_{i}=\theta_{0}+h\left(1-q^{i}\right)\left(1-\eta^{2} q^{i-1}\right) q^{-i} \quad(0 \leq i \leq D), \\
& b_{i}=\frac{h q^{i-D}\left(1-q^{D-i}\right)\left(1-\eta^{2} q^{i-1}\right)\left(1+\eta^{3} q^{D+i-1}\right)}{\left(\eta q^{i}-1\right)\left(1-\eta^{2} q^{2 i-1}\right)} \\
& c_{i}=\frac{h \eta q^{i-1-D}\left(1-q^{i}\right)\left(1+\eta q^{D-i}\right)\left(1-\eta^{2} q^{D+i-1}\right)}{\left(1-\eta^{2} q^{2 i-1}\right)\left(1-\eta q^{i-1}\right)} \\
& a_{i}=\frac{h\left(q^{i}-1\right)\left(q^{D} \eta-1\right)\left(q-\eta^{2} q^{i}\right)\left(q^{D} \eta^{2}+q\right)}{q^{D+1}(\eta-1)\left(q^{i} \eta-q\right)\left(q^{i} \eta-1\right)} \\
& a_{i}
\end{aligned} \quad(0 \leq i \leq D), ~(0 \leq D),
$$

The parameters of Γ

Curtin and Nomura determined the eigenvalues and intersection numbers of Γ in terms of the diameter D and the scalars q and η.

Theorem (Curtin+Nomura '99)

With the notation above,

$$
\begin{aligned}
& \theta_{i}=\theta_{0}+h\left(1-q^{i}\right)\left(1-\eta^{2} q^{i-1}\right) q^{-i} \quad(0 \leq i \leq D) \\
& b_{i}=\frac{h q^{i-D}\left(1-q^{D-i}\right)\left(1-\eta^{2} q^{i-1}\right)\left(1+\eta^{3} q^{D+i-1}\right)}{\left(\eta q^{i}-1\right)\left(1-\eta^{2} q^{2 i-1}\right)} \quad(0 \leq i \leq D-1), \\
& c_{i}=\frac{h \eta q^{i-1-D}\left(1-q^{i}\right)\left(1+\eta q^{D-i}\right)\left(1-\eta^{2} q^{D+i-1}\right)}{\left(1-\eta^{2} q^{2 i-1}\right)\left(1-\eta q^{i-1}\right)} \quad(1 \leq i \leq D), \\
& a_{i}=\frac{h\left(q^{i}-1\right)\left(q^{D} \eta-1\right)\left(q-\eta^{2} q^{i}\right)\left(q^{D} \eta^{2}+q\right)}{q^{D+1}(\eta-1)\left(q^{i} \eta-q\right)\left(q^{i} \eta-1\right)} \quad(0 \leq i \leq D), \\
& \text { where the scalar } h=\frac{q^{D}\left(1-\eta^{2} q\right)(\eta-1)}{\eta(q-1)\left(1-\eta^{2} q^{D}\right)\left(1+\eta q^{D-1}\right)} .
\end{aligned}
$$

Old Constraints on q and η

The expressions above carry some basic implications.

Old Constraints on q and η

The expressions above carry some basic implications.

Lemma (Curtin+Nomura '99)

With reference to Definition 3, the following hold.

$$
\begin{array}{rll}
q^{i} & \neq 1 & \\
q^{i} \eta^{2} & \neq 1 & \\
q^{i} \eta^{3} & \neq-1 & \tag{14}\\
(0 \leq i \leq 2 D-2), \\
& (D-1 \leq i \leq 2 D-2) .
\end{array}
$$

Old Constraints on q and η

The expressions above carry some basic implications.

Lemma (Curtin+Nomura '99)

With reference to Definition 3, the following hold.

$$
\begin{align*}
q^{i} & \neq 1 & & (1 \leq i \leq D) \tag{12}\\
q^{i} \eta^{2} & \neq 1 & & (0 \leq i \leq 2 D-2) \tag{13}\\
q^{i} \eta^{3} & \neq-1 & & (D-1 \leq i \leq 2 D-2) . \tag{14}
\end{align*}
$$

In 2005, Wolff and I studied the Terwilliger $\mathrm{T}=\mathrm{T}(\mathrm{x})$ for any DRG Γ that affords a spin model.

Old Constraints on q and η

The expressions above carry some basic implications.

