Graphs that Admit Orthogonal Matrices

Shaun M. Fallat

Department of Mathematics and Statistics University of Regina

Algebraic Graph Theory Seminar October 30, 223

Outline

Introduction
Pattern Constrained Orthogonal Matrices - History
Setting
IEP-G
Minimum \# of Distinct Eigevalues
Examples \& Basic Facts:
Graphs with $q=2$
Observations
Graph Joins and $q=2$
Threshold graphs
$q=2$ and Regular Graphs
Strongly Regular Graphs
Graphs that Allow (or Require) $q=2$
Ending Remarks

Outline

Introduction

Pattern Constrained Orthogonal Matrices - History Setting
IEP-G
Minimum \# of Distinct Eigevalues
Examples \& Basic Facts:

Observations

Threshold graphs

A Simple Question

Example

Does the graph above describe a pattern of a 4×4 symmetric orthogonal matrix? Sure... Consider:

A Simple Question

Example

Does the graph above describe a pattern of a 4×4 symmetric orthogonal matrix? Sure... Consider:

$$
\left(\frac{1}{\sqrt{3}}\right)\left[\begin{array}{rrrr}
-1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & -1 \\
0 & 1 & -1 & 1
\end{array}\right]
$$

Existing Works on 'Sparse' Orthogonal Matrices

Brief Literature Review:
(Fiedler '91) Conjectured that an $n \times n$ fully indecomposable orthogonal matrix has at least $4 n-2$ nonzero entries. This was proved by Beaslev, Brualdi, \& Shader in '93 and later a short proof was given by Shader ' 97.
(Craigen '93) Developed a 'product' called
\qquad
(Cheon, Johnson, Lee, \& Pribble '99) Proved the existence of an $n \times n$ fully indecomposable orthogonal matrix with k zero entries whenever $0 \leq k \leq(n-2)^{2}$.

Existing Works on 'Sparse' Orthogonal Matrices

Brief Literature Review:

(1) (Fiedler '91) Conjectured that an $n \times n$ fully indecomposable orthogonal matrix has at least $4 n-2$ nonzero entries. This was proved by Beasley, Brualdi, \& Shader in '93 and later a short proof was given by Shader '97.
of an $n \times n$ fully indecomposable orthogonal matrix with k zero entries whenever $0 \leq k \leq(n-2)^{2}$.

Existing Works on 'Sparse' Orthogonal Matrices

Brief Literature Review:
(1) (Fiedler '91) Conjectured that an $n \times n$ fully indecomposable orthogonal matrix has at least $4 n-2$ nonzero entries. This was proved by Beasley, Brualdi, \& Shader in '93 and later a short proof was given by Shader '97.
(2) (Craigen '93) Developed a 'product' called weaving that was used to construct weighing matrices.

Existing Works on 'Sparse' Orthogonal Matrices

Brief Literature Review:
(1) (Fiedler '91) Conjectured that an $n \times n$ fully indecomposable orthogonal matrix has at least $4 n-2$ nonzero entries. This was proved by Beasley, Brualdi, \& Shader in '93 and later a short proof was given by Shader '97.
(2) (Craigen '93) Developed a 'product' called weaving that was used to construct weighing matrices.
3 (Cheon \& Shader '99) Determined the fewest number of nonzero entries in fully indecomposable row-orthogonal matrices.

Existing Works on 'Sparse' Orthogonal Matrices

Brief Literature Review:

(1) (Fiedler '91) Conjectured that an $n \times n$ fully indecomposable orthogonal matrix has at least $4 n-2$ nonzero entries. This was proved by Beasley, Brualdi, \& Shader in '93 and later a short proof was given by Shader '97.
(2) (Craigen '93) Developed a 'product' called weaving that was used to construct weighing matrices.
3 (Cheon \& Shader '99) Determined the fewest number of nonzero entries in fully indecomposable row-orthogonal matrices.

4 (Cheon, Johnson, Lee, \& Pribble '99) Proved the existence of an $n \times n$ fully indecomposable orthogonal matrix with k zero entries whenever $0 \leq k \leq(n-2)^{2}$.

Existing Works on 'Sparse' Orthogonal Matrices

Brief Literature Review, cont'd:

```
(Cheon '99) Explored weaving further and constructed
classes of n\timesn orthogonal matrices with 4n-2 nonzero
entries.
(Cheon, Hwang, Rim, Shader, & Song '03) Found the
fewest number of nonzero entries in an }n\timesn\mathrm{ orthodonal
```

appeared in Duarte \& Johnson '02).
(Bailey \& Craigen '19) Investigated (symmetric) orthogonal matrices with zero diagonal and all off-diagonal entries nonzero (OMZD $(n))$.

Existing Works on 'Sparse' Orthogonal Matrices

Brief Literature Review, cont'd:
(1) (Cheon '99) Explored weaving further and constructed classes of $n \times n$ orthogonal matrices with $4 n-2$ nonzero entries.

((Bailey \& Craigen '19) Investigated (symmetric) orthogonal
matrices with zero diagonal and all off-diagonal entries
nonzero (OMZD(n)).

