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Internal structure matters!
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Hadamard Matrices

Example (Hadamard matrix)

H1 =
[
1
]

H2 =

[
1 1
1 −1

]
H4 =


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1



Definition (Hadamard matrix)

An n × n matrix H over {1,−1} is a Hadamard matrix of order n if
HHT = nIn (row orthogonality) and HTH = nIn (column orthogonality).

Remark

A Hadamard matrix of order n exists ⇔ there exists an orthogonal basis of
Rn containing only {1,−1} entries
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Hadamard Matrices

Exercise (Necessary condition)

A Hadamard matrix of order n exists only if n = 1, 2 or n ≡ 0 (mod 4).

Conjecture (Hadamard matrix conjecture)

A Hadamard matrix of order n exists iff n = 1, 2 or n ≡ 0 (mod 4).

Namely, the existence of a {1,−1} orthogonal basis in Rn only depends on
the dimension n.

Smallest open case: n = 668.

A complete solution is by far elusive.
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Hadamard Matrices

Circulant matrix:

a b c
c a b
b c a



Construction idea: imposing internal structures

Let A, B, C , D be n × n {1,−1} matrices satisfying

A, B, C , D are symmetric and circulant

AAT + BBT + CCT + DDT = 4nIn

W =


A −B −C −D
B A −D C
C D A −B
D −C B A


W is a 4n × 4n Williamson matrix, which is a special type of Hadamard
matrices.

There is no Williamson matrix of order 4 · 35.
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Hadamard Matrices

Difficulties in proving the Hadamard matrix conjecture

The lack of “universally good” construction template.

The existing template either only generates a sparse set of all
multiples of 4, or gets stuck/does not exist for certain order

Confining the scope to subset of Hadamard matrices with extra
conditions does not make the problem much easier

Humongous number of inequivalent Hamadard matrices: n = 28, 487;
n = 32, > 3.6 million; n = 36, > 15 million

Remark (Equivalence of Hadamard matrices)

Two Hadamard matrices are equivalent if they are identical up to
permutation and negation of rows and columns.
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Balanced splittable Hadamard matrix

A new perspective of internal structure of Hadamard matrices was
proposed by Hadi Kharaghani and Sho Suda in 2019.

Example (Balanced splittable Hadamard matrix)



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
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Balanced splittable Hadamard matrix

Definition (Balanced splittable Hadamard matrix)

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) H =

[
H1

H2

]
w.r.t H1:

H is an n × n Hadamard matrix

H1 has size ℓ× n

column inner products of H1 ∈ {a, b}
equivalently, column inner products of H2 ∈ {−a,−b}

Nondegenerate or convenient parameter domain

2 ≤ ℓ ≤ n − 2: two-valued column inner product property is for free if
ℓ ∈ {1, n − 1, n}
a ̸= b, wlog, a > b: a = b ⇒ ℓ ∈ {1, n − 1, n}
ℓ ≤ n

2 , (n, ℓ, a, b)-BSHM w.r.t H1 ⇔ (n, n − ℓ,−a,−b)-BSHM w.r.t
H2 (switching transformation)
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Balanced splittable Hadamard matrix

Remark

A Hadamard matrix of order n ≥ 4 is equivalent to a BSHM(n, 2, 2, 0)
w.r.t a submatrix formed by 2 rows.

By switching transformation, it is also equivalent to a
BSHM(n, n − 2, 0,−2) w.r.t a submatrix formed by the remaining n − 2
rows.

From now on, we further restrict that 2 < ℓ < n − 2.

When 2 < ℓ < n − 2, the balanced splittable property reflects an in-depth
internal structure of Hadamard matrices
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Balanced splittable Hadamard matrix

Question

What is the relation between n and ℓ?

Given a BSHM(n, ℓ, a, b) H =

[
H1

H2

]
w.r.t. H1, consider two scenarios:

if b = −a and ℓ > a, then the columns of H1 form an equiangular

tight frame: n ≤ ℓ(ℓ+1)
2 , i.e., ℓ ≥

√
2n + 1

4 − 1
2

if b ̸= −a and ℓ > a, then the columns of H1 form a two-distance

tight frame: n ≤ ℓ(ℓ+3)
2 , i.e., ℓ ≥

√
2n + 9

4 − 3
2

If ℓ > a, we have roughly ℓ ≥
√
2n.