Lemma (Curtin+Nomura '99)

With reference to Definition 3, the following hold.

$$
\begin{align*}
q^{i} & \neq 1 & & (1 \leq i \leq D) \tag{12}\\
q^{i} \eta^{2} & \neq 1 & & (0 \leq i \leq 2 D-2), \tag{13}\\
q^{i} \eta^{3} & \neq-1 & & (D-1 \leq i \leq 2 D-2) . \tag{14}
\end{align*}
$$

In 2005, Wolff and I studied the Terwilliger $\mathrm{T}=\mathrm{T}(\mathrm{x})$ for any DRG Γ that affords a spin model. We were able to
(1) describe how the adjacency matrix A acts on the irreducible modules in terms of the parameters q, η

Old Constraints on q and η

The expressions above carry some basic implications.

Lemma (Curtin+Nomura '99)

With reference to Definition 3, the following hold.

$$
\begin{align*}
q^{i} & \neq 1 & & (1 \leq i \leq D) \tag{12}\\
q^{i} \eta^{2} & \neq 1 & & (0 \leq i \leq 2 D-2) \tag{13}\\
q^{i} \eta^{3} & \neq-1 & & (D-1 \leq i \leq 2 D-2) . \tag{14}
\end{align*}
$$

In 2005, Wolff and I studied the Terwilliger $\mathrm{T}=\mathrm{T}(\mathrm{x})$ for any DRG Γ that affords a spin model. We were able to
(1) describe how the adjacency matrix A acts on the irreducible modules in terms of the parameters q, η
(2) find multiplicities of irreducible T-modules in terms of q, η

Old Constraints on q and η

The expressions above carry some basic implications.

Lemma (Curtin+Nomura '99)

With reference to Definition 3, the following hold.

$$
\begin{align*}
q^{i} & \neq 1 & & (1 \leq i \leq D), \tag{12}\\
q^{i} \eta^{2} & \neq 1 & & (0 \leq i \leq 2 D-2), \tag{13}\\
q^{i} \eta^{3} & \neq-1 & & (D-1 \leq i \leq 2 D-2) . \tag{14}
\end{align*}
$$

In 2005, Wolff and I studied the Terwilliger $\mathrm{T}=\mathrm{T}(\mathrm{x})$ for any DRG Γ that affords a spin model. We were able to
(1) describe how the adjacency matrix A acts on the irreducible modules in terms of the parameters q, η
(2) find multiplicities of irreducible T-modules in terms of q, η
(3) prove q is real and, if Γ is not bipartite, then $q>0$ and η is real.

Multiplicities of T-modules in terms of q, η

Theorem (C+W '05)

With the notation above, the following are nonnegative integers:
(i) $\operatorname{mult}(0, D)=1$.
(ii) $\operatorname{mult}(1, D-1)=-\frac{(\eta+1)\left(q^{D}-1\right)\left(q^{D-1} \eta^{2}+1\right)\left(q^{D} \eta^{3}+1\right)}{\eta(q-1)\left(q^{D-1} \eta+1\right)\left(q^{2 D-1} \eta^{3}+1\right)}$.
(iii) $\operatorname{mult}(1, D-2)=\frac{q(\eta+1)\left(q^{D-1}-1\right)\left(q^{D} \eta-1\right)\left(q^{D-1} \eta^{3}+1\right)}{(q-1)\left(q^{D} \eta^{2}-1\right)\left(q^{2 D-1} \eta^{3}+1\right)}$.
(iv) $\operatorname{mult}(2, D-2)$

$$
=\frac{(\eta+1)\left(q^{D}-1\right)\left(q^{D-1}-1\right)\left(q^{2 D-1} \eta^{4}-1\right)(q \eta+1)\left(q^{D-1} \eta^{2}+1\right)\left(q^{D-1} \eta^{3}+1\right)\left(q^{D+2} \eta^{3}+1\right)}{\eta^{2}\left(q^{2}-1\right)(q-1)\left(q^{D} \eta^{2}-1\right)\left(q^{D-1} \eta+1\right)\left(q^{D-2} \eta+1\right)\left(q^{2 D-1} \eta^{3}+1\right)\left(q^{2 D} \eta^{3}+1\right)} .
$$

(v) $\operatorname{mult}(2, D-3)$

$$
=-\frac{(\eta+q)\left(q^{D}-1\right)\left(q^{D-2}-1\right)\left(q^{D} \eta-1\right)(q \eta+1)\left(q^{D-1} \eta^{2}+1\right)\left(q^{D-1} \eta^{3}+1\right)\left(q^{D+1} \eta^{3}+1\right)}{\eta(q-1)^{2}\left(q^{D+1} \eta^{2}-1\right)\left(q^{D-2} \eta+1\right)\left(q^{2 D-2} \eta^{3}+1\right)\left(q^{2 D} \eta^{3}+1\right)} .
$$

Constraints on q and η from $2005 T$-algebra paper

These expressions led to identifying special cases.