Existing Works on 'Sparse’ Orthogonal Matrices

Brief Literature Review, cont'd:
(1) (Cheon '99) Explored weaving further and constructed classes of $n \times n$ orthogonal matrices with $4 n-2$ nonzero entries.
(2) (Cheon, Hwang, Rim, Shader, \& Song '03) Found the fewest number of nonzero entries in an $n \times n$ orthogonal matrix with a totally nonzero row or column, or both.

Existing Works on 'Sparse' Orthogonal Matrices

Brief Literature Review, cont'd:
(1) (Cheon '99) Explored weaving further and constructed classes of $n \times n$ orthogonal matrices with $4 n-2$ nonzero entries.
(2) (Cheon, Hwang, Rim, Shader, \& Song '03) Found the fewest number of nonzero entries in an $n \times n$ orthogonal matrix with a totally nonzero row or column, or both.
3 (Ahmadi, Alinaghipour, Cavers, F, Meagher, \& Nasserasr '13) Established graphs that admit orthogonal matrices: $K_{n}, K_{n, n}$ and the hypercube...(diamond from pg. 2 appeared in Duarte \& Johnson '02).

Existing Works on 'Sparse' Orthogonal Matrices

Brief Literature Review, cont'd:
(1) (Cheon '99) Explored weaving further and constructed classes of $n \times n$ orthogonal matrices with $4 n-2$ nonzero entries.
(2) (Cheon, Hwang, Rim, Shader, \& Song '03) Found the fewest number of nonzero entries in an $n \times n$ orthogonal matrix with a totally nonzero row or column, or both.
3 (Ahmadi, Alinaghipour, Cavers, F, Meagher, \& Nasserasr '13) Established graphs that admit orthogonal matrices: $K_{n}, K_{n, n}$ and the hypercube...(diamond from pg. 2 appeared in Duarte \& Johnson '02).
4. (Bailey \& Craigen '19) Investigated (symmetric) orthogonal matrices with zero diagonal and all off-diagonal entries nonzero (OMZD(n)).

Graphs \& Matrices...

Central CMT Problem

Given a simple graph $G=(V, E)$, we consider various properties (rank, nullity, spectrum, etc...) for a given collection of matrices "associated" to G.

Graphs \& Matrices...

Central CMT Problem

Given a simple graph $G=(V, E)$, we consider various properties (rank, nullity, spectrum, etc...) for a given collection of matrices "associated" to G.

- Set of $n \times n$ real symmetric matrices $S(G)$, in which for $i \neq j$ the (i, j) entry is nonzero iff $i \sim j$, while entries on the main diagonal are free to be chosen;

Graphs \& Matrices...

Central CMT Problem

Given a simple graph $G=(V, E)$, we consider various properties (rank, nullity, spectrum, etc...) for a given collection of matrices "associated" to G.

- Set of $n \times n$ real symmetric matrices $S(G)$, in which for $i \neq j$ the (i, j) entry is nonzero iff $i \sim j$, while entries on the main diagonal are free to be chosen;
- Important subset: $S_{+}(G)$ denote the PSD subset in $S(G)$ connected to faithful orthogonal labelling for graphs;

Graphs \& Matrices...

Central CMT Problem

Given a simple graph $G=(V, E)$, we consider various properties (rank, nullity, spectrum, etc...) for a given collection of matrices "associated" to G.

- Set of $n \times n$ real symmetric matrices $S(G)$, in which for $i \neq j$ the (i, j) entry is nonzero iff $i \sim j$, while entries on the main diagonal are free to be chosen;
- Important subset: $S_{+}(G)$ denote the PSD subset in $S(G)$ connected to faithful orthogonal labelling for graphs;
- The set $S(G)$ includes the classical matrices associated with graphs: adjacency, Laplacian (and its variants), and others...

Figure: A graph G

Then the matrix $B=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 1 & 3.1 & -1.5 & 2 \\ 0 & -1.5 & 1 & 1 \\ 0 & 2 & 1 & 0\end{array}\right]$ belongs to $S(G)$.

Inverse Eigenvalue Problem

IEP-G
The inverse eigenvalue problem for a graph G is to determine if a given multi-set of real numbers is the spectrum of a matrix in $S(G)$.

Inverse Eigenvalue Problem

IEP-G
The inverse eigenvalue problem for a graph G is to determine if a given multi-set of real numbers is the spectrum of a matrix in $S(G)$.

Two Extreme Examples:

The only graph G that realizes a single eigenvalue is the empty graph (scalar matrix), and for the complete graph, any list of real numbers $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ is realizable whenever $\lambda_{1}<\lambda_{n}$.

IEP-G for paths

Fiedler's Tridiagonal Matrix Theorem, 1969

If A is a real symmetric $n \times n$ matrix such that for all real diagonal matrices $D, \operatorname{rank}(A+D) \geq n-1$, then A is irreducible and there is a permutation matrix P such that $P^{T} A P$ is tridiagonal. Observations...

IEP-G for paths

Fiedler's Tridiagonal Matrix Theorem, 1969

If A is a real symmetric $n \times n$ matrix such that for all real diagonal matrices $D, \operatorname{rank}(A+D) \geq n-1$, then A is irreducible and there is a permutation matrix P such that $P^{T} A P$ is tridiagonal.
Observations...