The case ℓ = a behaves very differently.

ℓ > a: repeated columns in H1 prohibited

ℓ = a: repeated columns in H1 guaranteed
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Classifying parameters

Kharaghani and Suda discovered a connection between BSHM and
strongly regular graph.

Example (Strongly regular graph (SRG))

(5, 2, 0, 1)-SRG

regular

edge regular

non-edge regular
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Classifying parameters

Example (BSHM and associated SRG)

H is a BSHM(4, 2, 2, 0) w.r.t H1

H =

H1

H2

 =

1 2 3 4


1 1 1 1
1 −1 1 −1

1 1 −1 −1
1 −1 −1 1

1

2

3

4

(4, 1, 0, 0)-SRG
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Classifying parameters

Theorem (Kharaghani and Suda (2019))

Suppose H is a BSHM(n, ℓ, a,−a) with respect to H1.

(1) n(ℓ− a2) = ℓ2 − a2

(2) H can be transformed to a BSHM(n, ℓ, a,−a) H ′ =

[
H ′
1

H ′
2

]
with

respect to H ′
1, and H ′

11 = 0.The associated SRG has parameters

(v , k ′, λ′, µ′) = (n,
(n − 1)a− ℓ

2a
,
n − 4

4
+

n − 4ℓ

4a
,
n(a− 1)

4a
)

(3) H can be transformed to a BSHM(n, ℓ, a,−a) H ′′ =

[
H ′′
1

H ′′
2

]
with

respect to H ′′
1 , and H ′′

21 = 0. The associated SRG has parameters(
v , k ′ +

n

2a
, λ′ +

n

2a
, µ′ +

n

2a

)
(4) a is even and ℓ

a is an odd integer and n
4a is an integer.
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Classifying parameters

Theorem (Kharaghani and Suda (2019))

Suppose H =

[
H1

H2

]
is a BSHM(n, ℓ, a, b) w.r.t. H1, b ̸= −a. The matrix

H has exactly one of Types 1 and 2.
H has Type 1, i.e., H11 = 0

1 n(ℓ+ ab) = (ℓ− a)(ℓ− b) and ab ≤ 0

2 The associated SRG has parameters

(n,
ℓ− b

b − a
+

nb

b − a
,
nb(b + 1)

(b − a)2
+

2(ℓ− b)

b − a
− n

b − a
,
nb(b + 1)

(b − a)2
).

3 ℓ−b
b−a and n

b−a and n(b+1)
2(b−a) and nb(b+1)

(b−a)2
are integers

Shuxing Li (University of Delaware) Balanced splittable Hadamard matrices 15 / 37



Classifying parameters

Theorem (Kharaghani and Suda (2019))

Suppose H =

[
H1

H2

]
is a BSHM(n, ℓ, a, b) w.r.t. H1, b ̸= −a. The matrix

H has exactly one of Types 1 and 2.
H has Type 1, i.e., H11 = 0

1 n(ℓ+ ab) = (ℓ− a)(ℓ− b) and ab ≤ 0

2 The associated SRG has parameters

(n,
ℓ− b

b − a
+

nb

b − a
,
nb(b + 1)

(b − a)2
+

2(ℓ− b)

b − a
− n

b − a
,
nb(b + 1)

(b − a)2
).

3 ℓ−b
b−a and n

b−a and n(b+1)
2(b−a) and nb(b+1)

(b−a)2
are integers

Shuxing Li (University of Delaware) Balanced splittable Hadamard matrices 15 / 37



Classifying parameters

Theorem (Kharaghani and Suda (2019))

Suppose H =

[
H1

H2

]
is a BSHM(n, ℓ, a, b) w.r.t. H1, b ̸= −a. The matrix

H has exactly one of Types 1 and 2.
H has Type 1, i.e., H11 = 0

1 n(ℓ+ ab) = (ℓ− a)(ℓ− b) and ab ≤ 0

2 The associated SRG has parameters

(n,
ℓ− b

b − a
+

nb

b − a
,
nb(b + 1)

(b − a)2
+

2(ℓ− b)

b − a
− n

b − a
,
nb(b + 1)

(b − a)2
).