Constraints on q and η from $2005 T$-algebra paper

These expressions led to identifying special cases.
Theorem (C+W '05)
With the notation above, suppose Γ is bipartite. Then

$$
q \in \mathbb{R} \quad \text { and } \quad q^{D-1} \eta^{2}=-1 .
$$

Constraints on q and η from $2005 T$-algebra paper

These expressions led to identifying special cases.
Theorem (C+W '05)
With the notation above, suppose Γ is bipartite. Then

$$
q \in \mathbb{R} \quad \text { and } \quad q^{D-1} \eta^{2}=-1
$$

The case above falls within the parameter classification of bipartite Q-polynomial DRGs. It remains to consider when 「 is not bipartite.

Constraints on q and η from $2005 T$-algebra paper

These expressions led to identifying special cases.
Theorem (C+W '05)
With the notation above, suppose Γ is bipartite. Then

$$
q \in \mathbb{R} \quad \text { and } \quad q^{D-1} \eta^{2}=-1 \text {. }
$$

The case above falls within the parameter classification of bipartite Q-polynomial DRGs. It remains to consider when Γ is not bipartite.

Theorem (C+W '05)
With the notation above, suppose Γ is not bipartite. Then $a_{1} \neq 0$ and

$$
q, \eta \in \mathbb{R} \quad \text { and } \quad q>1 .
$$

The DDD when 「 affords a spin model

Recently, we have revisited some of the older work.

The DDD when 「 affords a spin model

Recently, we have revisited some of the older work. In addition to the 6 basic equations given earlier, Curtin and Nomura found two more equations using the axioms (2), (3) for spin models.

The DDD when 「 affords a spin model

Recently, we have revisited some of the older work. In addition to the 6 basic equations given earlier, Curtin and Nomura found two more equations using the axioms (2), (3) for spin models.

Lemma (Curtin+Nomura '99)

Pick any $x, y \in X$ and let $\partial(x, y)=h$. For any $0 \leq i, j \leq D$ and $z \in \Omega_{i j}^{h}$,

$$
\begin{aligned}
\theta_{h} \frac{t_{i}}{t_{j}}= & \mathcal{S} \mathcal{W}_{i j}^{h}(z) \frac{t_{i-1}}{t_{j}}+\mathcal{W}_{i j}^{h}(z) \frac{t_{i-1}}{t_{j+1}}+\mathcal{N} \mathcal{W}_{i j}^{h}(z) \frac{t_{i}}{t_{j+1}}+\mathcal{N}_{i j}^{h}(z) \frac{t_{i+1}}{t_{j+1}} \\
& +\mathcal{N} \mathcal{E}_{i j}^{h}(z) \frac{t_{i+1}}{t_{j}}+\mathcal{E}_{i j}^{h}(z) \frac{t_{i+1}}{t_{j-1}}+\mathcal{S E} \mathcal{E}_{i j}^{h}(z) \frac{t_{i}}{t_{j-1}}+\mathcal{S}_{i j}^{h}(z) \frac{t_{i-1}}{t_{j-1}}+\mathcal{H}_{i j}^{h}(z) \frac{t_{i}}{t_{j}} \\
\theta_{h} \frac{t_{j}}{t_{i}}= & \mathcal{S} \mathcal{W}_{i j}^{h}(z) \frac{t_{j}}{t_{i-1}}+\mathcal{W}_{i j}^{h}(z) \frac{t_{j+1}}{t_{i-1}}+\mathcal{N} \mathcal{W}_{i j}^{h}(z) \frac{t_{j+1}}{t_{i}}+\mathcal{N}_{i j}^{h}(z) \frac{t_{j+1}}{t_{i+1}} \\
& +\mathcal{N} \mathcal{E}_{i j}^{h}(z) \frac{t_{j}}{t_{i+1}}+\mathcal{E}_{i j}^{h}(z) \frac{t_{j-1}}{t_{i+1}}+\mathcal{S E} \mathcal{E}_{i j}^{h}(z) \frac{t_{j-1}}{t_{i}}+\mathcal{S}_{i j}^{h}(z) \frac{t_{j-1}}{t_{i-1}}+\mathcal{H}_{i j}^{h}(z) \frac{t_{j}}{t_{i}}
\end{aligned}
$$

