Balanced splittable Hadamard matrices: restrictions and constructions

Shuxing Li

University of Delaware
Joint work with Jonathan Jedwab and Samuel Simon
Waterloo Algebraic Graph Theory Seminar
December-11-2023

Example (Hadamard matrix)

$$
H_{1}=[1] \quad H_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad H_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

Example (Hadamard matrix)

$$
H_{1}=[1] \quad H_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad H_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

Definition (Hadamard matrix)

An $n \times n$ matrix H over $\{1,-1\}$ is a Hadamard matrix of order n if $H H^{T}=n I_{n}$ (row orthogonality) and $H^{T} H=n I_{n}$ (column orthogonality).

Example (Hadamard matrix)

$$
H_{1}=[1] \quad H_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad H_{4}=\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

Definition (Hadamard matrix)

An $n \times n$ matrix H over $\{1,-1\}$ is a Hadamard matrix of order n if $H H^{T}=n I_{n}$ (row orthogonality) and $H^{T} H=n I_{n}$ (column orthogonality).

Remark

A Hadamard matrix of order n exists \Leftrightarrow there exists an orthogonal basis of \mathbb{R}^{n} containing only $\{1,-1\}$ entries

Exercise (Necessary condition)

A Hadamard matrix of order n exists only if $n=1,2$ or $n \equiv 0(\bmod 4)$.

Exercise (Necessary condition)

A Hadamard matrix of order n exists only if $n=1,2$ or $n \equiv 0(\bmod 4)$.

Conjecture (Hadamard matrix conjecture)

A Hadamard matrix of order n exists iff $n=1,2$ or $n \equiv 0(\bmod 4)$.

Exercise (Necessary condition)

A Hadamard matrix of order n exists only if $n=1,2$ or $n \equiv 0(\bmod 4)$.

Conjecture (Hadamard matrix conjecture)

A Hadamard matrix of order n exists iff $n=1,2$ or $n \equiv 0(\bmod 4)$.
Namely, the existence of a $\{1,-1\}$ orthogonal basis in \mathbb{R}^{n} only depends on the dimension n.

Exercise (Necessary condition)

A Hadamard matrix of order n exists only if $n=1,2$ or $n \equiv 0(\bmod 4)$.

Conjecture (Hadamard matrix conjecture)

A Hadamard matrix of order n exists iff $n=1,2$ or $n \equiv 0(\bmod 4)$.
Namely, the existence of a $\{1,-1\}$ orthogonal basis in \mathbb{R}^{n} only depends on the dimension n.

Smallest open case: $n=668$.

Exercise (Necessary condition)

A Hadamard matrix of order n exists only if $n=1,2$ or $n \equiv 0(\bmod 4)$.

Conjecture (Hadamard matrix conjecture)

A Hadamard matrix of order n exists iff $n=1,2$ or $n \equiv 0(\bmod 4)$.
Namely, the existence of a $\{1,-1\}$ orthogonal basis in \mathbb{R}^{n} only depends on the dimension n.

Smallest open case: $n=668$.
A complete solution is by far elusive.

Circulant matrix: $\left[\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right]$

Circulant matrix: $\left[\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right]$
Construction idea: imposing internal structures
Let A, B, C, D be $n \times n\{1,-1\}$ matrices satisfying

- A, B, C, D are symmetric and circulant
- $A A^{T}+B B^{T}+C C^{T}+D D^{T}=4 n I_{n}$

Circulant matrix: $\left[\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right]$

Construction idea: imposing internal structures

Let A, B, C, D be $n \times n\{1,-1\}$ matrices satisfying

- A, B, C, D are symmetric and circulant
- $A A^{T}+B B^{T}+C C^{T}+D D^{T}=4 n I_{n}$
$W=\left[\begin{array}{cccc}A & -B & -C & -D \\ B & A & -D & C \\ C & D & A & -B \\ D & -C & B & A\end{array}\right]$
W is a $4 n \times 4 n$ Williamson matrix, which is a special type of Hadamard matrices.

Circulant matrix: $\left[\begin{array}{lll}a & b & c \\ c & a & b \\ b & c & a\end{array}\right]$

Construction idea: imposing internal structures

Let A, B, C, D be $n \times n\{1,-1\}$ matrices satisfying

- A, B, C, D are symmetric and circulant
- $A A^{T}+B B^{T}+C C^{T}+D D^{T}=4 n I_{n}$
$W=\left[\begin{array}{cccc}A & -B & -C & -D \\ B & A & -D & C \\ C & D & A & -B \\ D & -C & B & A\end{array}\right]$
W is a $4 n \times 4 n$ Williamson matrix, which is a special type of Hadamard matrices.

There is no Williamson matrix of order $4 \cdot 35$.

Difficulties in proving the Hadamard matrix conjecture

The lack of "universally good" construction template.

Difficulties in proving the Hadamard matrix conjecture

The lack of "universally good" construction template.

- The existing template either only generates a sparse set of all multiples of 4, or gets stuck/does not exist for certain order

Difficulties in proving the Hadamard matrix conjecture

The lack of "universally good" construction template.

- The existing template either only generates a sparse set of all multiples of 4, or gets stuck/does not exist for certain order
- Confining the scope to subset of Hadamard matrices with extra conditions does not make the problem much easier

Difficulties in proving the Hadamard matrix conjecture

The lack of "universally good" construction template.

- The existing template either only generates a sparse set of all multiples of 4, or gets stuck/does not exist for certain order
- Confining the scope to subset of Hadamard matrices with extra conditions does not make the problem much easier
- Humongous number of inequivalent Hamadard matrices: $n=28,487$; $n=32,>3.6$ million; $n=36,>15$ million

Difficulties in proving the Hadamard matrix conjecture

The lack of "universally good" construction template.

