Balanced splittable Hadamard matrices: restrictions and constructions

Shuxing Li

University of Delaware

Joint work with Jonathan Jedwab and Samuel Simon

Waterloo Algebraic Graph Theory Seminar

December-11-2023

イロト イポト イヨト イヨト 二日

Internal structure matters!

æ

∃ ► < ∃ ►

Example (Hadamard matrix)

æ

(日) (四) (日) (日) (日)

Example (Hadamard matrix)

Definition (Hadamard matrix)

An $n \times n$ matrix H over $\{1, -1\}$ is a Hadamard matrix of order n if $HH^T = nI_n$ (row orthogonality) and $H^TH = nI_n$ (column orthogonality).

< ロト < 同ト < ヨト < ヨト

Example (Hadamard matrix)

Definition (Hadamard matrix)

An $n \times n$ matrix H over $\{1, -1\}$ is a Hadamard matrix of order n if $HH^T = nI_n$ (row orthogonality) and $H^TH = nI_n$ (column orthogonality).

Remark

A Hadamard matrix of order n exists \Leftrightarrow there exists an orthogonal basis of \mathbb{R}^n containing only $\{1, -1\}$ entries

< ロト < 同ト < ヨト < ヨト

A Hadamard matrix of order n exists only if n = 1, 2 or $n \equiv 0 \pmod{4}$.

э

イロト イポト イヨト イヨト

A Hadamard matrix of order n exists only if n = 1, 2 or $n \equiv 0 \pmod{4}$.

Conjecture (Hadamard matrix conjecture)

A Hadamard matrix of order n exists iff n = 1, 2 or $n \equiv 0 \pmod{4}$.

A Hadamard matrix of order n exists only if n = 1, 2 or $n \equiv 0 \pmod{4}$.

Conjecture (Hadamard matrix conjecture)

A Hadamard matrix of order n exists iff n = 1, 2 or $n \equiv 0 \pmod{4}$.

Namely, the existence of a $\{1,-1\}$ orthogonal basis in \mathbb{R}^n only depends on the dimension n.

A Hadamard matrix of order n exists only if n = 1, 2 or $n \equiv 0 \pmod{4}$.

Conjecture (Hadamard matrix conjecture)

A Hadamard matrix of order n exists iff n = 1, 2 or $n \equiv 0 \pmod{4}$.

Namely, the existence of a $\{1,-1\}$ orthogonal basis in \mathbb{R}^n only depends on the dimension n.

Smallest open case: n = 668.

A Hadamard matrix of order n exists only if n = 1, 2 or $n \equiv 0 \pmod{4}$.

Conjecture (Hadamard matrix conjecture)

A Hadamard matrix of order n exists iff n = 1, 2 or $n \equiv 0 \pmod{4}$.

Namely, the existence of a $\{1, -1\}$ orthogonal basis in \mathbb{R}^n only depends on the dimension n.

Smallest open case: n = 668.

A complete solution is by far elusive.

Hadamard Ma	trices
-------------	--------

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 二百

Circulant matrix:
$$\begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix}$$

Construction idea: imposing internal structures

Let A, B, C, D be $n \times n$ $\{1, -1\}$ matrices satisfying

• A, B, C, D are symmetric and circulant

•
$$AA^T + BB^T + CC^T + DD^T = 4nI_n$$

ヨト・イヨト

Circulant matrix:
$$\begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix}$$

Construction idea: imposing internal structures

Let A, B, C, D be $n \times n$ $\{1, -1\}$ matrices satisfying

• A, B, C, D are symmetric and circulant

•
$$AA^T + BB^T + CC^T + DD^T = 4nI_n$$

$$W = \begin{bmatrix} A & -B & -C & -D \\ B & A & -D & C \\ C & D & A & -B \\ D & C & B & A \end{bmatrix}$$

 $[D - C \quad B \quad A]$ W is a $4n \times 4n$ Williamson matrix, which is a special type of Hadamard matrices.

< (日) × < 日 × <

Circulant matrix:
$$\begin{bmatrix} a & b & c \\ c & a & b \\ b & c & a \end{bmatrix}$$

Construction idea: imposing internal structures

Let A, B, C, D be $n \times n$ $\{1, -1\}$ matrices satisfying

• A, B, C, D are symmetric and circulant

•
$$AA^T + BB^T + CC^T + DD^T = 4nI_n$$

$$W = \begin{bmatrix} A & -B & -C & -D \\ B & A & -D & C \\ C & D & A & -B \\ D & C & B & A \end{bmatrix}$$

W is a $4n \times 4n$ Williamson matrix, which is a special type of Hadamard matrices.

There is no Williamson matrix of order $4 \cdot 35$.

The lack of "universally good" construction template.

The lack of "universally good" construction template.

• The existing template either only generates a sparse set of all multiples of 4, or gets stuck/does not exist for certain order

The lack of "universally good" construction template.

- The existing template either only generates a sparse set of all multiples of 4, or gets stuck/does not exist for certain order
- Confining the scope to subset of Hadamard matrices with extra conditions does not make the problem much easier

The lack of "universally good" construction template.

- The existing template either only generates a sparse set of all multiples of 4, or gets stuck/does not exist for certain order
- Confining the scope to subset of Hadamard matrices with extra conditions does not make the problem much easier
- Humongous number of inequivalent Hamadard matrices: n = 28, 487; n = 32, > 3.6 million; n = 36, > 15 million

The lack of "universally good" construction template.

- The existing template either only generates a sparse set of all multiples of 4, or gets stuck/does not exist for certain order
- Confining the scope to subset of Hadamard matrices with extra conditions does not make the problem much easier
- Humongous number of inequivalent Hamadard matrices: n = 28, 487; n = 32, > 3.6 million; n = 36, > 15 million

Remark (Equivalence of Hadamard matrices)

Two Hadamard matrices are equivalent if they are identical up to permutation and negation of rows and columns.