The DDD when 「 affords a spin model

Using these results, we can show that there is regularity in the DDD in cells along the boundary. In particular, we show the following.

The DDD when 「 affords a spin model

Using these results, we can show that there is regularity in the DDD in cells along the boundary. In particular, we show the following.

Theorem
Pick any $x, y \in X$ and let $\partial(x, y)=h$. Fix integers $i, j \geq 0$ such that $i+j=h$.

The DDD when 「 affords a spin model

Using these results, we can show that there is regularity in the DDD in cells along the boundary. In particular, we show the following.

Theorem
Pick any $x, y \in X$ and let $\partial(x, y)=h$. Fix integers $i, j \geq 0$ such that $i+j=h$. Then for any $z \in \Omega_{i j}^{h}$,

$$
\begin{equation*}
\mathcal{H}_{i j}^{h}(z)=-\frac{\left(q^{i}-1\right)\left(q^{j}-1\right)\left(q \eta^{2}-1\right)\left(q^{D} \eta-1\right)\left(q^{D} \eta^{2}+q\right)}{(q-1)\left(q^{i} \eta-1\right)\left(q^{j} \eta-1\right)\left(q^{D} \eta^{2}-1\right)\left(q^{D} \eta+q\right)} . \tag{15}
\end{equation*}
$$

The DDD when 「 affords a spin model

Using these results, we can show that there is regularity in the DDD in cells along the boundary. In particular, we show the following.

Theorem

Pick any $x, y \in X$ and let $\partial(x, y)=h$. Fix integers $i, j \geq 0$ such that $i+j=h$. Then for any $z \in \Omega_{i j}^{h}$,

$$
\begin{equation*}
\mathcal{H}_{i j}^{h}(z)=-\frac{\left(q^{i}-1\right)\left(q^{j}-1\right)\left(q \eta^{2}-1\right)\left(q^{D} \eta-1\right)\left(q^{D} \eta^{2}+q\right)}{(q-1)\left(q^{i} \eta-1\right)\left(q^{j} \eta-1\right)\left(q^{D} \eta^{2}-1\right)\left(q^{D} \eta+q\right)} . \tag{15}
\end{equation*}
$$

For such boundary cells, the other 8 functions in the DDD also depend only on h, i, j, not on vertices x, y, z. They can be derived in terms of $\mathcal{H}_{i j}^{h}(z)$.

Constraints on q and η

We now deduce new constraints on q, η when Γ is not bipartite.
Lemma (1)
With the notation above, the following hold.
(1) If $h>0$ then $\eta^{2}<1 / q^{D-1}$.
(2) If $h<0$ then $\eta^{2}>1$.

Constraints on q and η

We now deduce new constraints on q, η when Γ is not bipartite.

Lemma (1)

With the notation above, the following hold.
(1) If $h>0$ then $\eta^{2}<1 / q^{D-1}$.
(2) If $h<0$ then $\eta^{2}>1$.

Proof.

Recall $q>1$. For $1 \leq i \leq D$, we have

$$
\theta_{0}-\theta_{i}=\frac{h\left(q^{i}-1\right)\left(1-\eta^{2} q^{i-1}\right)}{q^{i}}>0
$$

Constraints on q and η

We now deduce new constraints on q, η when Γ is not bipartite.

Lemma (1)

With the notation above, the following hold.
(1) If $h>0$ then $\eta^{2}<1 / q^{D-1}$.
(2) If $h<0$ then $\eta^{2}>1$.

Proof.

Recall $q>1$. For $1 \leq i \leq D$, we have

$$
\theta_{0}-\theta_{i}=\frac{h\left(q^{i}-1\right)\left(1-\eta^{2} q^{i-1}\right)}{q^{i}}>0
$$

Assuming $h>0$ and letting $i=D$ above, we see that $\eta^{2}<1 / q^{D-1}$.

