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P (Fiedler’91) Conjectured that an n x n fully indecomposable
orthogonal matrix has at least 4n — 2 nonzero entries. This
was proved by Beasley, Brualdi, & Shader in ’93 and later a
short proof was given by Shader '97.

2 (Craigen '93) Developed a ‘product’ called that
was used to construct weighing matrices.

3 (Cheon & Shader '99) Determined the fewest number of
nonzero entries in fully indecomposable row-orthogonal
matrices.

@ (Cheon, Johnson, Lee, & Pribble '99) Proved the existence

of an n x n fully indecomposable orthogonal matrix with k
zero entries whenever 0 < k < (n - 2)2,
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Existing Works on ‘Sparse’

Orthogonal Matrices

® (Cheon ’'99) Explored weaving further and constructed
classes of n x n orthogonal matrices with 4n — 2 nonzero
entries.

? (Cheon, Hwang, Rim, Shader, & Song '03) Found the
fewest number of nonzero entries in an n x n orthogonal
matrix with a totally nonzero row or column, or both.

® (Ahmadi, Alinaghipour, Cavers, F, Meagher, & Nasserasr
'13) Established graphs that admit orthogonal matrices:
Kn, Kn,n and the hypercube...(diamond from pg. 2
appeared in Duarte & Johnson ’02).

4 (Bailey & Craigen ’'19) Investigated (symmetric) orthogonal

matrices with zero diagonal and all off-diagonal entries
nonzero (OMZD(n)).
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Graphs & Matrices...

Given a simple graph G = (V, E), we consider various
properties (rank, nullity, spectrum, etc...) for a given collection
of matrices “associated" to G.

Set of n x n real symmetric matrices , in which for i # j
the (i,j) entry is nonzero iff i ~ j, while entries on the main
diagonal are free to be chosen;

S, (G) denote the PSD subset in S(G) -
connected to faithful orthogonal labelling for graphs;
The set S(G) includes the classical matrices associated
with graphs: adjacency, Laplacian (and its variants), and
others...



Figure: A graph G
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Inverse Eigenvalue Problem

The inverse eigenvalue problem for a graph G is to determine if
a given multi-set of real numbers is the spectrum of a matrix in
S(G).

The only graph G that realizes a single eigenvalue is the empty
graph (scalar matrix), and for the complete graph, any list of
real numbers A1 < Ao <--- < A\, is realizable whenever A1 < Ap.
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IEP-G for paths

If Ais a real symmetric nx n matrix such that for all real diagonal
matrices D, rank(A + D) > n-1, then A is irreducible and there
is a permutation matrix P such that PT AP is tridiagonal.

The only graph that requires distinct spectra (i.e., nullity is
1) is the path;

Use orthogonal polynomials, for example, to deduce that
any distinct spectra can be realized by some real
tridiagonal matrix;

Work of Leal Duarte on interlacing also implies that any
collection of distinct spectra can be realized by any tree
(not just a path);

More recent work by Monfared/Shader extends Duarte’s
work to any connected graph.



Facts about q(G

For a square matrix A, q(A) denotes the number of distinct
eigenvalues of A.
The ,q(G),is
defined
q(G) =min{q(A): Ae S(G)}.
1<q(G) < n,and q(G) =1 iff G is empty,
Further, g(G) = n iff M(G) =1 (ie, G is a path) [F69].
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g & adjacency matrix

The of a path P is the # of edges in P. The
between two vertices is the length of the shortest path between
them, and the is the maximum distance in G.

The number of distinct eigenvalues of the adjacency matrix is at
least the diameter of G plus 1.

The proof uses the degree of the minimal polynomial

The proof applies verbatim to nonnegative matrices in
S(G)
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Unique shortest paths...

A natural question that arises: Is there still a relationship
between g(G) and diam(G)?

If there are vertices u, v in G at distance d and the path of
length d from u to v is unique, then g(G) > d + 1.

1 Foranytree T, q(T) > diam(T) +1,

2 For general trees, it is known that q can be much larger
than diam(T) +1,

3 The hypercube, Qp, satisfies q(Qn) =2 and diam(Q,) = n
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Example — Trees

If Gis a tree, then

M(G) = P(G) = Z(G)
([JL99], [AIMO08]).

Trees T with diameter at
most 5 are known to
satisfy

g(T) =diam(T) +1.
However, the tree T
with diameter 6 satisfies
q(Ty) = 8 [BFO4].

N
Ny

| |
BF-tree T,
The gap can be much

larger for general binary
trees [KS13]



Graphs with g=|V(G)| -1

A graph G has q(G) > |V(G)| -1 if and only if G is one of the
following:

a path,

the disjoint union of a path and an isolated vertex,

a path with one leaf attached to an interior vertex,

a path with an extra edge joining two vertices at distance 2.
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Graphs with g =2

S(G) contains an orthogonal matrix iff q(G) = 2.
q(G) =2iff 3 Ae S(G) such that A? is in span{A, I}.

g(G) = 2. Then, for any independent set of vertices
{vy,vo,..., vk}, that satisfies for each i = 1,2,. .., k there exists
a j # i for which N(v;) n N(v;) + @, we have

UN() A N()| = k.

i+
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Hypercube

For n> 1, we have g(Qp) = 2. In fact this result follows from a
slightly stronger statement of the form: for any graph G,
q(GOoOKy) <2q(G) - 2.