- The existing template either only generates a sparse set of all multiples of 4, or gets stuck/does not exist for certain order
- Confining the scope to subset of Hadamard matrices with extra conditions does not make the problem much easier
- Humongous number of inequivalent Hamadard matrices: $n=28,487$; $n=32,>3.6$ million; $n=36,>15$ million

Remark (Equivalence of Hadamard matrices)

Two Hadamard matrices are equivalent if they are identical up to permutation and negation of rows and columns.

A new perspective of internal structure of Hadamard matrices was proposed by Hadi Kharaghani and Sho Suda in 2019.

A new perspective of internal structure of Hadamard matrices was proposed by Hadi Kharaghani and Sho Suda in 2019.

Example (Balanced splittable Hadamard matrix)

$\left[\begin{array}{ccccccccccccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 \\ 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1\end{array}\right]$

Definition (Balanced splittable Hadamard matrix)

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ w.r.t H_{1} :

Definition (Balanced splittable Hadamard matrix)

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ w.r.t H_{1} :

- H is an $n \times n$ Hadamard matrix

Definition (Balanced splittable Hadamard matrix)

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ w.r.t H_{1} :

- H is an $n \times n$ Hadamard matrix
- H_{1} has size $\ell \times n$

Definition (Balanced splittable Hadamard matrix)

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ w.r.t H_{1} :

- H is an $n \times n$ Hadamard matrix
- H_{1} has size $\ell \times n$
- column inner products of $H_{1} \in\{a, b\}$

Definition (Balanced splittable Hadamard matrix)

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ w.r.t H_{1} :

- H is an $n \times n$ Hadamard matrix
- H_{1} has size $\ell \times n$
- column inner products of $H_{1} \in\{a, b\}$ equivalently, column inner products of $H_{2} \in\{-a,-b\}$

Definition (Balanced splittable Hadamard matrix)

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ w.r.t H_{1} :

- H is an $n \times n$ Hadamard matrix
- H_{1} has size $\ell \times n$
- column inner products of $H_{1} \in\{a, b\}$ equivalently, column inner products of $H_{2} \in\{-a,-b\}$

Nondegenerate or convenient parameter domain

Definition (Balanced splittable Hadamard matrix)

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ w.r.t H_{1} :

- H is an $n \times n$ Hadamard matrix
- H_{1} has size $\ell \times n$
- column inner products of $H_{1} \in\{a, b\}$ equivalently, column inner products of $H_{2} \in\{-a,-b\}$

Nondegenerate or convenient parameter domain

- $2 \leq \ell \leq n-2$: two-valued column inner product property is for free if $\ell \in\{1, n-1, n\}$

Definition (Balanced splittable Hadamard matrix)

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ w.r.t H_{1} :

- H is an $n \times n$ Hadamard matrix
- H_{1} has size $\ell \times n$
- column inner products of $H_{1} \in\{a, b\}$ equivalently, column inner products of $H_{2} \in\{-a,-b\}$

Nondegenerate or convenient parameter domain

- $2 \leq \ell \leq n-2$: two-valued column inner product property is for free if $\ell \in\{1, n-1, n\}$
- $a \neq b$, wlog, $a>b: a=b \Rightarrow \ell \in\{1, n-1, n\}$

Definition (Balanced splittable Hadamard matrix)

An (n, ℓ, a, b) balanced splittable Hadamard matrix (BSHM) $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ w.r.t H_{1} :

- H is an $n \times n$ Hadamard matrix
- H_{1} has size $\ell \times n$
- column inner products of $H_{1} \in\{a, b\}$ equivalently, column inner products of $H_{2} \in\{-a,-b\}$

Nondegenerate or convenient parameter domain

- $2 \leq \ell \leq n-2$: two-valued column inner product property is for free if $\ell \in\{1, n-1, n\}$
- $a \neq b$, wlog, $a>b: a=b \Rightarrow \ell \in\{1, n-1, n\}$
- $\ell \leq \frac{n}{2},(n, \ell, a, b)$-BSHM w.r.t $H_{1} \Leftrightarrow(n, n-\ell,-a,-b)$-BSHM w.r.t H_{2} (switching transformation)

Remark

A Hadamard matrix of order $n \geq 4$ is equivalent to a $\operatorname{BSHM}(n, 2,2,0)$ w.r.t a submatrix formed by 2 rows.

Remark

A Hadamard matrix of order $n \geq 4$ is equivalent to a $\operatorname{BSHM}(n, 2,2,0)$ w.r.t a submatrix formed by 2 rows.

By switching transformation, it is also equivalent to a $\operatorname{BSHM}(n, n-2,0,-2)$ w.r.t a submatrix formed by the remaining $n-2$ rows.

Remark

A Hadamard matrix of order $n \geq 4$ is equivalent to a $\operatorname{BSHM}(n, 2,2,0)$ w.r.t a submatrix formed by 2 rows.

By switching transformation, it is also equivalent to a $\operatorname{BSHM}(n, n-2,0,-2)$ w.r.t a submatrix formed by the remaining $n-2$ rows.

From now on, we further restrict that $2<\ell<n-2$.

Remark

A Hadamard matrix of order $n \geq 4$ is equivalent to a $\operatorname{BSHM}(n, 2,2,0)$ w.r.t a submatrix formed by 2 rows.

By switching transformation, it is also equivalent to a $\operatorname{BSHM}(n, n-2,0,-2)$ w.r.t a submatrix formed by the remaining $n-2$ rows.

From now on, we further restrict that $2<\ell<n-2$.
When $2<\ell<n-2$, the balanced splittable property reflects an in-depth internal structure of Hadamard matrices

Question

What is the relation between n and ℓ ?

Question

What is the relation between n and ℓ ?

Given a $\operatorname{BSHM}(n, \ell, a, b) H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ w.r.t. H_{1}, consider two scenarios:

Question

What is the relation between n and ℓ ?