Constraints on q and η

We now deduce new constraints on q, η when Γ is not bipartite.

Lemma (1)

With the notation above, the following hold.
(1) If $h>0$ then $\eta^{2}<1 / q^{D-1}$.
(2) If $h<0$ then $\eta^{2}>1$.

Proof.

Recall $q>1$. For $1 \leq i \leq D$, we have

$$
\theta_{0}-\theta_{i}=\frac{h\left(q^{i}-1\right)\left(1-\eta^{2} q^{i-1}\right)}{q^{i}}>0
$$

Assuming $h>0$ and letting $i=D$ above, we see that $\eta^{2}<1 / q^{D-1}$. Assuming $h<0$ and letting $i=1$ above, we see that $\eta^{2}>1$.

Constraints on q and η

Lemma (2)

With the notation above, suppose Γ is not bipartite. The following hold.
(1) For $2 \leq i \leq D$, the scalar $q^{i} \eta-q$ has the same sign as $\eta(\eta+1)$.
(2) For $2 \leq i \leq D$, the scalar $q^{i} \eta^{2}-q$ has the same sign as η.

Constraints on q and η

Lemma (2)

With the notation above, suppose Γ is not bipartite. The following hold.
(1) For $2 \leq i \leq D$, the scalar $q^{i} \eta-q$ has the same sign as $\eta(\eta+1)$.
(2) For $2 \leq i \leq D$, the scalar $q^{i} \eta^{2}-q$ has the same sign as η.

Proof.

Note $c_{i} \neq 0$ for $2 \leq i \leq D$. So for any x, y with $\partial(x, y)=i$ the set $\Omega_{i-1,1}^{i} \neq \varnothing$.

Constraints on q and η

Lemma (2)

With the notation above, suppose Γ is not bipartite. The following hold.
(1) For $2 \leq i \leq D$, the scalar $q^{i} \eta-q$ has the same sign as $\eta(\eta+1)$.
(2) For $2 \leq i \leq D$, the scalar $q^{i} \eta^{2}-q$ has the same sign as η.

Proof.

Note $c_{i} \neq 0$ for $2 \leq i \leq D$. So for any x, y with $\partial(x, y)=i$ the set $\Omega_{i-1,1}^{i} \neq \varnothing$. For any $w \in \Omega_{i-1,1}^{i}$, the integer $z_{i}:=\mathcal{H}_{i-1,1}^{i}(w)$ satisfies $0 \leq z_{i} \leq a_{1}$.

Constraints on q and η

Lemma (2)

With the notation above, suppose Γ is not bipartite. The following hold.
(1) For $2 \leq i \leq D$, the scalar $q^{i} \eta-q$ has the same sign as $\eta(\eta+1)$.
(2) For $2 \leq i \leq D$, the scalar $q^{i} \eta^{2}-q$ has the same sign as η.

Proof.

Note $c_{i} \neq 0$ for $2 \leq i \leq D$. So for any x, y with $\partial(x, y)=i$ the set $\Omega_{i-1,1}^{i} \neq \varnothing$. For any $w \in \Omega_{i-1,1}^{i}$, the integer $z_{i}:=\mathcal{H}_{i-1,1}^{i}(w)$ satisfies $0 \leq z_{i} \leq a_{1}$. But $a_{1} \neq 0$, so

$$
\frac{z_{i}}{a_{1}}=\frac{\left(q^{i}-q\right) \eta}{(\eta+1)\left(q^{i} \eta-q\right)}>0 \quad \text { and } \quad 1-\frac{z_{i}}{a_{1}}=\frac{\left(q^{i} \eta^{2}-q\right)}{(\eta+1)\left(q^{i} \eta-q\right)}>0
$$

Constraints on q and η

Lemma (2)

With the notation above, suppose Γ is not bipartite. The following hold.
(1) For $2 \leq i \leq D$, the scalar $q^{i} \eta-q$ has the same sign as $\eta(\eta+1)$.
(2) For $2 \leq i \leq D$, the scalar $q^{i} \eta^{2}-q$ has the same sign as η.

Proof.