This result is tied to the so-called ‘sensitivity conjecture’ of
Nisan and Szegedy '92 that was resolved by Huang in ’19...
Recently, Ahmad, F. proved that q(KsOKz) =2 for s > 3
and that there exists an SSP matrix realization in
S(KsOKz) with two distinct eigenvalues.
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Other Sporadic Results on g =2

q(Ko,.prar..qr) =2 for 1.1 > 2, if ¥ p; = ¥ q; [DMRG "19].

g(Kn ~ M) =2 (n>3) M - perfect matching [Johnson &
Zhang ’18 or Bailey & Craigen ’19].

q(Knn—-M) =2 (n>4) M - perfect matching [Bailey &
Craigen ’19].

q(T¢°) =2, for almost all trees T (e.g. not P,) [Levene,
Oblak, Smigoc ’19].

Joins of unions of complete graphs have essentially been
sorted out and for such graphs q < 3. [Levene, Oblak,
Smigoc '22]
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Studying (G Vv H

G connected, q(G v G) =2 [DMRG ’13].

If G, H connected & |G| = |H|, then g(G v H) = 2 [Monfared
& Shader ’16].

If G, H connected, & |H| < |G| + 2, then q(G v H) =2 [AIM
ARC Bordering Group ’23]

If (G v H) =2, then G and H have compatible multiplicity
matrices. Further, if G is generically realizable & H is sane,
then (G v H) =2, iff G and H have compatible multiplicity
matrices. [Levene, Oblak, Smigoc ’22].
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Studying q(G v K;

Paths: q(P, v Ky) = [251].

A e S(G), A an eigenvalue with a nowhere zero
eigenvector. Then 3 A’ ¢ S(G v K7) such that:

D q(A) =q(A) +1,if \is extreme,

2 q(A") =q(A), if \is not extreme,

3 q(A) =q(A)-1,if \is extreme and simple.
Hypercube: q(Q, v K1) <3, and g(Q4 v Ky) = 3 [AIM ARC
Bordering Group '23]

Using a fact about join duplicating a vertex, we know that
q(GV Ksi1) <q(G v Ks).
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Threshold Graphs

Any threshold graph G can be represented as a binary
sequence, depending on a vertex being isolated or dominating,
and the trace T of G, is the number of ones in its creation
seqguence.

For a threshold graph G, g(G) =2 if and only if there exists
a matrix A e S(G) s.t. A(1, 0) is column orthogonal.

Let G be a connected threshold graph of order n and trace
T.1fq(G)=2,then T >[Z].
(Complete Split) Let Gz (0,...,0,1,...,1), where

—_—— ——
t

kq
ti, ki > 1. If ky < t1, then q(G) = 2 and otherwise if k; > t1,
then q(G) = 3.
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r - Regular Graphs

If G is a connected r-regular graph with g(G) = 2 for some
r <3, then G is one of:

Kz;
Kz or Cy; or,
K4, K3’3, K3I:]K2, or Qs.

For m,n <3, we have q(KnoOK,) = 3.



r - Regular graphs

If G is a connected 4-regular graph with g(G) = 2, then G is
either:
Ks;
K3OCa, K3 30Kz, Qa,
a closed candle Hj for some k > 3,
one of 11 other sporadic 4-regular graphs on at most 16
vertices.
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SRGs and g

If G is an SRG, then g(G) < 3.
If © =0, then q(G) =2 and q(G°) = 2.
If w=1,then g >2.

Line graph of K, has q = 2 [Furst, Grotts ’21].

Characterize the SRGs with g =2
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If G is a connected graph on n > 3 vertices with q(G) = 2, then

2n-4, if nis even, and
|E(G)| 2 .

2n-3, if nis odd.
Moreover, the only graphs that meet this bound with n even are
Q5 and the double-ended candles. The only graphs that meet
this bound with n odd are the single-ended candles.

OO O]

We are currently studying the graphs that ‘require’ g = 2. Such
graphs are necessarily dense and we can remove n - 2 edges
from K, to produce H such that g(H) > 2...to be continued!
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Summary and Future

Considerations

1 : Characterize the graphs G with q(G) =27
There are a number of avenues to explore and work is
on-going! One thing to keep in mind: Every graph is an
induced subgraph of a graph that admits an orthogonal
matrix!!!

2 It seems eigenvectors will play a bigger role in any such
characterizations...

3 The bipartite case seems interesting (not just g = 2, but
what g values are possible), with my PIMS PDF P.
Viskwakarma, we are making progresst...imposing other
structure constraints is also a direction to consider.

4 SRGs and the distance regular graphs seem to be a
natural place to study further!
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The End

Multiple joint projects were referenced in this lecture with
many extraordinary collaborators: PDF - S.A. Mojallal; U.
Regina (DMRG 13 and ’19); AIM ARC Research Groups
(g and Bordering; Q/q Group - 2 separate projects) &
FRG/Squares Group ’17.
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Thank you all for your time and attention...Any questions?