Given a $\operatorname{BSHM}(n, \ell, a, b) H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ w.r.t. H_{1}, consider two scenarios:

- if $b=-a$ and $\ell>a$, then the columns of H_{1} form an equiangular tight frame: $n \leq \frac{\ell(\ell+1)}{2}$, i.e., $\ell \geq \sqrt{2 n+\frac{1}{4}}-\frac{1}{2}$

Question

What is the relation between n and ℓ ?

Given a $\operatorname{BSHM}(n, \ell, a, b) H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ w.r.t. H_{1}, consider two scenarios:

- if $b=-a$ and $\ell>a$, then the columns of H_{1} form an equiangular tight frame: $n \leq \frac{\ell(\ell+1)}{2}$, i.e., $\ell \geq \sqrt{2 n+\frac{1}{4}}-\frac{1}{2}$
- if $b \neq-a$ and $\ell>a$, then the columns of H_{1} form a two-distance tight frame: $n \leq \frac{\ell(\ell+3)}{2}$, i.e., $\ell \geq \sqrt{2 n+\frac{9}{4}}-\frac{3}{2}$

Question

What is the relation between n and ℓ ?

Given a $\operatorname{BSHM}(n, \ell, a, b) H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ w.r.t. H_{1}, consider two scenarios:

- if $b=-a$ and $\ell>a$, then the columns of H_{1} form an equiangular tight frame: $n \leq \frac{\ell(\ell+1)}{2}$, i.e., $\ell \geq \sqrt{2 n+\frac{1}{4}}-\frac{1}{2}$
- if $b \neq-a$ and $\ell>a$, then the columns of H_{1} form a two-distance tight frame: $n \leq \frac{\ell(\ell+3)}{2}$, i.e., $\ell \geq \sqrt{2 n+\frac{9}{4}}-\frac{3}{2}$
If $\ell>a$, we have roughly $\ell \geq \sqrt{2 n}$.

Question

What is the relation between n and ℓ ?

Given a $\operatorname{BSHM}(n, \ell, a, b) H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ w.r.t. H_{1}, consider two scenarios:

- if $b=-a$ and $\ell>a$, then the columns of H_{1} form an equiangular tight frame: $n \leq \frac{\ell(\ell+1)}{2}$, i.e., $\ell \geq \sqrt{2 n+\frac{1}{4}}-\frac{1}{2}$
- if $b \neq-a$ and $\ell>a$, then the columns of H_{1} form a two-distance tight frame: $n \leq \frac{\ell(\ell+3)}{2}$, i.e., $\ell \geq \sqrt{2 n+\frac{9}{4}}-\frac{3}{2}$
If $\ell>a$, we have roughly $\ell \geq \sqrt{2 n}$.
The case $\ell=a$ behaves very differently.

Question

What is the relation between n and ℓ ?

Given a $\operatorname{BSHM}(n, \ell, a, b) H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ w.r.t. H_{1}, consider two scenarios:

- if $b=-a$ and $\ell>a$, then the columns of H_{1} form an equiangular tight frame: $n \leq \frac{\ell(\ell+1)}{2}$, i.e., $\ell \geq \sqrt{2 n+\frac{1}{4}}-\frac{1}{2}$
- if $b \neq-a$ and $\ell>a$, then the columns of H_{1} form a two-distance tight frame: $n \leq \frac{\ell(\ell+3)}{2}$, i.e., $\ell \geq \sqrt{2 n+\frac{9}{4}}-\frac{3}{2}$
If $\ell>a$, we have roughly $\ell \geq \sqrt{2 n}$.
The case $\ell=a$ behaves very differently.
$\ell>a$: repeated columns in H_{1} prohibited
$\ell=a$: repeated columns in H_{1} guaranteed

Kharaghani and Suda discovered a connection between BSHM and strongly regular graph.

Kharaghani and Suda discovered a connection between BSHM and strongly regular graph.

Example (Strongly regular graph (SRG))

(5, 2, 0, 1)-SRG

- regular
- edge regular
- non-edge regular

Example (BSHM and associated SRG)

H is a $\operatorname{BSHM}(4,2,2,0)$ w.r.t H_{1}

$$
H=\left[\begin{array}{l}
H_{1} \\
H_{2}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

(4, 1, 0, 0)-SRG

Theorem (Kharaghani and Suda (2019))
 Suppose H is a $B S H M(n, \ell, a,-a)$ with respect to H_{1}.

Theorem (Kharaghani and Suda (2019))

Suppose H is a $\operatorname{BSHM}(n, \ell, a,-a)$ with respect to H_{1}.
(1) $n\left(\ell-a^{2}\right)=\ell^{2}-a^{2}$

Theorem (Kharaghani and Suda (2019))

Suppose H is a $\operatorname{BSHM}(n, \ell, a,-a)$ with respect to H_{1}.
(1) $n\left(\ell-a^{2}\right)=\ell^{2}-a^{2}$
(2) H can be transformed to a $\operatorname{BSHM}(n, \ell, a,-a) H^{\prime}=\left[\begin{array}{l}H_{1}^{\prime} \\ H_{2}^{\prime}\end{array}\right]$ with respect to H_{1}^{\prime}, and $H_{1}^{\prime} \mathbf{1}=\mathbf{0}$. The associated $S R G$ has parameters

$$
\left(v, k^{\prime}, \lambda^{\prime}, \mu^{\prime}\right)=\left(n, \frac{(n-1) a-\ell}{2 a}, \frac{n-4}{4}+\frac{n-4 \ell}{4 a}, \frac{n(a-1)}{4 a}\right)
$$

Theorem (Kharaghani and Suda (2019))