- The only graph that requires distinct spectra (i.e., nullity is 1) is the path;

IEP-G for paths

Fiedler's Tridiagonal Matrix Theorem, 1969

If A is a real symmetric $n \times n$ matrix such that for all real diagonal matrices $D, \operatorname{rank}(A+D) \geq n-1$, then A is irreducible and there is a permutation matrix P such that $P^{T} A P$ is tridiagonal.
Observations...

- The only graph that requires distinct spectra (i.e., nullity is 1) is the path;
- Use orthogonal polynomials, for example, to deduce that any distinct spectra can be realized by some real tridiagonal matrix;

IEP-G for paths

Fiedler's Tridiagonal Matrix Theorem, 1969

If A is a real symmetric $n \times n$ matrix such that for all real diagonal matrices $D, \operatorname{rank}(A+D) \geq n-1$, then A is irreducible and there is a permutation matrix P such that $P^{T} A P$ is tridiagonal.
Observations...

- The only graph that requires distinct spectra (i.e., nullity is 1) is the path;
- Use orthogonal polynomials, for example, to deduce that any distinct spectra can be realized by some real tridiagonal matrix;
- Work of Leal Duarte on interlacing also implies that any collection of distinct spectra can be realized by any tree (not just a path);

IEP-G for paths

Fiedler's Tridiagonal Matrix Theorem, 1969

If A is a real symmetric $n \times n$ matrix such that for all real diagonal matrices $D, \operatorname{rank}(A+D) \geq n-1$, then A is irreducible and there is a permutation matrix P such that $P^{T} A P$ is tridiagonal.
Observations...

- The only graph that requires distinct spectra (i.e., nullity is 1) is the path;
- Use orthogonal polynomials, for example, to deduce that any distinct spectra can be realized by some real tridiagonal matrix;
- Work of Leal Duarte on interlacing also implies that any collection of distinct spectra can be realized by any tree (not just a path);
- More recent work by Monfared/Shader extends Duarte's work to any connected graph.

Facts about $q(G)$

Definitions \& Basic Facts:

- For a square matrix $A, q(A)$ denotes the number of distinct eigenvalues of A.
- The minimum number of distinct eigenvalues of $G, q(G)$, is defined

$$
q(G)=\min \{q(A): A \in S(G)\}
$$

$1 \leq q(G) \leq n$, and $q(G)=1$ iff G is empty,
Further, $q(G)=n$ iff $M(G)=1$ (ie, G is a path) [F69].

q \& adjacency matrix

Diameter
The length of a path P is the \# of edges in P. The distance between two vertices is the length of the shortest path between them, and the diameter of G is the maximum distance in G.

q \& adjacency matrix

Diameter

The length of a path P is the \# of edges in P. The distance between two vertices is the length of the shortest path between them, and the diameter of G is the maximum distance in G.

Result

The number of distinct eigenvalues of the adjacency matrix is at least the diameter of G plus 1.

- The proof uses the degree of the minimal polynomial
- The proof applies verbatim to nonnegative matrices in $S(G)$

Unique shortest paths...

Question

A natural question that arises: Is there still a relationship between $q(G)$ and $\operatorname{diam}(G)$?

For general trees, it is known that q can be much larger than $\operatorname{diam}(T)+1$,
The hypercube, Q_{n}, satisfies $q\left(Q_{n}\right)=2$ and $\operatorname{diam}\left(Q_{n}\right)=n$

Unique shortest paths...

Question

A natural question that arises: Is there still a relationship between $q(G)$ and $\operatorname{diam}(G)$?

Simple Lower Bound

If there are vertices u, v in G at distance d and the path of length d from u to v is unique, then $q(G) \geq d+1$.

Unique shortest paths...

Question

A natural question that arises: Is there still a relationship between $q(G)$ and $\operatorname{diam}(G)$?

Simple Lower Bound

If there are vertices u, v in G at distance d and the path of length d from u to v is unique, then $q(G) \geq d+1$.

Notes:
1 For any tree $T, q(T) \geq \operatorname{diam}(T)+1$,

Unique shortest paths...

Question

A natural question that arises: Is there still a relationship between $q(G)$ and $\operatorname{diam}(G)$?

Simple Lower Bound

If there are vertices u, v in G at distance d and the path of length d from u to v is unique, then $q(G) \geq d+1$.

Notes:

1 For any tree $T, q(T) \geq \operatorname{diam}(T)+1$,
2 For general trees, it is known that q can be much larger than $\operatorname{diam}(T)+1$,

Unique shortest paths...

Question

A natural question that arises: Is there still a relationship between $q(G)$ and $\operatorname{diam}(G)$?

Simple Lower Bound

If there are vertices u, v in G at distance d and the path of length d from u to v is unique, then $q(G) \geq d+1$.

Notes:

1 For any tree $T, q(T) \geq \operatorname{diam}(T)+1$,
2 For general trees, it is known that q can be much larger than $\operatorname{diam}(T)+1$,
3 The hypercube, Q_{n}, satisfies $q\left(Q_{n}\right)=2$ and $\operatorname{diam}\left(Q_{n}\right)=n$

Example - Trees

Facts:

- If G is a tree, then $M(G)=P(G)=Z(G)$ ([JL99], [AIM08]).