A new perspective of internal structure of Hadamard matrices was proposed by Hadi Kharaghani and Sho Suda in 2019.

A new perspective of internal structure of Hadamard matrices was proposed by Hadi Kharaghani and Sho Suda in 2019.

Example (Balanced splittable Hadamard matrix)

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1
1	-1	1	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	1
1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1
1	-1	-1	1	1	-1	-1	1	-1	1	1	-1	-1	1	1	-1
1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1
1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1
1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1
1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1
1	1	-1	-1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1
1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1
1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1
1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	1	-1	1	-1
1	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	1	1	-1
1	-1	-1	1	-1	1	1	-1	-1	1	1	-1	1	-1	-1	1

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ w.r.t H_1 :

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ w.r.t H_1 :

• *H* is an $n \times n$ Hadamard matrix

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ w.r.t H_1 :

- H is an $n \times n$ Hadamard matrix
- H_1 has size $\ell \times n$

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ w.r.t H_1 :

- H is an $n \times n$ Hadamard matrix
- H_1 has size $\ell \times n$
- column inner products of $H_1 \in \{a, b\}$

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ w.r.t H_1 :

- H is an $n \times n$ Hadamard matrix
- H_1 has size $\ell \times n$
- column inner products of H₁ ∈ {a, b} equivalently, column inner products of H₂ ∈ {−a, −b}

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ w.r.t H_1 :

- H is an $n \times n$ Hadamard matrix
- H_1 has size $\ell \times n$
- column inner products of H₁ ∈ {a, b} equivalently, column inner products of H₂ ∈ {−a, −b}

Nondegenerate or convenient parameter domain

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ w.r.t H_1 :

- H is an $n \times n$ Hadamard matrix
- H_1 has size $\ell \times n$
- column inner products of H₁ ∈ {a, b} equivalently, column inner products of H₂ ∈ {−a, −b}

Nondegenerate or convenient parameter domain

• $2 \le \ell \le n-2$: two-valued column inner product property is for free if $\ell \in \{1, n-1, n\}$

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ w.r.t H_1 :

- H is an $n \times n$ Hadamard matrix
- H_1 has size $\ell \times n$
- column inner products of H₁ ∈ {a, b} equivalently, column inner products of H₂ ∈ {−a, −b}

Nondegenerate or convenient parameter domain

- $2 \le \ell \le n-2$: two-valued column inner product property is for free if $\ell \in \{1, n-1, n\}$
- $a \neq b$, wlog, a > b: $a = b \Rightarrow \ell \in \{1, n 1, n\}$

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ w.r.t H_1 :

- H is an $n \times n$ Hadamard matrix
- H_1 has size $\ell \times n$
- column inner products of $H_1 \in \{a, b\}$ equivalently, column inner products of $H_2 \in \{-a, -b\}$

Nondegenerate or convenient parameter domain

- $2 \le \ell \le n-2$: two-valued column inner product property is for free if $\ell \in \{1, n-1, n\}$
- $a \neq b$, wlog, a > b: $a = b \Rightarrow \ell \in \{1, n 1, n\}$
- $\ell \leq \frac{n}{2}$, (n, ℓ, a, b) -BSHM w.r.t $H_1 \Leftrightarrow (n, n \ell, -a, -b)$ -BSHM w.r.t H_2 (switching transformation)

A Hadamard matrix of order $n \ge 4$ is equivalent to a BSHM(n, 2, 2, 0) w.r.t a submatrix formed by 2 rows.

.∋...>

A Hadamard matrix of order $n \ge 4$ is equivalent to a BSHM(n, 2, 2, 0) w.r.t a submatrix formed by 2 rows.

By switching transformation, it is also equivalent to a BSHM(n, n-2, 0, -2) w.r.t a submatrix formed by the remaining n-2 rows.

A Hadamard matrix of order $n \ge 4$ is equivalent to a BSHM(n, 2, 2, 0) w.r.t a submatrix formed by 2 rows.

By switching transformation, it is also equivalent to a BSHM(n, n-2, 0, -2) w.r.t a submatrix formed by the remaining n-2 rows.

From now on, we further restrict that $2 < \ell < n - 2$.

A Hadamard matrix of order $n \ge 4$ is equivalent to a BSHM(n, 2, 2, 0) w.r.t a submatrix formed by 2 rows.

By switching transformation, it is also equivalent to a BSHM(n, n-2, 0, -2) w.r.t a submatrix formed by the remaining n-2 rows.

From now on, we further restrict that $2 < \ell < n - 2$.

When $2 < \ell < n-2$, the balanced splittable property reflects an in-depth internal structure of Hadamard matrices

Question

What is the relation between n and ℓ ?

æ

(日) (四) (日) (日) (日)
What is the relation between n and ℓ ?

Given a BSHM
$$(n, \ell, a, b)$$
 $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ w.r.t. H_1 , consider two scenarios:

2

What is the relation between n and ℓ ?

Given a BSHM (n, ℓ, a, b) $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ w.r.t. H_1 , consider two scenarios: • if b = -a and $\ell > a$, then the columns of H_1 form an equiangular tight frame: $n \le \frac{\ell(\ell+1)}{2}$, i.e., $\ell \ge \sqrt{2n + \frac{1}{4}} - \frac{1}{2}$

What is the relation between n and ℓ ?