Suppose H is a $\operatorname{BSHM}(n, \ell, a,-a)$ with respect to H_{1}.
(1) $n\left(\ell-a^{2}\right)=\ell^{2}-a^{2}$
(2) H can be transformed to a $\operatorname{BSHM}(n, \ell, a,-a) H^{\prime}=\left[\begin{array}{l}H_{1}^{\prime} \\ H_{2}^{\prime}\end{array}\right]$ with respect to H_{1}^{\prime}, and $H_{1}^{\prime} \mathbf{1}=0$. The associated $S R G$ has parameters

$$
\left(v, k^{\prime}, \lambda^{\prime}, \mu^{\prime}\right)=\left(n, \frac{(n-1) a-\ell}{2 a}, \frac{n-4}{4}+\frac{n-4 \ell}{4 a}, \frac{n(a-1)}{4 a}\right)
$$

(3) H can be transformed to a $B S H M(n, \ell, a,-a) H^{\prime \prime}=\left[\begin{array}{l}H_{1}^{\prime \prime} \\ H_{2}^{\prime \prime}\end{array}\right]$ with respect to $H_{1}^{\prime \prime}$, and $H_{2}^{\prime \prime} \mathbf{1}=\mathbf{0}$. The associated $S R G$ has parameters

$$
\left(v, k^{\prime}+\frac{n}{2 a}, \lambda^{\prime}+\frac{n}{2 a}, \mu^{\prime}+\frac{n}{2 a}\right)
$$

Theorem (Kharaghani and Suda (2019))

Suppose H is a $\operatorname{BSHM}(n, \ell, a,-a)$ with respect to H_{1}.
(1) $n\left(\ell-a^{2}\right)=\ell^{2}-a^{2}$
(2) H can be transformed to a $\operatorname{BSHM}(n, \ell, a,-a) H^{\prime}=\left[\begin{array}{l}H_{1}^{\prime} \\ H_{2}^{\prime}\end{array}\right]$ with respect to H_{1}^{\prime}, and $H_{1}^{\prime} \mathbf{1}=0$. The associated $S R G$ has parameters

$$
\left(v, k^{\prime}, \lambda^{\prime}, \mu^{\prime}\right)=\left(n, \frac{(n-1) a-\ell}{2 a}, \frac{n-4}{4}+\frac{n-4 \ell}{4 a}, \frac{n(a-1)}{4 a}\right)
$$

(3) H can be transformed to a $B S H M(n, \ell, a,-a) H^{\prime \prime}=\left[\begin{array}{l}H_{1}^{\prime \prime} \\ H_{2}^{\prime \prime}\end{array}\right]$ with respect to $H_{1}^{\prime \prime}$, and $H_{2}^{\prime \prime} \mathbf{1}=\mathbf{0}$. The associated $S R G$ has parameters

$$
\left(v, k^{\prime}+\frac{n}{2 a}, \lambda^{\prime}+\frac{n}{2 a}, \mu^{\prime}+\frac{n}{2 a}\right)
$$

(9) a is even and $\frac{\ell}{a}$ is an odd integer and $\frac{n}{4 a}$ is an integer.

Theorem (Kharaghani and Suda (2019))

Suppose $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ is a $\operatorname{BSHM}(n, \ell, a, b)$ w.r.t. $H_{1}, b \neq-a$. The matrix H has exactly one of Types 1 and 2.
H has Type 1, i.e., $H_{1} \mathbf{1}=\mathbf{0}$

Theorem (Kharaghani and Suda (2019))

Suppose $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ is a $\operatorname{BSHM}(n, \ell, a, b)$ w.r.t. $H_{1}, b \neq-a$. The matrix H has exactly one of Types 1 and 2.
H has Type 1, i.e., $H_{1} \mathbf{1}=\mathbf{0}$
(1) $n(\ell+a b)=(\ell-a)(\ell-b)$ and $a b \leq 0$

Theorem (Kharaghani and Suda (2019))

Suppose $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ is a $\operatorname{BSHM}(n, \ell, a, b)$ w.r.t. $H_{1}, b \neq-a$. The matrix H has exactly one of Types 1 and 2.
H has Type 1, i.e., $H_{1} \mathbf{1}=\mathbf{0}$
(1) $n(\ell+a b)=(\ell-a)(\ell-b)$ and $a b \leq 0$
(2) The associated SRG has parameters

$$
\left(n, \frac{\ell-b}{b-a}+\frac{n b}{b-a}, \frac{n b(b+1)}{(b-a)^{2}}+\frac{2(\ell-b)}{b-a}-\frac{n}{b-a}, \frac{n b(b+1)}{(b-a)^{2}}\right)
$$

Theorem (Kharaghani and Suda (2019))

Suppose $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ is a $\operatorname{BSHM}(n, \ell, a, b)$ w.r.t. $H_{1}, b \neq-a$. The matrix H has exactly one of Types 1 and 2.
H has Type 1, i.e., $H_{1} \mathbf{1}=\mathbf{0}$
(1) $n(\ell+a b)=(\ell-a)(\ell-b)$ and $a b \leq 0$
(2) The associated SRG has parameters

$$
\left(n, \frac{\ell-b}{b-a}+\frac{n b}{b-a}, \frac{n b(b+1)}{(b-a)^{2}}+\frac{2(\ell-b)}{b-a}-\frac{n}{b-a}, \frac{n b(b+1)}{(b-a)^{2}}\right)
$$

(3) $\frac{\ell-b}{b-a}$ and $\frac{n}{b-a}$ and $\frac{n(b+1)}{2(b-a)}$ and $\frac{n b(b+1)}{(b-a)^{2}}$ are integers

Theorem (Kharaghani and Suda (2019), continued) H has Type 2, i.e., $H_{2} \mathbf{1}=\mathbf{0}$

Theorem (Kharaghani and Suda (2019), continued)