Example - Trees

Facts:

- If G is a tree, then
$M(G)=P(G)=Z(G)$
([JL99], [AIM08]).
Trees T with diameter at most 5 are known to satisfy
$q(T)=\operatorname{diam}(T)+1$.
However, the tree T_{1} with diameter 6 satisfies $q\left(T_{1}\right)=8$ [BF04].

Example - Trees

Facts:

- If G is a tree, then
$M(G)=P(G)=Z(G)$
([JL99], [AIM08]).
- Trees T with diameter at most 5 are known to satisfy $q(T)=\operatorname{diam}(T)+1$.

Figure: BF-tree T_{1} However, the tree T_{1} with diameter 6 satisfies $q\left(T_{1}\right)=8$ [BF04].

Example - Trees

Facts:

- If G is a tree, then $M(G)=P(G)=Z(G)$ ([JL99], [AIM08]).
- Trees T with diameter at most 5 are known to satisfy $q(T)=\operatorname{diam}(T)+1$. However, the tree T_{1} with diameter 6 satisfies $q\left(T_{1}\right)=8$ [BF04].

Figure: BF-tree T_{1}

- The gap can be much larger for general binary trees [KS13]

Graphs with $q=|V(G)|-1$

Theorem [FRG 2017] - Conjecture from [DMRG '13]
A graph G has $q(G) \geq|V(G)|-1$ if and only if G is one of the following:
(a) a path,
(b) the disjoint union of a path and an isolated vertex,
(c) a path with one leaf attached to an interior vertex,
(d) a path with an extra edge joining two vertices at distance 2.

Outline

Introduction
Pattern Constrained Orthogonal Matrices - History
Setting
IEP-G
Minimum \# of Distinct Eigevalues
Examples \& Basic Facts:
Graphs with $q=2$
Observations

Threshold graphs

Strongly Regular Graphs
Graphs that Allow (or Require) $q=2$
Ending Remarks

Graphs with $q=2$

Observation 1:
$S(G)$ contains an orthogonal matrix iff $q(G)=2$.
$q(G)=2$ iff $\exists A \in S(G)$ such that A^{2} is in $\operatorname{span}\{A, I\}$

Graphs with $q=2$

Observation 1:

$S(G)$ contains an orthogonal matrix iff $q(G)=2$.

Graphs with $q=2$

Observation 1:
$S(G)$ contains an orthogonal matrix iff $q(G)=2$.

Observation 2:
$q(G)=2$ iff $\exists A \in S(G)$ such that A^{2} is in $\operatorname{span}\{A, I\}$.

Graphs with $q=2$

Observation 1:

$S(G)$ contains an orthogonal matrix iff $q(G)=2$.

Observation 2:
$q(G)=2$ iff $\exists A \in S(G)$ such that A^{2} is in $\operatorname{span}\{A, I\}$.

Observation 3:
$q(G)=2$. Then, for any independent set of vertices $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$, that satisfies for each $i=1,2, \ldots, k$ there exists a $j \neq i$ for which $N\left(v_{i}\right) \cap N\left(v_{j}\right) \neq \varnothing$, we have

$$
\left|\bigcup_{i \neq j}\left(N\left(v_{i}\right) \cap N\left(v_{j}\right)\right)\right| \geq k .
$$

Hypercube

Theorem [DMRG '13]
For $n \geq 1$, we have $a\left(Q_{n}\right)=2$. In fact this result follows from a slightly stronger statement of the form: for any graph G,
$q\left(G \square K_{2}\right) \leq 2 q(G)-2$.

Nisan and Szegedy ' 92 that was resolved by Huang in '19...

- Recently, Ahmad, F. proved that $q\left(K_{s} \square K_{2}\right)=2$ for $s \geq 3$ and that there exists an SSP matrix realization in $S\left(K_{s} \square K_{2}\right)$ with two distinct eigenvalues.

Hypercube

Theorem [DMRG '13]
For $n \geq 1$, we have $q\left(Q_{n}\right)=2$. In fact this result follows from a slightly stronger statement of the form: for any graph G, $q\left(G \square K_{2}\right) \leq 2 q(G)-2$.

Hypercube

Theorem [DMRG '13]

For $n \geq 1$, we have $q\left(Q_{n}\right)=2$. In fact this result follows from a slightly stronger statement of the form: for any graph G, $q\left(G \square K_{2}\right) \leq 2 q(G)-2$.

Notes:

Hypercube

Theorem [DMRG '13]

For $n \geq 1$, we have $q\left(Q_{n}\right)=2$. In fact this result follows from a slightly stronger statement of the form: for any graph G, $q\left(G \square K_{2}\right) \leq 2 q(G)-2$.

Notes:

- This result is tied to the so-called 'sensitivity conjecture' of Nisan and Szegedy '92 that was resolved by Huang in '19...

Hypercube

Theorem [DMRG '13]

For $n \geq 1$, we have $q\left(Q_{n}\right)=2$. In fact this result follows from a slightly stronger statement of the form: for any graph G, $q\left(G \square K_{2}\right) \leq 2 q(G)-2$.