Given a BSHM (n, ℓ, a, b) $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ w.r.t. H_1 , consider two scenarios:

- if b = -a and $\ell > a$, then the columns of H_1 form an equiangular tight frame: $n \le \frac{\ell(\ell+1)}{2}$, i.e., $\ell \ge \sqrt{2n + \frac{1}{4}} \frac{1}{2}$
- if $b \neq -a$ and $\ell > a$, then the columns of H_1 form a *two-distance* tight frame: $n \leq \frac{\ell(\ell+3)}{2}$, i.e., $\ell \geq \sqrt{2n + \frac{9}{4}} \frac{3}{2}$

э

What is the relation between n and ℓ ?

Given a BSHM (n, ℓ, a, b) $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ w.r.t. H_1 , consider two scenarios: • if b = -a and $\ell > a$, then the columns of H_1 form an equiangular tight frame: $n \le \frac{\ell(\ell+1)}{2}$, i.e., $\ell \ge \sqrt{2n + \frac{1}{4}} - \frac{1}{2}$ • if $b \ne -a$ and $\ell > a$, then the columns of H_1 form a two-distance tight frame: $n \le \frac{\ell(\ell+3)}{2}$, i.e., $\ell \ge \sqrt{2n + \frac{9}{4}} - \frac{3}{2}$ If $\ell > a$, we have roughly $\ell > \sqrt{2n}$.

э

What is the relation between n and ℓ ?

Given a BSHM (n, ℓ, a, b) $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ w.r.t. H_1 , consider two scenarios: • if b = -a and $\ell > a$, then the columns of H_1 form an equiangular tight frame: $n \le \frac{\ell(\ell+1)}{2}$, i.e., $\ell \ge \sqrt{2n + \frac{1}{4}} - \frac{1}{2}$ • if $b \ne -a$ and $\ell > a$, then the columns of H_1 form a two-distance tight frame: $n \le \frac{\ell(\ell+3)}{2}$, i.e., $\ell \ge \sqrt{2n + \frac{9}{4}} - \frac{3}{2}$ If $\ell > a$, we have roughly $\ell \ge \sqrt{2n}$.

The case $\ell = a$ behaves very differently.

э

What is the relation between n and ℓ ?

Given a BSHM (n, ℓ, a, b) $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ w.r.t. H_1 , consider two scenarios:

- if b = -a and $\ell > a$, then the columns of H_1 form an equiangular tight frame: $n \le \frac{\ell(\ell+1)}{2}$, i.e., $\ell \ge \sqrt{2n + \frac{1}{4}} \frac{1}{2}$
- if $b \neq -a$ and $\ell > a$, then the columns of H_1 form a *two-distance* tight frame: $n \leq \frac{\ell(\ell+3)}{2}$, i.e., $\ell \geq \sqrt{2n + \frac{9}{4}} \frac{3}{2}$

If $\ell > a$, we have roughly $\ell \ge \sqrt{2n}$.

The case $\ell = a$ behaves very differently.

- $\ell > a$: repeated columns in H_1 prohibited
- $\ell = a$: repeated columns in H_1 guaranteed

э

Kharaghani and Suda discovered a connection between BSHM and strongly regular graph.

▶ ∢ ∃ ▶

Kharaghani and Suda discovered a connection between BSHM and strongly regular graph.

Example (BSHM and associated SRG)

H is a BSHM(4, 2, 2, 0) w.r.t H_1

э

Suppose H is a $BSHM(n, \ell, a, -a)$ with respect to H_1 .

э

Suppose H is a BSHM($n, \ell, a, -a$) with respect to H₁.

$$(1 n(\ell-a^2)) = \ell^2 - a^2$$

э

<ロト < 四ト < 三ト < 三ト

Suppose H is a BSHM(n, ℓ , a, -a) with respect to H₁. • $n(\ell - a^2) = \ell^2 - a^2$

It can be transformed to a BSHM(n, l, a, -a) H' = $\begin{bmatrix} H'_1 \\ H'_2 \end{bmatrix}$ with respect to H'_1 , and $H'_1 \mathbf{1} = \mathbf{0}$. The associated SRG has parameters $(v, k', \lambda', \mu') = (n, \frac{(n-1)a-l}{2a}, \frac{n-4}{4} + \frac{n-4l}{4a}, \frac{n(a-1)}{4a})$

Suppose H is a BSHM(n, ℓ , a, -a) with respect to H₁. • $n(\ell - a^2) = \ell^2 - a^2$

- It can be transformed to a BSHM(n, l, a, -a) H'' = $\begin{bmatrix} H_1'' \\ H_2'' \end{bmatrix}$ with respect to H_1'' , and $H_2'' \mathbf{1} = \mathbf{0}$. The associated SRG has parameters $\left(v, k' + \frac{n}{2a}, \lambda' + \frac{n}{2a}, \mu' + \frac{n}{2a}\right)$

э

ヘロト 人間ト 人間ト 人間ト

Suppose H is a BSHM(n, ℓ , a, -a) with respect to H₁. • $n(\ell - a^2) = \ell^2 - a^2$

- It can be transformed to a BSHM(n, l, a, -a) H'' = $\begin{bmatrix} H_1'' \\ H_2'' \end{bmatrix}$ with respect to H_1'' , and $H_2'' \mathbf{1} = \mathbf{0}$. The associated SRG has parameters $\left(v, k' + \frac{n}{2a}, \lambda' + \frac{n}{2a}, \mu' + \frac{n}{2a}\right)$

(a) a is even and $\frac{\ell}{a}$ is an odd integer and $\frac{n}{4a}$ is an integer.