H has Type 2, i.e., $\mathrm{H}_{2} \mathbf{1}=\mathbf{0}$
(1) $n(\ell+a b-a-b)=(\ell-a)(\ell-b)$ and $a b \leq 0$
(2) The associated SRG has parameters

$$
\left(n, \frac{\ell-b}{b-a}+\frac{n(b-1)}{b-a}, \frac{n b(b-1)}{(b-a)^{2}}+\frac{2(\ell-b)}{b-a}-\frac{n}{b-a}, \frac{n b(b-1)}{(b-a)^{2}}\right)
$$

(3) $\frac{\ell-b}{b-a}$ and $\frac{n}{b-a}$ and $\frac{n(b-1)}{2(b-a)}$ and $\frac{n b(b-1)}{(b-a)^{2}}$ are integers

Example (primitive and imprimitive SRGs)

primitive SRG

imprimitive SRG

Example (primitive and imprimitive SRGs)

primitive SRG

imprimitive SRG

We call a BSHM primitive or imprimitive if the associated SRG is primitive or imprimitive.

Table: Five classes for a $\operatorname{BSHM}(n, \ell, a, b)$ satisfying $2<\ell \leq \frac{n}{2}$ (Jedwab, Li, Simon (2023))

$b=-a$	$b \neq-a$			
	Type 1		Type 2	
primitive	imprimitive	primitive	imprimitive	primitive

	$b \neq-a$	
	Type 2	
	imprimitive	primitive
parameter relations	$\begin{gathered} (n, \ell, a, b)= \\ (8 r s, 4 s, 4 s, 0) \end{gathered}$ $\text { for } r, s \geq 1$	$\begin{gathered} n=\frac{(\ell-a)(\ell-b)}{\ell+a b-a-b}, \\ \ell \equiv a \equiv b(\bmod 4), \\ a>0 \geq b \end{gathered}$
G	$4 s K_{2 r}$	$\begin{gathered} v=n, \\ k=\frac{\ell-b+n(b-1)}{b-a}, \\ \lambda=\mu+\frac{2(\ell-b)-n}{b-a}, \\ \mu=\frac{n b(b-1)}{(b-a)^{2}} \end{gathered}$
integers		$\begin{gathered} \frac{\ell-b}{b-a}, \frac{n}{b-a}, \\ \frac{n(b-1)}{2(b-a)}, \frac{n b(b-1)}{(b-a)^{2}} \end{gathered}$

Theorem (Jedwab, Li, Simon (2023))

Suppose there exists a $\operatorname{BSHM}(n, \ell, a, b)$ with $2<\ell<n-2$. Then $\ell \equiv a \equiv b(\bmod 4)$.

Theorem (Jedwab, Li, Simon (2023))

Suppose there exists a $\operatorname{BSHM}(n, \ell, a, b)$ with $2<\ell<n-2$. Then $\ell \equiv a \equiv b(\bmod 4)$.

Remark

Using the above theorem, we can show there exists no $(36, \ell, a, b)$ BSHM with $2<\ell<34$.

Theorem (Jedwab, Li, Simon (2023))

Suppose there exists a $\operatorname{BSHM}(n, \ell, a, b)$ with $2<\ell<n-2$. Then $\ell \equiv a \equiv b(\bmod 4)$.

Remark

Using the above theorem, we can show there exists no $(36, \ell, a, b)$ BSHM with $2<\ell<34$.

Kharaghani and Suda proved this result using detailed analysis and computer search.

Theorem (Jedwab, Li, Simon (2023))

Suppose there exists a $\operatorname{BSHM}(n, \ell, a, b)$ with $2<\ell<n-2$. Then $\ell \equiv a \equiv b(\bmod 4)$.

Remark

Using the above theorem, we can show there exists no $(36, \ell, a, b) B S H M$ with $2<\ell<34$.

Kharaghani and Suda proved this result using detailed analysis and computer search.

Among more than 15 million inequivalent Hadamard matrices of order 36, none of them is balanced splittable.

	$b \neq-a$	
	Type 2	
	imprimitive	primitive
parameter relations	$\begin{gathered} (n, \ell, a, b)= \\ (8 r s, 4 s, 4 s, 0) \\ \text { for } r, s \geq 1 \end{gathered}$	$\begin{gathered} n=\frac{(\ell-a)(\ell-b)}{\ell+a-a-b}, \\ \ell \equiv a \equiv b(\bmod 4), \\ a>0 \geq b \end{gathered}$
G	$4 s K_{2 r}$	$\begin{gathered} v=n \\ k=\frac{\ell-b+n(b-1)}{b-a}, \\ \lambda=\mu+\frac{2(\ell-b)-n}{b-a} \\ \mu=\frac{n b(b-1)}{(b-a)^{2}} \end{gathered}$
integers		$\begin{gathered} \frac{\ell-b}{b-a}, \frac{n}{b-a}, \\ \frac{n(b-1)}{2(b-a)}, \frac{n b(b-1)}{(b-a)^{2}} \end{gathered}$

Kronecker product

$$
\begin{gathered}
H_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
H_{4}=H_{2} \otimes H_{2}=\left[\begin{array}{cc}
H_{2} & H_{2} \\
H_{2} & -H_{2}
\end{array}\right]=\left[\begin{array}{cc|cc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
\hline 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
\end{gathered}
$$

Kronecker product

$$
\begin{gathered}
H_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \\
H_{4}=H_{2} \otimes H_{2}=\left[\begin{array}{cc}
H_{2} & H_{2} \\
H_{2} & -H_{2}
\end{array}\right]=\left[\begin{array}{cc|cc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
\hline 1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
\end{gathered}
$$

Repeatedly applying the Kronecker product, Hadamard matrix of order 2^{m} can be constructed for each $m \geq 1$.