3 ℓ−b
b−a and n

b−a and n(b+1)
2(b−a) and nb(b+1)

(b−a)2
are integers

Shuxing Li (University of Delaware) Balanced splittable Hadamard matrices 15 / 37



Classifying parameters

Theorem (Kharaghani and Suda (2019))

Suppose H =

[
H1

H2

]
is a BSHM(n, ℓ, a, b) w.r.t. H1, b ̸= −a. The matrix

H has exactly one of Types 1 and 2.
H has Type 1, i.e., H11 = 0

1 n(ℓ+ ab) = (ℓ− a)(ℓ− b) and ab ≤ 0

2 The associated SRG has parameters

(n,
ℓ− b

b − a
+

nb

b − a
,
nb(b + 1)

(b − a)2
+

2(ℓ− b)

b − a
− n

b − a
,
nb(b + 1)

(b − a)2
).

3 ℓ−b
b−a and n

b−a and n(b+1)
2(b−a) and nb(b+1)

(b−a)2
are integers

Shuxing Li (University of Delaware) Balanced splittable Hadamard matrices 15 / 37



Classifying parameters

Theorem (Kharaghani and Suda (2019), continued)

H has Type 2, i.e., H21 = 0

1 n(ℓ+ ab − a− b) = (ℓ− a)(ℓ− b) and ab ≤ 0

2 The associated SRG has parameters

(n,
ℓ− b

b − a
+

n(b − 1)

b − a
,
nb(b − 1)

(b − a)2
+

2(ℓ− b)
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− n

b − a
,
nb(b − 1)

(b − a)2
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are integers
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Classifying parameters

Example (primitive and imprimitive SRGs)

primitive SRG imprimitive SRG

We call a BSHM primitive or imprimitive if the associated SRG is primitive
or imprimitive.
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Classifying parameters

Table: Five classes for a BSHM(n, ℓ, a, b) satisfying 2 < ℓ ≤ n
2 (Jedwab, Li, Simon

(2023))

b = −a b ̸= −a

Type 1 Type 2

primitive imprimitive primitive imprimitive primitive
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Classifying parameters

b ̸= −a

Type 2

imprimitive primitive

parameter (n, ℓ, a, b) = n = (ℓ−a)(ℓ−b)
ℓ+ab−a−b ,

relations (8rs, 4s, 4s, 0) ℓ ≡ a ≡ b (mod 4),
for r , s ≥ 1 a > 0 ≥ b

G 4sK2r

v = n,

k = ℓ−b+n(b−1)
b−a ,

λ = µ+ 2(ℓ−b)−n
b−a ,

µ = nb(b−1)
(b−a)2

integers
ℓ−b
b−a ,

n
b−a ,

n(b−1)
2(b−a) ,

nb(b−1)
(b−a)2
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Classifying parameters

Theorem (Jedwab, Li, Simon (2023))

Suppose there exists a BSHM(n, ℓ, a, b) with 2 < ℓ < n − 2. Then
ℓ ≡ a ≡ b (mod 4).

Remark

Using the above theorem, we can show there exists no (36, ℓ, a, b) BSHM
with 2 < ℓ < 34.

Kharaghani and Suda proved this result using detailed analysis and
computer search.

Among more than 15 million inequivalent Hadamard matrices of order 36,
none of them is balanced splittable.
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Classifying parameters
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Classifying parameters

Kronecker product

H2 =

[
1 1
1 −1

]

H4 = H2 ⊗ H2 =

[
H2 H2

H2 −H2

]
=


1 1 1 1
1 −1 1 −1

1 1 −1 −1
1 −1 −1 1



Repeatedly applying the Kronecker product, Hadamard matrix of order 2m

can be constructed for each m ≥ 1.
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Classifying parameters

Theorem (Jedwab, Li, Simon (2023))

There exists a BSHM(8rs, 4s, 4s, 0) in each of the following cases:

1 there exist Hadamard matrices of order 2r and 4s

2 there exist Hadamard matrices of order 4r and 2s.