< □ > < □ > < □ > < □ > < □ > < □ >

Suppose $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ is a BSHM(n, ℓ , a, b) w.r.t. H_1 , $b \neq -a$. The matrix H has exactly one of Types 1 and 2. H has Type 1, i.e., $H_1 \mathbf{1} = \mathbf{0}$

< ロト < 同ト < ヨト < ヨト

Suppose $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ is a BSHM(n, ℓ , a, b) w.r.t. H_1 , $b \neq -a$. The matrix H has exactly one of Types 1 and 2. H has Type 1, i.e., $H_1 \mathbf{1} = \mathbf{0}$ $n(\ell + ab) = (\ell - a)(\ell - b)$ and $ab \leq 0$

Suppose $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ is a BSHM(n, ℓ , a, b) w.r.t. H_1 , $b \neq -a$. The matrix H has exactly one of Types 1 and 2. H has Type 1, i.e., $H_1 \mathbf{1} = \mathbf{0}$ If $n(\ell + ab) = (\ell - a)(\ell - b)$ and $ab \leq 0$

2 The associated SRG has parameters

$$(n, \frac{\ell-b}{b-a} + \frac{nb}{b-a}, \frac{nb(b+1)}{(b-a)^2} + \frac{2(\ell-b)}{b-a} - \frac{n}{b-a}, \frac{nb(b+1)}{(b-a)^2}).$$

Suppose $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ is a BSHM(n, ℓ , a, b) w.r.t. H_1 , $b \neq -a$. The matrix H has exactly one of Types 1 and 2. H has Type 1, i.e., $H_1 \mathbf{1} = \mathbf{0}$ $\mathbf{1} n(\ell + ab) = (\ell - a)(\ell - b)$ and $ab \leq 0$

2 The associated SRG has parameters

$$(n, \frac{\ell-b}{b-a} + \frac{nb}{b-a}, \frac{nb(b+1)}{(b-a)^2} + \frac{2(\ell-b)}{b-a} - \frac{n}{b-a}, \frac{nb(b+1)}{(b-a)^2}).$$

3
$$\frac{\ell-b}{b-a}$$
 and $\frac{n}{b-a}$ and $\frac{n(b+1)}{2(b-a)}$ and $\frac{nb(b+1)}{(b-a)^2}$ are integers

Theorem (Kharaghani and Suda (2019), continued)

H has Type 2, i.e., $H_2 \mathbf{1} = \mathbf{0}$

э

< ロト < 同ト < ヨト < ヨト

Theorem (Kharaghani and Suda (2019), continued)

H has Type 2, i.e., $H_2 \mathbf{1} = \mathbf{0}$

$$\ \ \, \mathbf{n}(\ell+\mathsf{a}\mathsf{b}-\mathsf{a}-\mathsf{b})=(\ell-\mathsf{a})(\ell-\mathsf{b}) \ \, \mathsf{and} \ \, \mathsf{ab}\leq 0 \\$$

Interpretended SRG has parameters

$$(n, \frac{\ell - b}{b - a} + \frac{n(b - 1)}{b - a}, \frac{nb(b - 1)}{(b - a)^2} + \frac{2(\ell - b)}{b - a} - \frac{n}{b - a}, \frac{nb(b - 1)}{(b - a)^2}).$$

$$\frac{\ell - b}{b - a} \text{ and } \frac{n}{b - a} \text{ and } \frac{n(b - 1)}{2(b - a)} \text{ and } \frac{nb(b - 1)}{(b - a)^2} \text{ are integers}$$

primitive SRG

imprimitive SRG

イロト イヨト イヨト イヨト

æ

We call a BSHM primitive or imprimitive if the associated SRG is primitive or imprimitive.

Table: Five classes for a BSHM(n, ℓ, a, b) satisfying $2 < \ell \leq \frac{n}{2}$ (Jedwab, Li, Simon (2023))

b = -a	b eq -a				
	Type 1		Type 2		
primitive	imprimitive	primitive	imprimitive	primitive	

æ

	b eq -a			
	Type 2			
	imprimitive	primitive		
parameter	$(n, \ell, a, b) =$	$n=rac{(\ell-a)(\ell-b)}{\ell+ab-a-b}$,		
relations	(8 <i>rs</i> , 4 <i>s</i> , 4 <i>s</i> , 0)	$\ell \equiv a \equiv b \pmod{4}$,		
	for $r, s \ge 1$	$a > 0 \ge b$		
G	4sK _{2r}	$ \begin{array}{c} \mathbf{v} = \mathbf{n}, \\ \mathbf{k} = \frac{\ell - b + n(b-1)}{b-a}, \\ \lambda = \mu + \frac{2(\ell-b) - n}{b-a}, \\ \mu = \frac{nb(b-1)}{(b-a)^2}, \end{array} $		
integers		$\frac{\frac{\ell-b}{b-a}, \frac{n}{b-a},}{\frac{n(b-1)}{2(b-a)}, \frac{nb(b-1)}{(b-a)^2}}$		

Ξ.

Suppose there exists a BSHM(n, ℓ , a, b) with $2 < \ell < n - 2$. Then $\ell \equiv a \equiv b \pmod{4}$.

< A

3 1 4 3 1

Suppose there exists a BSHM(n, ℓ , a, b) with $2 < \ell < n-2$. Then $\ell \equiv a \equiv b \pmod{4}$.

Remark

Using the above theorem, we can show there exists no $(36, \ell, a, b)$ BSHM with $2 < \ell < 34$.

Suppose there exists a BSHM(n, ℓ , a, b) with $2 < \ell < n-2$. Then $\ell \equiv a \equiv b \pmod{4}$.

Remark

Using the above theorem, we can show there exists no $(36, \ell, a, b)$ BSHM with $2 < \ell < 34$.

Kharaghani and Suda proved this result using detailed analysis and computer search.

Suppose there exists a BSHM(n, ℓ , a, b) with $2 < \ell < n - 2$. Then $\ell \equiv a \equiv b \pmod{4}$.

Remark

Using the above theorem, we can show there exists no $(36, \ell, a, b)$ BSHM with $2 < \ell < 34$.