Theorem (Jedwab, Li, Simon (2023))

There exists a $\operatorname{BSHM}(8 r s, 4 s, 4 s, 0)$ in each of the following cases:
(1) there exist Hadamard matrices of order $2 r$ and $4 s$
(2) there exist Hadamard matrices of order $4 r$ and $2 s$.

Theorem (Jedwab, Li, Simon (2023))

There exists a $\operatorname{BSHM}(8 r s, 4 s, 4 s, 0)$ in each of the following cases:
(1) there exist Hadamard matrices of order $2 r$ and $4 s$
(2) there exist Hadamard matrices of order $4 r$ and $2 s$.

Remark

Following the first construction above, fix s such that a Hadamard matrix of order $4 s$ exists. Set $r=2^{m}$ for some $m \geq 1$. Note that $n=8 r s=2^{m+1} \ell$ is not bounded by ℓ^{2} as m can be arbitrarily large.

Theorem (Jedwab, Li, Simon (2023))

There exists a $\operatorname{BSHM}(8 r s, 4 s, 4 s, 0)$ in each of the following cases:
(1) there exist Hadamard matrices of order $2 r$ and $4 s$
(2) there exist Hadamard matrices of order $4 r$ and $2 s$.

Remark

Following the first construction above, fix s such that a Hadamard matrix of order $4 s$ exists. Set $r=2^{m}$ for some $m \geq 1$. Note that $n=8 r s=2^{m+1} \ell$ is not bounded by ℓ^{2} as m can be arbitrarily large. In contrast, for $\operatorname{BSHM}(n, \ell, a, b)$ with $\ell>a, n \leq \frac{\ell(\ell+3)}{2}$.

Theorem (Jedwab, Li, Simon (2023))

There exists a $\operatorname{BSHM}(8 r s, 4 s, 4 s, 0)$ in each of the following cases:
(1) there exist Hadamard matrices of order $2 r$ and $4 s$
(2) there exist Hadamard matrices of order $4 r$ and $2 s$.

Remark

Following the first construction above, fix s such that a Hadamard matrix of order $4 s$ exists. Set $r=2^{m}$ for some $m \geq 1$. Note that $n=8 r s=2^{m+1} \ell$ is not bounded by ℓ^{2} as m can be arbitrarily large. In contrast, for $\operatorname{BSHM}(n, \ell, a, b)$ with $\ell>a, n \leq \frac{\ell(\ell+3)}{2}$.
The two cases $\ell>a$ and $\ell=a$, namely, repeated columns in H_{1} are prohibited or guaranteed, are essentially different.

Theorem (Jedwab, Li, Simon (2023))

There exists a $\operatorname{BSHM}(8 r s, 4 s, 4 s, 0)$ in each of the following cases:
(1) there exist Hadamard matrices of order $2 r$ and $4 s$
(2) there exist Hadamard matrices of order $4 r$ and $2 s$.

Remark

Following the first construction above, fix s such that a Hadamard matrix of order $4 s$ exists. Set $r=2^{m}$ for some $m \geq 1$. Note that $n=8 r s=2^{m+1} \ell$ is not bounded by ℓ^{2} as m can be arbitrarily large. In contrast, for $\operatorname{BSHM}(n, \ell, a, b)$ with $\ell>a, n \leq \frac{\ell(\ell+3)}{2}$.
The two cases $\ell>a$ and $\ell=a$, namely, repeated columns in H_{1} are prohibited or guaranteed, are essentially different.

This observation follows from incorporating the primitive/imprimitive notation of SRG into BSHM.

	$b \neq-a$	
	Type 2	
	imprimitive	primitive
parameter relations	$\begin{gathered} (n, \ell, a, b)= \\ (8 r s, 4 s, 4 s, 0) \\ \text { for } r, s \geq 1 \end{gathered}$	$\begin{gathered} n=\frac{(\ell-a)(\ell-b)}{\ell+a b-a-b} \\ \ell \equiv a \equiv b(\bmod 4), \\ a>0 \geq b \end{gathered}$
G	$4 s K_{2 r}$	$\begin{gathered} v=n \\ k=\frac{\ell-b+n(b-1)}{b-a} \\ \lambda=\mu+\frac{2(\ell-b)-n}{b-a} \\ \mu=\frac{n b(b-1)}{(b-a)^{2}} \end{gathered}$
integers		$\begin{gathered} \frac{\ell-b}{b-a}, \frac{n}{b-a}, \\ \frac{n(b-1)}{2(b-a)}, \frac{n b(b-1)}{(b-a)^{2}} \end{gathered}$

Theorem (Jedwab, Li, Simon (2023))

Suppose $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ is a $\operatorname{BSHM}(8 r s, 4 s, 4 s, 0)$ with respect to H_{1} (Type II and imprimitive). Then the associated $S R G$ is $4 s K_{2 r}$. There exists a Hadamard matrix L of order 4 s , and the columns of H can be reordered so that $H_{1}=\underbrace{\left[\begin{array}{llll}L & L & \ldots & L\end{array}\right]}_{2 r}$.

Theorem (Jedwab, Li, Simon (2023))

Suppose $H=\left[\begin{array}{l}H_{1} \\ H_{2}\end{array}\right]$ is a $\operatorname{BSHM}(8 r s, 4 s, 4 s, 0)$ with respect to H_{1} (Type II and imprimitive). Then the associated $S R G$ is $4 s K_{2 r}$. There exists a Hadamard matrix L of order 4 s , and the columns of H can be reordered so that $H_{1}=\underbrace{\left[\begin{array}{llll}L & L & \ldots & L\end{array}\right]}_{2 r}$.

Question

For primitive BSHM, what structural information is contained the associated SRG?