Notes:

- This result is tied to the so-called 'sensitivity conjecture' of Nisan and Szegedy '92 that was resolved by Huang in '19...
- Recently, Ahmad, F. proved that $q\left(K_{s} \square K_{2}\right)=2$ for $s \geq 3$ and that there exists an SSP matrix realization in $S\left(K_{s} \square K_{2}\right)$ with two distinct eigenvalues.

Other Sporadic Results on $q=2$

Oblak, Smigoc '19].
Joins of unions of complete graphs have essentially been sorted out and for such graphs $q \leq 3$. [Levene, Oblak, Smigoc '22]

Other Sporadic Results on $q=2$

Facts:
$q\left(K_{p_{1}, \ldots p_{i} ; q_{1}, \ldots q_{\|}}\right)=2$ for $l, l^{\prime} \geq 2$, if $\sum p_{j}=\sum q_{j}\left[D M R G{ }^{\prime} 19\right]$,
$q\left(K_{n} \backslash M\right)=2(n \geq 3) M$ - perfect matching [Johnson \& Zhang '18 or Bailey \& Craigen '19].

[^0]
Other Sporadic Results on $q=2$

Facts:

- $q\left(K_{p_{1}, \ldots p_{l} ; q_{1}, \ldots q^{\prime \prime}}\right)=2$ for $I, I^{\prime} \geq 2$, if $\sum p_{i}=\sum q_{j}$ [DMRG '19].
$q\left(K_{n} \backslash M\right)=2(n \geq 3) M$ - perfect matching [Johnson \& Zhang '18 or Bailey \& Craigen '19].
sorted out and for such graphs $q \leq 3$. [Levene, Oblak, Smigoc '22]

Other Sporadic Results on $q=2$

Facts:

- $q\left(K_{p_{1}, \ldots p_{l} ; q_{1}, \ldots q_{\mid l}}\right)=2$ for $I, I^{\prime} \geq 2$, if $\sum p_{i}=\sum q_{j}$ [DMRG '19].
- $q\left(K_{n} \backslash M\right)=2(n \geq 3) M$ - perfect matching [Johnson \& Zhang '18 or Bailey \& Craigen '19].

Other Sporadic Results on $q=2$

Facts:

- $q\left(K_{p_{1}, \ldots p_{j} ; q_{1}, \ldots q^{\prime \prime}}\right)=2$ for $I, I^{\prime} \geq 2$, if $\sum p_{i}=\sum q_{j}$ [DMRG '19].
- $q\left(K_{n} \backslash M\right)=2(n \geq 3) M$ - perfect matching [Johnson \& Zhang '18 or Bailey \& Craigen '19].
- $q\left(K_{n, n}-M\right)=2(n \geq 4) M$ - perfect matching [Bailey \& Craigen '19].

Other Sporadic Results on $q=2$

Facts:

- $q\left(K_{p_{1}, \ldots p_{l} ; q_{1}, \ldots q_{\mid l}}\right)=2$ for $I, I^{\prime} \geq 2$, if $\sum p_{i}=\sum q_{j}$ [DMRG '19].
- $q\left(K_{n} \backslash M\right)=2(n \geq 3) M$ - perfect matching [Johnson \& Zhang '18 or Bailey \& Craigen '19].
- $q\left(K_{n, n}-M\right)=2(n \geq 4) M$ - perfect matching [Bailey \& Craigen '19].
- $q\left(T^{c}\right)=2$, for almost all trees T (e.g. not P_{4}) [Levene, Oblak, Smigoc '19].

Other Sporadic Results on $q=2$

Facts:

- $q\left(K_{p_{1}, \ldots p_{l} ; q_{1}, \ldots q_{\mid l}}\right)=2$ for $I, I^{\prime} \geq 2$, if $\sum p_{i}=\sum q_{j}$ [DMRG '19].
- $q\left(K_{n} \backslash M\right)=2(n \geq 3) M$ - perfect matching [Johnson \& Zhang '18 or Bailey \& Craigen '19].
- $q\left(K_{n, n}-M\right)=2(n \geq 4) M$ - perfect matching [Bailey \& Craigen '19].
- $q\left(T^{c}\right)=2$, for almost all trees T (e.g. not P_{4}) [Levene, Oblak, Smigoc '19].
- Joins of unions of complete graphs have essentially been sorted out and for such graphs $q \leq 3$. [Levene, Oblak, Smigoc '22]

Outline

Introduction
Pattern Constrained Orthogonal Matrices - History
Setting
IEP-G
Minimum \# of Distinct Eigevalues
Examples \& Basic Facts:
Graphs with $q=2$
Observations
Graph Joins and $q=2$
Threshold graphs

Graphs that Allow (or Require) $q=2$
Ending Remarks

Studying $q(G \vee H)$

Known Results on Joins of Graphs

matrices. Further, if G is generically realizable \& H is sane, then $q(G \vee H)=2$, iff G and H have compatible multiplicity matrices. [Levene, Oblak, Smigoc '22].

Studying $q(G \vee H)$

Known Results on Joins of Graphs
G connected, $q(G \vee G)=2$ [DMRG '13].
If G, H connected $\&|G|=|H|$, then $q(G \vee H)=2$ [Monfared \& Shader '16].
then $q(G \vee H)=2$, iff G and H have compatible multiplicity matrices. [Levene, Oblak, Smigoc '22].