Kharaghani and Suda proved this result using detailed analysis and computer search.

Among more than 15 million inequivalent Hadamard matrices of order 36, none of them is balanced splittable.

	b eq -a			
	Type 2			
	imprimitive	primitive		
parameter	$(n,\ell,a,b) =$	$n=rac{(\ell-a)(\ell-b)}{\ell+ab-a-b}$,		
relations	(8 <i>rs</i> , 4 <i>s</i> , 4 <i>s</i> , 0)	$\ell \equiv a \equiv b \pmod{4}$,		
	for $r, s \ge 1$	$a > 0 \ge b$		
		v = n,		
		$k = \frac{\ell - b + n(b-1)}{b-a}$,		
G	4sK ₂ r	$\lambda = \mu + \frac{\tilde{2}(\ell - b) - n}{b - a},$		
		$\mu = \frac{nb(b-1)}{(b-a)^2}$		
integers		$\frac{\ell-b}{b-a}, \frac{n}{b-a},$		
meegers		$\frac{n(b-1)}{2(b-a)}, \ \frac{nb(b-1)}{(b-a)^2}$		

æ

Kronecker product

$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$H_4 = H_2 \otimes H_2 = \begin{bmatrix} H_2 & H_2 \\ H_2 & -H_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & | & 1 & 1 \\ 1 & -1 & | & 1 & -1 \\ 1 & 1 & | & -1 & -1 \\ 1 & -1 & | & -1 & 1 \end{bmatrix}$$

Shuxing Li (University of Delaware) Balanced splittable Hadamard matrices

æ

(日) (四) (日) (日) (日)

Kronecker product

$$H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
$$H_4 = H_2 \otimes H_2 = \begin{bmatrix} H_2 & H_2 \\ H_2 & -H_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & | & 1 & 1 \\ 1 & -1 & | & 1 & -1 \\ \hline 1 & 1 & | & -1 & -1 \\ 1 & -1 & | & -1 & 1 \end{bmatrix}$$

Repeatedly applying the Kronecker product, Hadamard matrix of order 2^m can be constructed for each $m \ge 1$.

There exists a BSHM(8rs, 4s, 4s, 0) in each of the following cases:

there exist Hadamard matrices of order 2r and 4s

2 there exist Hadamard matrices of order 4r and 2s.

There exists a BSHM(8rs, 4s, 4s, 0) in each of the following cases:

there exist Hadamard matrices of order 2r and 4s

2 there exist Hadamard matrices of order 4r and 2s.

Remark

Following the first construction above, fix s such that a Hadamard matrix of order 4s exists. Set $r = 2^m$ for some $m \ge 1$. Note that $n = 8rs = 2^{m+1}\ell$ is not bounded by ℓ^2 as m can be arbitrarily large.

There exists a BSHM(8rs, 4s, 4s, 0) in each of the following cases:

there exist Hadamard matrices of order 2r and 4s

2 there exist Hadamard matrices of order 4r and 2s.

Remark

Following the first construction above, fix s such that a Hadamard matrix of order 4s exists. Set $r = 2^m$ for some $m \ge 1$. Note that $n = 8rs = 2^{m+1}\ell$ is not bounded by ℓ^2 as m can be arbitrarily large. In contrast, for BSHM (n, ℓ, a, b) with $\ell > a$, $n \le \frac{\ell(\ell+3)}{2}$.

< ロト < 同ト < ヨト < ヨト

There exists a BSHM(8rs, 4s, 4s, 0) in each of the following cases:

there exist Hadamard matrices of order 2r and 4s

2 there exist Hadamard matrices of order 4r and 2s.

Remark

Following the first construction above, fix s such that a Hadamard matrix of order 4s exists. Set $r = 2^m$ for some $m \ge 1$. Note that $n = 8rs = 2^{m+1}\ell$ is not bounded by ℓ^2 as m can be arbitrarily large. In contrast, for BSHM (n, ℓ, a, b) with $\ell > a$, $n \le \frac{\ell(\ell+3)}{2}$. The two cases $\ell > a$ and $\ell = a$, namely, repeated columns in H_1 are

prohibited or guaranteed, are essentially different.

< □ > < □ > < □ > < □ > < □ > < □ >

There exists a BSHM(8rs, 4s, 4s, 0) in each of the following cases:

there exist Hadamard matrices of order 2r and 4s

2 there exist Hadamard matrices of order 4r and 2s.

Remark

Following the first construction above, fix s such that a Hadamard matrix of order 4s exists. Set $r = 2^m$ for some $m \ge 1$. Note that $n = 8rs = 2^{m+1}\ell$ is not bounded by ℓ^2 as m can be arbitrarily large. In contrast, for BSHM (n, ℓ, a, b) with $\ell > a$, $n \le \frac{\ell(\ell+3)}{2}$.

The two cases $\ell > a$ and $\ell = a$, namely, repeated columns in H_1 are prohibited or guaranteed, are essentially different.

This observation follows from incorporating the primitive/imprimitive notation of SRG into BSHM.

э

< □ > < □ > < □ > < □ > < □ > < □ >
	1	$b \neq -a$						
	Type 2							
	imprimitive	primitive						
parameter	$(n, \ell, a, b) =$	$n=rac{(\ell-a)(\ell-b)}{\ell+ab-a-b}$,						
relations	(8 <i>rs</i> , 4 <i>s</i> , 4 <i>s</i> , 0)	$\ell \equiv a \equiv b \pmod{4}$,						
	for $r, s \ge 1$	$a > 0 \ge b$						
		v = n,						
		$k = \frac{\ell - b + n(b-1)}{b-a}$,						
G	4 <i>sK</i> 2r	$\lambda = \mu + \frac{2(\ell - b) - n}{b - a},$						
		$\mu = \frac{nb(b-1)}{(b-a)^2}$						
integers		$\frac{\ell-b}{b-a}, \frac{n}{b-a},$						
integers		$\frac{n(b-1)}{2(b-a)}, \frac{nb(b-1)}{(b-a)^2}$						

æ

Theorem (Jedwab, Li, Simon (2023))

Suppose $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ is a BSHM(8rs, 4s, 4s, 0) with respect to H_1 (Type II and imprimitive). Then the associated SRG is $4sK_{2r}$. There exists a Hadamard matrix L of order 4s, and the columns of H can be reordered so that $H_1 = \underbrace{\begin{bmatrix} L & L & \dots & L \end{bmatrix}}_{2r}$.