Remark

Following the first construction above, fix s such that a Hadamard matrix
of order 4s exists. Set r = 2m for some m ≥ 1. Note that
n = 8rs = 2m+1ℓ is not bounded by ℓ2 as m can be arbitrarily large.

In contrast, for BSHM(n, ℓ, a, b) with ℓ > a, n ≤ ℓ(ℓ+3)
2 .

The two cases ℓ > a and ℓ = a, namely, repeated columns in H1 are
prohibited or guaranteed, are essentially different.

This observation follows from incorporating the primitive/imprimitive
notation of SRG into BSHM.
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This observation follows from incorporating the primitive/imprimitive
notation of SRG into BSHM.
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Classifying parameters

b ̸= −a

Type 2

imprimitive primitive

parameter (n, ℓ, a, b) = n = (ℓ−a)(ℓ−b)
ℓ+ab−a−b ,

relations (8rs, 4s, 4s, 0) ℓ ≡ a ≡ b (mod 4),
for r , s ≥ 1 a > 0 ≥ b

G

v = n,

k = ℓ−b+n(b−1)
b−a ,

4sK2r λ = µ+ 2(ℓ−b)−n
b−a ,

µ = nb(b−1)
(b−a)2

integers
ℓ−b
b−a ,

n
b−a ,

n(b−1)
2(b−a) ,

nb(b−1)
(b−a)2
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Classifying parameters

Theorem (Jedwab, Li, Simon (2023))

Suppose H =

[
H1

H2

]
is a BSHM(8rs, 4s, 4s, 0) with respect to H1 (Type II

and imprimitive). Then the associated SRG is 4sK2r . There exists a
Hadamard matrix L of order 4s, and the columns of H can be reordered so
that H1 =

[
L L . . . L

]︸ ︷︷ ︸
2r

.

Question

For primitive BSHM, what structural information is contained the
associated SRG?
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A group-based construction

Result (Known constructions)

Suppose there exist Hadamard matrices of orders n and s. Then there
exists:

1 BSHM(n2, 2n − 2, n − 2,−2) for n ≥ 2

2 BSHM(n2, 2n − 1, n − 1,−1) for n ≥ 4

3 BSHM(ns, n, n, 0) for n ≥ 2

4 BSHM(22m, 2m−1(2m − 1), 2m−1,−2m−1) for m ≥ 2

5 BSHM(q(q + 1), q, q,−1) for q ≥ 3, q ≡ 3 mod 4, where q + 1 is the
order of a skew-type Hadamard matrix

6 BSHM(4n2, 2n2 − n, n,−n)

Most known BSHMs are constructed via Kronecker product. We want to
find “primary constructions” that do not depend on Kronecker product.
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A group-based construction

We proposed a primary construction based on the character table of
elementary abelian 2-groups.
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A group-based construction

Example (Character of elementary abelian 2-groups)

G = Z2 × Z2,

Each (a, b) ∈ G induces a character χ(a,b), for instance

χ(1,1)((0, 1)) = (−1)0·1 · (−1)1·1 = 1 · (−1) = −1.

Each character χ(a,b) induces a group homomorphism

χ(a,b) : G 7→ {1,−1}
(c , d) 7→ (−1)ac · (−1)bd = (−1)ac+bd

character group: Ĝ = {χg | g ∈ G} ∼= G .
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character group: Ĝ = {χg | g ∈ G} ∼= G .

Shuxing Li (University of Delaware) Balanced splittable Hadamard matrices 28 / 37



A group-based construction

Example (Character table)

G = Z2 × Z2.

The character table of G is a |G | × |G | matrix H with rows indexed by
elements of G and columns by Ĝ .

H =

χ(0,0) χ(0,1) χ(1,0) χ(1,1)


(0, 0) 1 1 1 1
(0, 1) 1 −1 1 −1
(1, 0) 1 1 −1 −1
(1, 1) 1 −1 −1 1

χ(1,1)((0, 1)) = −1

H is a Hadamard matrix of order 4.

The character table of an elementary abelian 2-group serves as the
underlying Hadamard matrix. To construct a BSHM, it remains to
properly split the matrix.
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H =

χ(0,0) χ(0,1) χ(1,0) χ(1,1)


(0, 0) 1 1 1 1
(0, 1) 1 −1 1 −1
(1, 0) 1 1 −1 −1
(1, 1) 1 −1 −1 1

χ(1,1)((0, 1)) = −1

H is a Hadamard matrix of order 4.