Studying $q(G \vee H)$

Known Results on Joins of Graphs

- G connected, $q(G \vee G)=2$ [DMRG '13].

If G, H connected \& $|G|=|H|$, then $q(G \vee H)=2$ Monfared \& Shader '16].

Studying $q(G \vee H)$

Known Results on Joins of Graphs

- G connected, $q(G \vee G)=2$ [DMRG '13].
- If G, H connected $\&|G|=|H|$, then $q(G \vee H)=2$ [Monfared \& Shader '16].

Studying $q(G \vee H)$

Known Results on Joins of Graphs

- G connected, $q(G \vee G)=2$ [DMRG '13].
- If G, H connected $\&|G|=|H|$, then $q(G \vee H)=2$ [Monfared \& Shader '16].
- If G, H connected, $\&|H| \leq|G|+2$, then $q(G \vee H)=2[A I M$ ARC Bordering Group '23]

Studying $q(G \vee H)$

Known Results on Joins of Graphs

- G connected, $q(G \vee G)=2$ [DMRG '13].
- If G, H connected $\&|G|=|H|$, then $q(G \vee H)=2$ [Monfared \& Shader '16].
- If G, H connected, $\&|H| \leq|G|+2$, then $q(G \vee H)=2[A I M$ ARC Bordering Group '23]
- If $q(G \vee H)=2$, then G and H have compatible multiplicity matrices. Further, if G is generically realizable \& H is sane, then $q(G \vee H)=2$, iff G and H have compatible multiplicity matrices. [Levene, Oblak, Smigoc '22].

Studying $q\left(G \vee K_{1}\right)$

Various Results

Bordering Group '23]

- Using a fact about join duplicating a vertex, we know that $q\left(G \vee K_{s+1}\right) \leq q\left(G \vee K_{s}\right)$.

Studying $q\left(G \vee K_{1}\right)$

Various Results
Paths: $q\left(P_{n} \vee K_{1}\right)=\left\lceil\frac{n+1}{2}\right\rceil$.
$A \in S(G), \lambda$ an eigenvalue with a nowhere zero eigenvector. Then $\exists A^{\prime} \in S\left(G \vee K_{1}\right)$ such that:

- Using a fact about join duplicating a vertex, we know that $q\left(G \vee K_{s+1}\right) \leq q\left(G \vee K_{s}\right)$.

Studying $q\left(G \vee K_{1}\right)$

Various Results

- Paths: $q\left(P_{n} \vee K_{1}\right)=\left\lceil\frac{n+1}{2}\right\rceil$.
$A \in S(G)$, λ an eigenvalue with a nowhere zero eigenvector. Then $\exists A^{\prime} \in S\left(G \vee K_{1}\right)$ such that:

Studying $q\left(G \vee K_{1}\right)$

Various Results

- Paths: $q\left(P_{n} \vee K_{1}\right)=\left\lceil\frac{n+1}{2}\right\rceil$.
- $A \in S(G), \lambda$ an eigenvalue with a nowhere zero eigenvector. Then $\exists A^{\prime} \in S\left(G \vee K_{1}\right)$ such that:
(1) $q\left(A^{\prime}\right)=q(A)+1$, if λ is extreme,
(2) $q\left(A^{\prime}\right)=q(A)$, if λ is not extreme,
(3) $q\left(A^{\prime}\right)=q(A)-1$, if λ is extreme and simple.

Studying $q\left(G \vee K_{1}\right)$

Various Results

- Paths: $q\left(P_{n} \vee K_{1}\right)=\left\lceil\frac{n+1}{2}\right\rceil$.
- $A \in S(G), \lambda$ an eigenvalue with a nowhere zero eigenvector. Then $\exists A^{\prime} \in S\left(G \vee K_{1}\right)$ such that:
(1) $q\left(A^{\prime}\right)=q(A)+1$, if λ is extreme,
(2) $q\left(A^{\prime}\right)=q(A)$, if λ is not extreme,
(3) $q\left(A^{\prime}\right)=q(A)-1$, if λ is extreme and simple.
- Hypercube: $q\left(Q_{n} \vee K_{1}\right) \leq 3$, and $q\left(Q_{4} \vee K_{1}\right)=3$ [AIM ARC Bordering Group '23]

Studying $q\left(G \vee K_{1}\right)$

Various Results

- Paths: $q\left(P_{n} \vee K_{1}\right)=\left\lceil\frac{n+1}{2}\right\rceil$.
- $A \in S(G), \lambda$ an eigenvalue with a nowhere zero eigenvector. Then $\exists A^{\prime} \in S\left(G \vee K_{1}\right)$ such that:
(1) $q\left(A^{\prime}\right)=q(A)+1$, if λ is extreme,
(2) $q\left(A^{\prime}\right)=q(A)$, if λ is not extreme,
(3) $q\left(A^{\prime}\right)=q(A)-1$, if λ is extreme and simple.
- Hypercube: $q\left(Q_{n} \vee K_{1}\right) \leq 3$, and $q\left(Q_{4} \vee K_{1}\right)=3$ [AIM ARC Bordering Group '23]
- Using a fact about join duplicating a vertex, we know that $q\left(G \vee K_{s+1}\right) \leq q\left(G \vee K_{S}\right)$.