Theorem (Jedwab, Li, Simon (2023))

Suppose $H = \begin{bmatrix} H_1 \\ H_2 \end{bmatrix}$ is a BSHM(8rs, 4s, 4s, 0) with respect to H_1 (Type II and imprimitive). Then the associated SRG is $4sK_{2r}$. There exists a Hadamard matrix L of order 4s, and the columns of H can be reordered so that $H_1 = \underbrace{\begin{bmatrix} L & L & \dots & L \end{bmatrix}}_{2r}$.

Question

For primitive BSHM, what structural information is contained the associated SRG?

Result (Known constructions)

Suppose there exist Hadamard matrices of orders n and s. Then there exists:

- **1** $BSHM(n^2, 2n 2, n 2, -2)$ for $n \ge 2$
- 2 $BSHM(n^2, 2n 1, n 1, -1)$ for $n \ge 4$
- **3** BSHM(ns, n, n, 0) for $n \ge 2$
- § $BSHM(2^{2m}, 2^{m-1}(2^m 1), 2^{m-1}, -2^{m-1})$ for $m \ge 2$
- Solution BSHM(q(q + 1), q, q, -1) for $q \ge 3$, $q \equiv 3 \mod 4$, where q + 1 is the order of a skew-type Hadamard matrix
- **6** $BSHM(4n^2, 2n^2 n, n, -n)$

Most known BSHMs are constructed via Kronecker product. We want to find "primary constructions" that do not depend on Kronecker product.

< ロト < 同ト < ヨト < ヨト

We proposed a primary construction based on the character table of elementary abelian 2-groups.

Example (Character of elementary abelian 2-groups)

 $G = \mathbb{Z}_2 imes \mathbb{Z}_2$,

Each $(a, b) \in G$ induces a character $\chi_{(a,b)}$, for instance

$$\chi_{(1,1)}((0,1)) = (-1)^{0 \cdot 1} \cdot (-1)^{1 \cdot 1} = 1 \cdot (-1) = -1.$$

Each character $\chi_{(a,b)}$ induces a group homomorphism

$$\begin{split} \chi_{(a,b)} &: G &\mapsto \{1,-1\} \\ & (c,d) \mapsto (-1)^{ac} \cdot (-1)^{bd} = (-1)^{ac+bd} \end{split}$$

Example (Character of elementary abelian 2-groups)

 $G = \mathbb{Z}_2 imes \mathbb{Z}_2$,

Each $(a, b) \in G$ induces a character $\chi_{(a,b)}$, for instance

$$\chi_{(1,1)}((0,1)) = (-1)^{0 \cdot 1} \cdot (-1)^{1 \cdot 1} = 1 \cdot (-1) = -1.$$

Each character $\chi_{(a,b)}$ induces a group homomorphism

$$egin{array}{ll} \chi_{(a,b)}: \mathcal{G} &\mapsto \{1,-1\} \ (c,d) \mapsto (-1)^{ac} \cdot (-1)^{bd} = (-1)^{ac+bd} \end{array}$$

character group:
$$\widehat{G} = \{\chi_g \mid g \in G\} \cong G$$
.

 $G = \mathbb{Z}_2 \times \mathbb{Z}_2.$

æ

イロト イヨト イヨト イヨト

 $G = \mathbb{Z}_2 \times \mathbb{Z}_2.$

The character table of G is a $|G| \times |G|$ matrix H with rows indexed by elements of G and columns by \widehat{G} .

 $G = \mathbb{Z}_2 \times \mathbb{Z}_2.$

The character table of G is a $|G| \times |G|$ matrix H with rows indexed by elements of G and columns by \widehat{G} .

 $\chi_{(1,1)}((0,1)) = -1$

э

 $G = \mathbb{Z}_2 \times \mathbb{Z}_2.$

The character table of G is a $|G| \times |G|$ matrix H with rows indexed by elements of G and columns by \widehat{G} .

 $\chi_{(1,1)}((0,1)) = -1$ *H* is a Hadamard matrix of order 4.

 $G = \mathbb{Z}_2 \times \mathbb{Z}_2.$

The character table of G is a $|G| \times |G|$ matrix H with rows indexed by elements of G and columns by \widehat{G} .

 $\chi_{(1,1)}((0,1)) = -1$

H is a Hadamard matrix of order 4.

The character table of an elementary abelian 2-group serves as the underlying Hadamard matrix. To construct a BSHM, it remains to properly split the matrix.

Example (Partial difference set)

Let $G = \mathbb{Z}_2^4$ and $D = \{(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1)\}$. The multiset $\{\{x - y \mid x, y \in D, x \neq y\}\}$ contains

Example (Partial difference set)

Let $G = \mathbb{Z}_2^4$ and $D = \{(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1)\}$. The multiset $\{\{x - y \mid x, y \in D, x \neq y\}\}$ contains

- each element of D exactly 2 times
- each nonidentity element of $G \setminus D$ exactly 0 time

Example (Partial difference set)

Let $G = \mathbb{Z}_2^4$ and $D = \{(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1)\}$. The multiset $\{\{x - y \mid x, y \in D, x \neq y\}\}$ contains

each element of D exactly 2 times

• each nonidentity element of $G \setminus D$ exactly 0 time

D is a (16, 3, 2, 0) partial difference set in G.