Note $c_{i} \neq 0$ for $2 \leq i \leq D$. So for any x, y with $\partial(x, y)=i$ the set $\Omega_{i-1,1}^{i} \neq \varnothing$. For any $w \in \Omega_{i-1,1}^{i}$, the integer $z_{i}:=\mathcal{H}_{i-1,1}^{i}(w)$ satisfies $0 \leq z_{i} \leq a_{1}$. But $a_{1} \neq 0$, so

$$
\frac{z_{i}}{a_{1}}=\frac{\left(q^{i}-q\right) \eta}{(\eta+1)\left(q^{i} \eta-q\right)}>0 \quad \text { and } \quad 1-\frac{z_{i}}{a_{1}}=\frac{\left(q^{i} \eta^{2}-q\right)}{(\eta+1)\left(q^{i} \eta-q\right)}>0
$$

Since $q>1$, the result follows by induction on i.

Constraints on q and η

Lemma (3)

With the notation above, suppose Γ is not bipartite. The following holds.
(1) For $2 \leq i \leq D$, the scalar $q^{i} \eta-1$ has the same sign as $q \eta-1$.

Constraints on q and η

Lemma (3)

With the notation above, suppose Γ is not bipartite. The following holds.
(1) For $2 \leq i \leq D$, the scalar $q^{i} \eta-1$ has the same sign as $q \eta-1$.

Proof.

For each $i(2 \leq i \leq D)$, the scalar

$$
\mathcal{S}_{i, 2}^{i-1}(z)=L_{i}=\frac{c_{2} q\left(q^{i} \eta-1\right)}{(q+1)\left(q^{i} \eta-q\right)}
$$

is a positive integer.

Constraints on q and η

Lemma (3)

With the notation above, suppose Γ is not bipartite. The following holds.
(1) For $2 \leq i \leq D$, the scalar $q^{i} \eta-1$ has the same sign as $q \eta-1$.

Proof.

For each $i(2 \leq i \leq D)$, the scalar

$$
\mathcal{S}_{i, 2}^{i-1}(z)=L_{i}=\frac{c_{2} q\left(q^{i} \eta-1\right)}{(q+1)\left(q^{i} \eta-q\right)}
$$

is a positive integer. Since c_{2}, q, and $q+1$ are all positive, the result follows by induction on i.

Main Results

Lemma (4)

With the notation above, suppose Γ is not bipartite. The following hold.
(1) If $\eta>0$ then $\eta>1 / q$.
(2) If $\eta<0$ then $\eta>-1$.

Main Results

Lemma (4)
With the notation above, suppose Γ is not bipartite. The following hold.
(1) If $\eta>0$ then $\eta>1 / q$.
(2) If $\eta<0$ then $\eta>-1$.

Proof.

When $i=2$, the scalars $q^{2} \eta-q$ and $\eta(\eta+1)$ have the same sign.

Main Results

Lemma (4)

With the notation above, suppose Γ is not bipartite. The following hold.
(1) If $\eta>0$ then $\eta>1 / q$.
(2) If $\eta<0$ then $\eta>-1$.

Proof.

When $i=2$, the scalars $q^{2} \eta-q$ and $\eta(\eta+1)$ have the same sign.

Main Results

Lemma (5)

With the notation above, suppose Γ is not bipartite. The following holds.
(1) $\left(\eta+\frac{1}{q^{D-1}}\right)\left(\eta^{2}-\frac{1}{q^{D}}\right)<0$.

Main Results

Lemma (5)

With the notation above, suppose Γ is not bipartite. The following holds.
(1) $\left(\eta+\frac{1}{q^{D-1}}\right)\left(\eta^{2}-\frac{1}{q^{D}}\right)<0$.

Proof.

By (12) we have

$$
a_{1}=-\frac{(\eta+1)\left(q^{D} \eta-1\right)\left(q \eta^{2}-1\right)\left(q^{D} \eta^{2}+q\right)}{\eta(q \eta-1)\left(q^{D} \eta+q\right)\left(q^{D} \eta^{2}-1\right)}>0
$$

Main Results

Lemma (5)

With the notation above, suppose Γ is not bipartite. The following holds.
(1) $\left(\eta+\frac{1}{q^{D-1}}\right)\left(\eta^{2}-\frac{1}{q^{D}}\right)<0$.

Proof.

By (12) we have

$$
a_{1}=-\frac{(\eta+1)\left(q^{D} \eta-1\right)\left(q \eta^{2}-1\right)\left(q^{D} \eta^{2}+q\right)}{\eta(q \eta-1)\left(q^{D} \eta+q\right)\left(q^{D} \eta^{2}-1\right)}>0 .
$$

When $i=D$, Lemma (3) says $\left(q^{D} \eta-1\right)$ has same sign as $(q \eta-1)$.