Threshold Graphs

Creation Sequence

Any threshold aranh G can be represented as a binary sequence, depending on a vertex being isolated or dominating, and the trace T of G, is the number of ones in its creation sequence.
T. If $q(G)=2$, then $T \geq\left\lceil\frac{n}{2}\right\rceil$.

- (Complete Split) Let $G \cong(0, \ldots, 0,1, \ldots, 1)$, where
$t_{1}, k_{1} \geq 1$. If $k_{1} \leq t_{1}$, then $q(G)=2$ and otherwise if $k_{1}>t_{1}$, then $q(G)=3$.

Threshold Graphs

Creation Sequence

Any threshold graph G can be represented as a binary sequence, depending on a vertex being isolated or dominating, and the trace T of G, is the number of ones in its creation sequence.

Threshold Graphs

Creation Sequence

Any threshold graph G can be represented as a binary sequence, depending on a vertex being isolated or dominating, and the trace T of G, is the number of ones in its creation sequence.

Results for $q=2$ [F., Mojallal '22]:

Threshold Graphs

Creation Sequence

Any threshold graph G can be represented as a binary sequence, depending on a vertex being isolated or dominating, and the trace T of G, is the number of ones in its creation sequence.

Results for $q=2$ [F., Mojallal '22]:

- For a threshold graph $G, q(G)=2$ if and only if there exists a matrix $A \in S(G)$ s.t. $A(\overline{1}, \overline{0})$ is column orthogonal.

Threshold Graphs

Creation Sequence

Any threshold graph G can be represented as a binary sequence, depending on a vertex being isolated or dominating, and the trace T of G, is the number of ones in its creation sequence.

Results for $q=2$ [F., Mojallal '22]:

- For a threshold graph $G, q(G)=2$ if and only if there exists a matrix $A \in S(G)$ s.t. $A(\overline{1}, \overline{0})$ is column orthogonal.
- Let G be a connected threshold graph of order n and trace T. If $q(G)=2$, then $T \geq\left\lceil\frac{n}{2}\right\rceil$.

Threshold Graphs

Creation Sequence

Any threshold graph G can be represented as a binary sequence, depending on a vertex being isolated or dominating, and the trace T of G, is the number of ones in its creation sequence.

Results for $q=2$ [F., Mojallal '22]:

- For a threshold graph $G, q(G)=2$ if and only if there exists a matrix $A \in S(G)$ s.t. $A(\overline{1}, \overline{0})$ is column orthogonal.
- Let G be a connected threshold graph of order n and trace T. If $q(G)=2$, then $T \geq\left\lceil\frac{n}{2}\right\rceil$.
- (Complete Split) Let $G \cong(\underbrace{0, \ldots, 0}, \underbrace{1, \ldots, 1})$, where $t_{1}, k_{1} \geq 1$. If $k_{1} \leq t_{1}$, then $q(G)=2$ and otherwise if $k_{1}>t_{1}$, then $q(G)=3$.

Outline

Introduction
Pattern Constrained Orthogonal Matrices - History
Setting
IEP-G
Minimum \# of Distinct Eigevalues
Examples \& Basic Facts:
Graphs with $q=2$
Observations

Threshold graphs

$q=2$ and Regular Graphs
Strongly Regular Graphs
Graphs that Allow (or Require) $q=2$
Ending Remarks

r-Regular Graphs

Caser \leq s rall Arc aq cioup
If G is a connected r-regular graph with $q(G)=2$ for some $r \leq 3$, then G is one of:

r-Regular Graphs

Case $r \leq 3$ [AIM ARC Q/q Group]

If G is a connected r-regular graph with $q(G)=2$ for some $r \leq 3$, then G is one of:
(1) K_{2};
(2) K_{3} or C_{4}; or,
(3) $K_{4}, K_{3,3}, K_{3} \square K_{2}$, or Q_{3}.

r-Regular Graphs

Case $r \leq 3$ [AIM ARC Q/q Group]

If G is a connected r-regular graph with $q(G)=2$ for some $r \leq 3$, then G is one of:
(1) K_{2};
(2) K_{3} or C_{4}; or,
(3) $K_{4}, K_{3,3}, K_{3} \square K_{2}$, or Q_{3}.

Cartesian product of cliques
For $m, n \leq 3$, we have $q\left(K_{m} \square K_{n}\right)=3$.

r-Regular graphs

4-regular case [AIM ARC Q/q Group]

If G is a connected 4 -regular graph with $q(G)=2$, then G is either:
(1) K_{5};
(2) $K_{3} \square C_{4}, K_{3,3} \square K_{2}, Q_{4}$,
(3) a closed candle H_{k} for some $k \geq 3$,
(4) one of 11 other sporadic 4-regular graphs on at most 16 vertices.

SRGs and q

Observations

- Open Question: Characterize the SRGs with $q=2$

SRGs and q

Observations

If G is an $S R G$, then $q(G) \leq 3$

 If $\mu=0$, then $q(G)=2$ and $q\left(G^{C}\right)=2$
SRGs and q

Observations

- If G is an SRG, then $q(G) \leq 3$.