Result (Known constructions)

Suppose there exist Hadamard matrices of orders n and s. Then there exists:
(1) $\operatorname{BSHM}\left(n^{2}, 2 n-2, n-2,-2\right)$ for $n \geq 2$
(2) $\operatorname{BSHM}\left(n^{2}, 2 n-1, n-1,-1\right)$ for $n \geq 4$
(3) $\operatorname{BSHM}(n s, n, n, 0)$ for $n \geq 2$
(9) $\operatorname{BSH} M\left(2^{2 m}, 2^{m-1}\left(2^{m}-1\right), 2^{m-1},-2^{m-1}\right)$ for $m \geq 2$
(0) $\operatorname{BSHM}(q(q+1), q, q,-1)$ for $q \geq 3, q \equiv 3 \bmod 4$, where $q+1$ is the order of a skew-type Hadamard matrix
(($B S H M\left(4 n^{2}, 2 n^{2}-n, n,-n\right)$

Most known BSHMs are constructed via Kronecker product. We want to find "primary constructions" that do not depend on Kronecker product.

We proposed a primary construction based on the character table of elementary abelian 2-groups.

Example (Character of elementary abelian 2-groups)

$G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$,
Each $(a, b) \in G$ induces a character $\chi_{(a, b)}$, for instance

$$
\chi_{(1,1)}((0,1))=(-1)^{0 \cdot 1} \cdot(-1)^{1 \cdot 1}=1 \cdot(-1)=-1 .
$$

Each character $\chi_{(a, b)}$ induces a group homomorphism

$$
\begin{aligned}
\chi_{(a, b)}: G & \mapsto\{1,-1\} \\
(c, d) & \mapsto(-1)^{a c} \cdot(-1)^{b d}=(-1)^{a c+b d}
\end{aligned}
$$

Example (Character of elementary abelian 2-groups)

$G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$,
Each $(a, b) \in G$ induces a character $\chi_{(a, b)}$, for instance

$$
\chi_{(1,1)}((0,1))=(-1)^{0 \cdot 1} \cdot(-1)^{1 \cdot 1}=1 \cdot(-1)=-1 .
$$

Each character $\chi_{(a, b)}$ induces a group homomorphism

$$
\begin{aligned}
\chi_{(a, b)}: & G \quad \mapsto\{1,-1\} \\
(c, d) & \mapsto(-1)^{a c} \cdot(-1)^{b d}=(-1)^{a c+b d}
\end{aligned}
$$

character group: $\widehat{G}=\left\{\chi_{g} \mid g \in G\right\} \cong G$.

Example (Character table)
 $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Example (Character table)

$$
G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

The character table of G is a $|G| \times|G|$ matrix H with rows indexed by elements of G and columns by \widehat{G}.

$$
\left.H=\begin{array}{c}
\\
(0,0) \\
(0,1) \\
(1,0) \\
(1,1)
\end{array} \begin{array}{cccc}
\chi_{(0,0)} & \chi_{(0,1)} & \chi_{(1,0)} & \chi_{(1,1)} \\
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

Example (Character table)

$G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
The character table of G is a $|G| \times|G|$ matrix H with rows indexed by elements of G and columns by \widehat{G}.

$$
H=\begin{gathered}
\\
(0,0) \\
(0,1) \\
(1,0) \\
(1,1)
\end{gathered}\left[\begin{array}{cccc}
\chi_{(0,0)} & \chi_{(0,1)} & \chi_{(1,0)} & \chi_{(1,1)} \\
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

$\chi_{(1,1)}((0,1))=-1$

Example (Character table)

$G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
The character table of G is a $|G| \times|G|$ matrix H with rows indexed by elements of G and columns by \widehat{G}.

$$
H=\begin{gathered}
\\
(0,0) \\
(0,1) \\
(1,0) \\
(1,1)
\end{gathered}\left[\begin{array}{cccc}
\chi_{(0,0)} & \chi_{(0,1)} & \chi_{(1,0)} & \chi_{(1,1)} \\
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

$\chi_{(1,1)}((0,1))=-1$
H is a Hadamard matrix of order 4.

Example (Character table)

$G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
The character table of G is a $|G| \times|G|$ matrix H with rows indexed by elements of G and columns by \widehat{G}.

$$
\left.H=\begin{array}{c}
\\
(0,0) \\
(0,1) \\
(1,0) \\
(1,1)
\end{array} \begin{array}{cccc}
\chi_{(0,0)} & \chi_{(0,1)} & \chi_{(1,0)} & \chi_{(1,1)} \\
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

$\chi_{(1,1)}((0,1))=-1$
H is a Hadamard matrix of order 4.

The character table of an elementary abelian 2-group serves as the underlying Hadamard matrix. To construct a BSHM, it remains to properly split the matrix.

Example (Partial difference set)

Let $G=\mathbb{Z}_{2}^{4}$ and $D=\{(0,0,0,1),(0,0,1,0),(0,0,1,1)\}$. The multiset $\{\{x-y \mid x, y \in D, x \neq y\}\}$ contains

Example (Partial difference set)

Let $G=\mathbb{Z}_{2}^{4}$ and $D=\{(0,0,0,1),(0,0,1,0),(0,0,1,1)\}$. The multiset $\{\{x-y \mid x, y \in D, x \neq y\}\}$ contains

- each element of D exactly 2 times
- each nonidentity element of $G \backslash D$ exactly 0 time

Example (Partial difference set)

Let $G=\mathbb{Z}_{2}^{4}$ and $D=\{(0,0,0,1),(0,0,1,0),(0,0,1,1)\}$. The multiset $\{\{x-y \mid x, y \in D, x \neq y\}\}$ contains

- each element of D exactly 2 times
- each nonidentity element of $G \backslash D$ exactly 0 time D is a $(16,3,2,0)$ partial difference set in G.