Main Results

Lemma (5)

With the notation above, suppose Γ is not bipartite. The following holds.
(1) $\left(\eta+\frac{1}{q^{D-1}}\right)\left(\eta^{2}-\frac{1}{q^{D}}\right)<0$.

Proof.

By (12) we have

$$
a_{1}=-\frac{(\eta+1)\left(q^{D} \eta-1\right)\left(q \eta^{2}-1\right)\left(q^{D} \eta^{2}+q\right)}{\eta(q \eta-1)\left(q^{D} \eta+q\right)\left(q^{D} \eta^{2}-1\right)}>0 .
$$

When $i=D$, Lemma (3) says $\left(q^{D} \eta-1\right)$ has same sign as $(q \eta-1)$. When $i=2$, Lemma (2) says $\left(q \eta^{2}-1\right)$ has same sign as η.

Main Results

Lemma (5)

With the notation above, suppose Γ is not bipartite. The following holds.

- $\left(\eta+\frac{1}{q^{D-1}}\right)\left(\eta^{2}-\frac{1}{q^{D}}\right)<0$.

Proof.

By (12) we have

$$
a_{1}=-\frac{(\eta+1)\left(q^{D} \eta-1\right)\left(q \eta^{2}-1\right)\left(q^{D} \eta^{2}+q\right)}{\eta(q \eta-1)\left(q^{D} \eta+q\right)\left(q^{D} \eta^{2}-1\right)}>0
$$

When $i=D$, Lemma (3) says $\left(q^{D} \eta-1\right)$ has same sign as $(q \eta-1)$. When $i=2$, Lemma (2) says $\left(q \eta^{2}-1\right)$ has same sign as η.
Note $\left(q^{D} \eta^{2}+q\right)$ is positive since $q>1$.

Main Results

Lemma (5)

With the notation above, suppose Γ is not bipartite. The following holds.
(1) $\left(\eta+\frac{1}{q^{D-1}}\right)\left(\eta^{2}-\frac{1}{q^{D}}\right)<0$.

Proof.

By (12) we have

$$
a_{1}=-\frac{(\eta+1)\left(q^{D} \eta-1\right)\left(q \eta^{2}-1\right)\left(q^{D} \eta^{2}+q\right)}{\eta(q \eta-1)\left(q^{D} \eta+q\right)\left(q^{D} \eta^{2}-1\right)}>0
$$

When $i=D$, Lemma (3) says $\left(q^{D} \eta-1\right)$ has same sign as $(q \eta-1)$. When $i=2$, Lemma (2) says $\left(q \eta^{2}-1\right)$ has same sign as η.
Note $\left(q^{D} \eta^{2}+q\right)$ is positive since $q>1$. So $\left(q^{D} \eta+q\right)\left(q^{D} \eta^{2}-1\right)$ has the same sign as $-(\eta+1)$, which is negative by Lemma (4).

Main Results

We can now resolve the sign of η.

Main Results

We can now resolve the sign of η.
Lemma (6)
With the notation above, suppose Γ is not bipartite. The following hold.
(1) $\eta<0$.
(2) $h>0$.

Main Results

We can now resolve the sign of η.

Lemma (6)

With the notation above, suppose Γ is not bipartite. The following hold.
(1) $\eta<0$.
(2) $h>0$.

Proof.

(1). If $\eta>0$ we obtain the contradiction $D<2$, since by Lemmas (4),(5)

$$
\frac{1}{q^{2}}<\eta^{2}<\frac{1}{q^{D}} .
$$

Main Results

We can now resolve the sign of η.

Lemma (6)

With the notation above, suppose Γ is not bipartite. The following hold.
(1) $\eta<0$.
(2) $h>0$.

Proof.

(1). If $\eta>0$ we obtain the contradiction $D<2$, since by Lemmas (4),(5)

$$
\frac{1}{q^{2}}<\eta^{2}<\frac{1}{q^{D}} .
$$

(2). Since $\eta<0$ we have $\eta^{2}<1$, which implies $h>0$.