Note that $D = \{(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1)\}$ is a (16, 3, 2, 0) partial difference set in $G = \mathbb{Z}_2^4$. Let H be the character table of G.

BSHM(16, 3, 3, -1) H w.r.t. red submatrix

Γ1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	ך 1
1	$^{-1}$	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1
1	. – 1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1
1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1
1	1	1	1	1	1	1	1	-1	-1	-1	$^{-1}$	$^{-1}$	$^{-1}$	-1	-1
1	1	1	1	$^{-1}$	-1	-1	$^{-1}$	-1	-1	-1	$^{-1}$	1	1	1	1
1	$^{-1}$	1	-1	$^{-1}$	1	-1	1	1	-1	1	$^{-1}$	$^{-1}$	1	-1	1
1	1	$^{-1}$	-1	1	1	-1	$^{-1}$	-1	-1	1	1	$^{-1}$	$^{-1}$	1	1
1	$^{-1}$	$^{-1}$	1	$^{-1}$	1	1	$^{-1}$	-1	1	1	$^{-1}$	1	$^{-1}$	-1	1
1	1	$^{-1}$	-1	$^{-1}$	-1	1	1	1	1	-1	$^{-1}$	$^{-1}$	$^{-1}$	1	1
1	$^{-1}$	$^{-1}$	1	1	-1	-1	1	-1	1	1	$^{-1}$	$^{-1}$	1	1	-1
1	$^{-1}$	1	-1	$^{-1}$	1	-1	1	-1	1	-1	1	1	$^{-1}$	1	-1
1	$^{-1}$	$^{-1}$	1	$^{-1}$	1	1	$^{-1}$	1	-1	-1	1	$^{-1}$	1	1	-1
1	$^{-1}$	1	-1	1	-1	1	$^{-1}$	-1	1	-1	1	$^{-1}$	1	-1	1
1	1	$^{-1}$	$^{-1}$	$^{-1}$	$^{-1}$	1	1	$^{-1}$	$^{-1}$	1	1	1	1	$^{-1}$	-1

• Partial difference sets in \mathbb{Z}_2^n are well studied objects. We get more than 10 infinite families of BSHMs not coming from the Kronecker product.

- Partial difference sets in \mathbb{Z}_2^n are well studied objects. We get more than 10 infinite families of BSHMs not coming from the Kronecker product.
- For n ∈ {16, 64, 256} and each plausible parameter set (n, ℓ, a, b), there is an BSHM(n, ℓ, a, b) derived from the partial difference set construction.

5 disjoint partial difference sets in \mathbb{Z}_2^4 :

$$\begin{split} D_1 &= \{(0,0,0,1),(0,0,1,0),(0,0,1,1)\}, D_2 = \{(0,1,0,0),(1,0,0,0),(1,1,0,0)\}\\ D_3 &= \{(0,1,0,1),(1,0,1,0),(1,1,1,1)\}, D_4 = \{(0,1,1,0),(1,0,1,1),(1,1,0,1)\}\\ D_5 &= \{(0,1,1,1),(1,0,0,1),(1,1,1,0)\} \end{split}$$

			B	SHM(16, 3,	3, -1)	Ηw.	r.t. m	ultiple	subm	natrice	S			
Γ1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	ך 1
1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1
1	. – 1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1
1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1
1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1
1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1	1	1	1	1
1	-1	1	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	1
1	1	-1	-1	1	1	-1	-1	-1	-1	1	1	-1	-1	1	1
1	-1	-1	1	-1	1	1	-1	-1	1	1	-1	1	-1	-1	1
1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1
1	-1	-1	1	1	-1	-1	1	-1	1	1	-1	-1	1	1	-1
1	-1	1	-1	-1	1	-1	1	-1	1	-1	1	1	-1	1	-1
1	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	1	1	-1
1	-1	1	-1	1	-1	1	-1	-1	1	-1	1	-1	1	-1	1
1	1	$^{-1}$	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1