Note that $D=\{(0,0,0,1),(0,0,1,0),(0,0,1,1)\}$ is a $(16,3,2,0)$ partial difference set in $G=\mathbb{Z}_{2}^{4}$. Let H be the character table of G.
$\operatorname{BSHM}(16,3,3,-1) H$ w.r.t. red submatrix
$\left[\begin{array}{cccccccccccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 \\ 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1\end{array}\right]$

- Partial difference sets in \mathbb{Z}_{2}^{n} are well studied objects. We get more than 10 infinite families of BSHMs not coming from the Kronecker product.
- Partial difference sets in \mathbb{Z}_{2}^{n} are well studied objects. We get more than 10 infinite families of BSHMs not coming from the Kronecker product.
- For $n \in\{16,64,256\}$ and each plausible parameter set (n, ℓ, a, b), there is an $\operatorname{BSHM}(n, \ell, a, b)$ derived from the partial difference set construction.

5 disjoint partial difference sets in \mathbb{Z}_{2}^{4} :

$$
\begin{aligned}
D_{1}=\{(0,0,0,1),(0,0,1,0),(0,0,1,1)\}, D_{2} & =\{(0,1,0,0),(1,0,0,0),(1,1,0,0)\} \\
D_{3}=\{(0,1,0,1),(1,0,1,0),(1,1,1,1)\}, D_{4} & =\{(0,1,1,0),(1,0,1,1),(1,1,0,1)\} \\
D_{5} & =\{(0,1,1,1),(1,0,0,1),(1,1,1,0)\}
\end{aligned}
$$

$\operatorname{BSHM}(16,3,3,-1) \mathrm{H}$ w.r.t. multiple submatrices
$\left[\begin{array}{cccccccccccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ 1 & --1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 \\ 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 \\ 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1\end{array}\right]$

BSHM w.r.t multiple submatrices
$\left[\begin{array}{ccccccccccccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 \\ 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 \\ 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & -1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 \\ 1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 \\ 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 \\ 1 & -1 & -1 & 1 & -1 & 1 & 1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & -1 & 1\end{array}\right]$

Future Problems

Parameter range of ℓ

For $\operatorname{BSHM}(n, \ell, a, b)$ with $\ell>a$, further narrow down the range $\sqrt{2 n} \leq \ell \leq \frac{n}{2}$ or prove the tightness.

Future Problems

Parameter range of ℓ

For $\operatorname{BSHM}(n, \ell, a, b)$ with $\ell>a$, further narrow down the range $\sqrt{2 n} \leq \ell \leq \frac{n}{2}$ or prove the tightness.
upper bound is nearly tight: $\operatorname{BSHM}\left(4 n^{2}, 2 n^{2}-n, n,-n\right)$ exists whenever a Hadamard matrix of order n exists.

Future Problems

Parameter range of ℓ

For $\operatorname{BSHM}(n, \ell, a, b)$ with $\ell>a$, further narrow down the range $\sqrt{2 n} \leq \ell \leq \frac{n}{2}$ or prove the tightness.
upper bound is nearly tight: $\operatorname{BSHM}\left(4 n^{2}, 2 n^{2}-n, n,-n\right)$ exists whenever a Hadamard matrix of order n exists.
lower bound is less clear: derived from equiangular tight frames and two-distance tight frames in \mathbb{R}^{ℓ}.

Primary constructions

- $\operatorname{BSHM}\left(4 n^{2}, 2 n^{2}-n, n,-n\right)$:

Primary constructions

- $\operatorname{BSHM}\left(4 n^{2}, 2 n^{2}-n, n,-n\right)$:
exists for $n \equiv 0 \bmod 4$, assuming the Hadamard matrix conjecture holds true

Primary constructions

- $\operatorname{BSHM}\left(4 n^{2}, 2 n^{2}-n, n,-n\right)$:
exists for $n \equiv 0 \bmod 4$, assuming the Hadamard matrix conjecture holds true does not exists for odd n

Primary constructions

- $\operatorname{BSHM}\left(4 n^{2}, 2 n^{2}-n, n,-n\right)$:
exists for $n \equiv 0 \bmod 4$, assuming the Hadamard matrix conjecture holds true does not exists for odd n existence open for $n \equiv 2 \bmod 4$. A crucial open case: BSHM $(144,66,6,-6)$

Primary constructions

- $\operatorname{BSHM}\left(4 n^{2}, 2 n^{2}-n, n,-n\right)$:
exists for $n \equiv 0 \bmod 4$, assuming the Hadamard matrix conjecture holds true
does not exists for odd n
existence open for $n \equiv 2 \bmod 4$. A crucial open case:
BSHM $(144,66,6,-6)$
- A construction by Kharaghani and Suda: a $\operatorname{BSHM}(q(q+1), q, q,-1)$ for $q \geq 3$, where $q+1$ is the order of a skew-type Hadamard matrix.

Primary constructions

- $\operatorname{BSHM}\left(4 n^{2}, 2 n^{2}-n, n,-n\right)$:
exists for $n \equiv 0 \bmod 4$, assuming the Hadamard matrix conjecture holds true
does not exists for odd n
existence open for $n \equiv 2 \bmod 4$. A crucial open case: BSHM $(144,66,6,-6)$
- A construction by Kharaghani and Suda: a $\operatorname{BSHM}(q(q+1), q, q,-1)$ for $q \geq 3$, where $q+1$ is the order of a skew-type Hadamard matrix.
- Identify BSHMs from known constructions: there have been plenty of constructions of Hadamard matrices, some of them may already give BSHMs.

Main References

- Kharaghani and Suda, Discrete Mathematics, 2019.
- Fickus, Jasper, Mixon, and Peterson, Applied and Computational Harmonic Analysis, 2021.
- Jedwab, Li, and Simon, Electronic Journal of Combinatorics, 2023.
- Kharaghani and Suda, Electronic Journal of Combinatorics, 2023.