Main Results

Lemma (7)

With the notation above, suppose Γ is not bipartite. The following hold.
(1) $\eta<-\frac{1}{q^{D / 2}}$ or $\eta>-\frac{1}{q^{D-1}}$.
(2) $\eta>-\frac{1}{q^{(D-1) / 2}}$.

Main Results

Lemma (7)

With the notation above, suppose Γ is not bipartite. The following hold.
(1) $\eta<-\frac{1}{q^{D / 2}}$ or $\eta>-\frac{1}{q^{D-1}}$.
(2) $\eta>-\frac{1}{q^{(D-1) / 2}}$.

Proof.

(1). Lemma (5) says $\left(\eta+\frac{1}{q^{D-1}}\right)\left(\eta+\frac{1}{q^{D / 2}}\right)\left(\eta-\frac{1}{q^{D / 2}}\right)<0$.

Main Results

Lemma (7)

With the notation above, suppose Γ is not bipartite. The following hold.
(1) $\eta<-\frac{1}{q^{D / 2}}$ or $\eta>-\frac{1}{q^{D-1}}$.
(2) $\eta>-\frac{1}{q^{(D-1) / 2}}$.

Proof.

(1). Lemma (5) says $\left(\eta+\frac{1}{q^{D-1}}\right)\left(\eta+\frac{1}{q^{D / 2}}\right)\left(\eta-\frac{1}{q^{D / 2}}\right)<0$.

But $\eta<0$ so $\left(\eta+\frac{1}{q^{D-1}}\right)\left(\eta+\frac{1}{q^{D / 2}}\right)>0$.

Main Results

Lemma (7)

With the notation above, suppose Γ is not bipartite. The following hold.
(1) $\eta<-\frac{1}{q^{D / 2}}$ or $\eta>-\frac{1}{q^{D-1}}$.
(2) $\eta>-\frac{1}{q^{(D-1) / 2}}$.

Proof.

(1). Lemma (5) says $\left(\eta+\frac{1}{q^{D-1}}\right)\left(\eta+\frac{1}{q^{D / 2}}\right)\left(\eta-\frac{1}{q^{D / 2}}\right)<0$.

But $\eta<0$ so $\left(\eta+\frac{1}{q^{D-1}}\right)\left(\eta+\frac{1}{q^{D / 2}}\right)>0$.
(2). Since $\eta<0$, Lemma (2) at $i=D$ says $q^{D} \eta^{2}-q<0$.

Main Corollary

Putting the pieces together, we have the following.

Main Corollary

Putting the pieces together, we have the following.

Corollary

With the notation above, suppose Γ is not bipartite. Then q, η are real with $q>1$ and either

Main Corollary

Putting the pieces together, we have the following.

Corollary

With the notation above, suppose Γ is not bipartite. Then q, η are real with $q>1$ and either

$$
-1 / q^{(D-1) / 2}<\eta<-1 / q^{D / 2} \quad \text { or } \quad-1 / q^{D-1}<\eta<0 \text {. }
$$

Main Corollary

Putting the pieces together, we have the following.

Corollary

With the notation above, suppose Γ is not bipartite. Then q, η are real with $q>1$ and either

$$
-1 / q^{(D-1) / 2}<\eta<-1 / q^{D / 2} \quad \text { or } \quad-1 / q^{D-1}<\eta<0 \text {. }
$$

Main Corollary

Putting the pieces together, we have the following.

Corollary

With the notation above, suppose Γ is not bipartite. Then q, η are real with $q>1$ and either

$$
-1 / q^{(D-1) / 2}<\eta<-1 / q^{D / 2} \quad \text { or } \quad-1 / q^{D-1}<\eta<0 \text {. }
$$

- What's next? Use integrality!

The End

Thank you!

References

- A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-Regular Graphs. Springer-Verlag, Berlin, 1989.
- J. Caughman and N. Wolff. "The Terwilliger algebra of a distanceregular graph that supports a spin model". J. Algebraic Combin. 21 (2005), no. 3, pp. 289-310.
- B. Curtin and K. Nomura. "Some formulas for spin models on distance-regular graphs". J. Combin. Theory Ser. B, 75 (1999), pp. 206-236.
- F. Jaeger. "Towards a classification of spin models in terms of association schemes". Advanced Studies in Pure Math., 24 (1996) pp.197-225, 1996.
- K. Nomura and P. Terwilliger. "Spin models and distance-regular graphs of q-Racah type". arXiv:2308.11061 (2023)