The character table of an elementary abelian 2-group serves as the
underlying Hadamard matrix. To construct a BSHM, it remains to
properly split the matrix.

Shuxing Li (University of Delaware) Balanced splittable Hadamard matrices 29 / 37



A group-based construction

Example (Character table)

G = Z2 × Z2.
The character table of G is a |G | × |G | matrix H with rows indexed by
elements of G and columns by Ĝ .
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A group-based construction

Example (Partial difference set)

Let G = Z4
2 and D = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1)}. The multiset

{{x − y | x , y ∈ D, x ̸= y}} contains

each element of D exactly 2 times

each nonidentity element of G \ D exactly 0 time

D is a (16, 3, 2, 0) partial difference set in G .
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A group-based construction

Note that D = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1)} is a (16, 3, 2, 0) partial
difference set in G = Z4

2. Let H be the character table of G .

BSHM(16, 3, 3,−1) H w.r.t. red submatrix



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 .− 1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
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A group-based construction

Partial difference sets in Zn
2 are well studied objects. We get more

than 10 infinite families of BSHMs not coming from the Kronecker
product.

For n ∈ {16, 64, 256} and each plausible parameter set (n, ℓ, a, b),
there is an BSHM(n, ℓ, a, b) derived from the partial difference set
construction.

Shuxing Li (University of Delaware) Balanced splittable Hadamard matrices 32 / 37



A group-based construction

Partial difference sets in Zn
2 are well studied objects. We get more

than 10 infinite families of BSHMs not coming from the Kronecker
product.

For n ∈ {16, 64, 256} and each plausible parameter set (n, ℓ, a, b),
there is an BSHM(n, ℓ, a, b) derived from the partial difference set
construction.

Shuxing Li (University of Delaware) Balanced splittable Hadamard matrices 32 / 37



A group-based construction

5 disjoint partial difference sets in Z4
2:

D1 = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 1)},D2 = {(0, 1, 0, 0), (1, 0, 0, 0), (1, 1, 0, 0)}
D3 = {(0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 1, 1)},D4 = {(0, 1, 1, 0), (1, 0, 1, 1), (1, 1, 0, 1)}

D5 = {(0, 1, 1, 1), (1, 0, 0, 1), (1, 1, 1, 0)}

BSHM(16, 3, 3,−1) H w.r.t. multiple submatrices

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 .− 1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 1 1 1 1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 1 1 −1 −1 −1 −1 1 1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 −1 1 −1 −1 1 −1 1 −1 1 −1 1 1 −1 1 −1
1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1 −1
1 −1 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
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A group-based construction

BSHM w.r.t multiple submatrices



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1 −1 1 1 −1 −1 1 1 −1
1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1 1
1 1 −1 −1 −1 −1 1 1 −1 −1 1 1 1 1 −1 −1
1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
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1 −1 −1 1 −1 1 1 −1 −1 1 1 −1 1 −1 −1 1
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Future problems

Future Problems

Parameter range of ℓ

For BSHM(n, ℓ, a, b) with ℓ > a, further narrow down the range√
2n ≤ ℓ ≤ n

2 or prove the tightness.

upper bound is nearly tight: BSHM(4n2, 2n2 − n, n,−n) exists whenever a
Hadamard matrix of order n exists.

lower bound is less clear: derived from equiangular tight frames and
two-distance tight frames in Rℓ.
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Future problems

Primary constructions

BSHM(4n2, 2n2 − n, n,−n):

exists for n ≡ 0 mod 4, assuming the Hadamard matrix conjecture
holds true

does not exists for odd n

existence open for n ≡ 2 mod 4. A crucial open case:
BSHM(144, 66, 6,−6)

A construction by Kharaghani and Suda: a BSHM(q(q + 1), q, q,−1)
for q ≥ 3, where q + 1 is the order of a skew-type Hadamard matrix.

Identify BSHMs from known constructions: there have been plenty of
constructions of Hadamard matrices, some of them may already give
BSHMs.
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Future problems
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