A D N A B N A B N A B N

BSHM w.r.t multiple submatrices

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
1	1	1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1
1	-1	1	-1	-1	1	-1	1	1	-1	1	-1	-1	1	-1	1
1	1	-1	-1	1	1	-1	-1	1	1	-1	-1	1	1	-1	-1
1	-1	-1	1	1	-1	-1	1	-1	1	1	-1	-1	1	1	-1
1	1	-1	-1	-1	-1	1	1	1	1	-1	-1	-1	-1	1	1
1	1	-1	-1	-1	-1	1	1	-1	-1	1	1	1	1	-1	-1
1	1	1	1	1	1	1	1	-1	-1	-1	-1	-1	-1	-1	-1
1 1	$1 \\ -1$	1 1	$1 \\ -1$	1 1	$1 \\ -1$	1 1	$1 \\ -1$	$^{-1}_{-1}$	-11	$^{-1}_{-1}$	-11	$^{-1}_{-1}$	-11	$^{-1}_{-1}$	-11
1 1 1	$\begin{array}{c} 1 \\ -1 \\ 1 \end{array}$	$1 \\ 1 \\ -1$	$1 \\ -1 \\ -1$	1 1 1	$\begin{array}{c} 1 \\ -1 \\ 1 \end{array}$	$1 \\ 1 \\ -1$	$1 \\ -1 \\ -1$	$-1 \\ -1 \\ -1$	$-1 \\ 1 \\ -1$	$-1 \\ -1 \\ 1$	$-1 \\ 1 \\ 1$	-1 -1 -1	$-1 \\ 1 \\ -1$	$-1 \\ -1 \\ 1$	-1 1 1
1 1 1 1	1 -1 1 -1	1 1 -1 -1	1 -1 -1 1	1 1 1 1	1 -1 1 -1	1 1 -1 -1	1 -1 -1 1	-1 -1 -1 1	-1 1 -1 -1	$-1 \\ -1 \\ 1 \\ -1$	-1 1 1 1	-1 -1 -1 1	-1 1 -1 -1	$-1 \\ -1 \\ 1 \\ -1$	-1 1 1
1 1 1 1 1	1 -1 1 -1 1	1 1 -1 -1 1	1 -1 -1 1 1	1 1 1 1 -1	1 -1 1 -1 -1	1 1 -1 -1 -1	1 -1 -1 1 -1	-1 -1 -1 1 -1	-1 1 -1 -1 -1	-1 -1 1 -1 -1	-1 1 1 1 -1	-1 -1 -1 1 1	-1 1 -1 -1 1	-1 -1 1 -1 1	-1 1 1 1 1
1 1 1 1 1 1	1 -1 1 -1 1 -1	1 -1 -1 1 1	1 -1 1 1 -1	1 1 1 -1 -1	1 -1 -1 -1 1	1 -1 -1 -1 -1	1 -1 1 -1 1 1	-1 -1 -1 1 -1 -1	-1 1 -1 -1 -1 1	-1 -1 1 -1 -1 -1	-1 1 1 -1 1	-1 -1 -1 1 1 1	-1 1 -1 -1 1 -1	-1 -1 1 -1 1 1	-1 1 1 1 -1
1 1 1 1 1 1 1	1 -1 -1 1 -1 -1 -1	$ \begin{array}{c} 1 \\ -1 \\ -1 \\ 1 \\ 1 \\ -1 \end{array} $	1 -1 1 1 -1 1 -1 1	1 1 1 -1 -1 -1	1 -1 -1 -1 1 1 1	1 -1 -1 -1 -1 1	1 -1 1 -1 1 -1 1 -1	-1 -1 1 -1 -1 -1 1 1	-1 1 -1 -1 1 1 -1	-1 -1 1 -1 -1 -1 -1	-1 1 1 -1 1 1 1	-1 -1 1 1 1 1 -1	-1 1 -1 1 -1 1 -1 1	-1 -1 1 -1 1 1 1 1	-1 1 1 1 -1 -1

3

Future Problems

Parameter range of ℓ

For BSHM(n, ℓ, a, b) with $\ell > a$, further narrow down the range $\sqrt{2n} \le \ell \le \frac{n}{2}$ or prove the tightness.

Future Problems

Parameter range of ℓ

For BSHM(n, ℓ, a, b) with $\ell > a$, further narrow down the range $\sqrt{2n} \le \ell \le \frac{n}{2}$ or prove the tightness.

upper bound is nearly tight: BSHM $(4n^2, 2n^2 - n, n, -n)$ exists whenever a Hadamard matrix of order *n* exists.

Future Problems

Parameter range of ℓ

For BSHM(n, ℓ, a, b) with $\ell > a$, further narrow down the range $\sqrt{2n} \le \ell \le \frac{n}{2}$ or prove the tightness.

upper bound is nearly tight: BSHM $(4n^2, 2n^2 - n, n, -n)$ exists whenever a Hadamard matrix of order *n* exists.

lower bound is less clear: derived from equiangular tight frames and two-distance tight frames in $\mathbb{R}^\ell.$

• BSHM
$$(4n^2, 2n^2 - n, n, -n)$$
:

æ

イロト イヨト イヨト イヨト

• BSHM $(4n^2, 2n^2 - n, n, -n)$:

exists for $n \equiv 0 \mod 4$, assuming the Hadamard matrix conjecture holds true

.∋...>

< A

• BSHM $(4n^2, 2n^2 - n, n, -n)$:

exists for $n \equiv 0 \mod 4$, assuming the Hadamard matrix conjecture holds true

does not exists for odd n

• BSHM $(4n^2, 2n^2 - n, n, -n)$:

exists for $n \equiv 0 \mod 4$, assuming the Hadamard matrix conjecture holds true

does not exists for odd n

existence open for $n \equiv 2 \mod 4$. A crucial open case: BSHM(144, 66, 6, -6)

• BSHM $(4n^2, 2n^2 - n, n, -n)$:

exists for $n \equiv 0 \mod 4$, assuming the Hadamard matrix conjecture holds true

does not exists for odd n

existence open for $n \equiv 2 \mod 4$. A crucial open case: BSHM(144, 66, 6, -6)

 A construction by Kharaghani and Suda: a BSHM(q(q + 1), q, q, −1) for q ≥ 3, where q + 1 is the order of a skew-type Hadamard matrix.

• BSHM $(4n^2, 2n^2 - n, n, -n)$:

exists for $n \equiv 0 \mod 4$, assuming the Hadamard matrix conjecture holds true

does not exists for odd n

existence open for $n \equiv 2 \mod 4$. A crucial open case: BSHM(144, 66, 6, -6)

- A construction by Kharaghani and Suda: a BSHM(q(q + 1), q, q, −1) for q ≥ 3, where q + 1 is the order of a skew-type Hadamard matrix.
- Identify BSHMs from known constructions: there have been plenty of constructions of Hadamard matrices, some of them may already give BSHMs.

Main References

- Kharaghani and Suda, Discrete Mathematics, 2019.
- Fickus, Jasper, Mixon, and Peterson, Applied and Computational Harmonic Analysis, 2021.
- Jedwab, Li, and Simon, Electronic Journal of Combinatorics, 2023.
- Kharaghani and Suda, Electronic Journal of Combinatorics, 2023.