SRGs and q

Observations

- If G is an SRG, then $q(G) \leq 3$.
- If $\mu=0$, then $q(G)=2$ and $q\left(G^{C}\right)=2$.
- Open Question: Characterize the SRGs with $q=2$

SRGs and q

Observations

- If G is an SRG, then $q(G) \leq 3$.
- If $\mu=0$, then $q(G)=2$ and $q\left(G^{c}\right)=2$.
- If $\mu=1$, then $q>2$.

SRGs and q

Observations

- If G is an SRG, then $q(G) \leq 3$.
- If $\mu=0$, then $q(G)=2$ and $q\left(G^{c}\right)=2$.
- If $\mu=1$, then $q>2$.
- Line graph of K_{n} has $q=2$ [Furst, Grotts '21].

Open Question:

SRGs and q

Observations

- If G is an SRG, then $q(G) \leq 3$.
- If $\mu=0$, then $q(G)=2$ and $q\left(G^{c}\right)=2$.
- If $\mu=1$, then $q>2$.
- Line graph of K_{n} has $q=2$ [Furst, Grotts '21].
- Open Question: Characterize the SRGs with $q=2$

Outline

Introduction
Pattern Constrained Orthogonal Matrices - History
Setting
IEP-G
Minimum \# of Distinct Eigevalues
Examples \& Basic Facts:
Graphs with $q=2$
Observations

Threshold graphs

Strongly Regular Graphs
Graphs that Allow (or Require) $q=2$
Fnding Remarks

Graphs that Allow $q=2$

Allows Theorem [AIM ARC Q/q Group]
If G is a connected graph on $n \geq 3$ vertices with $q(G)=2$, then

$$
|E(G)| \geq \begin{cases}2 n-4, & \text { if } n \text { is even, and } \\ 2 n-3, & \text { if } n \text { is odd. }\end{cases}
$$

Moreover, the only graphs that meet this bound with n even are Q_{3} and the double-ended candles. The only graphs that meet this bound with n odd are the single-ended candles.

Graphs that Allow $q=2$

Allows Theorem [AlM ARC Q/q Group]
If G is a connected graph on $n \geq 3$ vertices with $q(G)=2$, then

$$
|E(G)| \geq \begin{cases}2 n-4, & \text { if } n \text { is even, and } \\ 2 n-3, & \text { if } n \text { is odd }\end{cases}
$$

Moreover, the only graphs that meet this bound with n even are Q_{3} and the double-ended candles. The only graphs that meet this bound with n odd are the single-ended candles.

We are currently studying the graphs that 'require' $q=2$. Such graphs are necessarily dense and we can remove $n-2$ edges from K_{n} to produce H such that $q(H)>2$...to be continued!

Outline

Introduction
Pattern Constrained Orthogonal Matrices - History
Setting
IEP-G
Minimum \# of Distinct Eigevalues
Examples \& Basic Facts:
Graphs with $q=2$
Observations

Threshold graphs

Strongly Regular Graphs
Graphs that Allow (or Require) $q=2$
Ending Remarks

Summary and Future Considerations

> Characterize the graphs G with $q(G)=2$?
> There are a number of avenues to explore and work is on-going! One thing to keep in mind: Every graph is an induced subgraph of a graph that admits an orthogonal matrix!!!

Viskwakarma, we are making progresst...imposing other structure constraints is also a direction to consider.

- SRGs and the distance regular graphs seem to be a natural place to study further!

Summary and Future Considerations

(1) BIG Question: Characterize the graphs G with $q(G)=2$? There are a number of avenues to explore and work is on-going! One thing to keep in mind: Every graph is an induced subgraph of a graph that admits an orthogonal matrix!!!

- SRGs and the distance regular graphs seem to be a natural place to study further!

Summary and Future Considerations

(1) BIG Question: Characterize the graphs G with $q(G)=2$? There are a number of avenues to explore and work is on-going! One thing to keep in mind: Every graph is an induced subgraph of a graph that admits an orthogonal matrix!!!
(2) It seems eigenvectors will play a bigger role in any such characterizations...

Summary and Future Considerations

(1) BIG Question: Characterize the graphs G with $q(G)=2$? There are a number of avenues to explore and work is on-going! One thing to keep in mind: Every graph is an induced subgraph of a graph that admits an orthogonal matrix!!!
(2) It seems eigenvectors will play a bigger role in any such characterizations...
3. The bipartite case seems interesting (not just $q=2$, but what q values are possible), with my PIMS PDF P. Viskwakarma, we are making progresst...imposing other structure constraints is also a direction to consider.

Summary and Future Considerations

(1) BIG Question: Characterize the graphs G with $q(G)=2$? There are a number of avenues to explore and work is on-going! One thing to keep in mind: Every graph is an induced subgraph of a graph that admits an orthogonal matrix!!!
(2) It seems eigenvectors will play a bigger role in any such characterizations...
3. The bipartite case seems interesting (not just $q=2$, but what q values are possible), with my PIMS PDF P. Viskwakarma, we are making progresst...imposing other structure constraints is also a direction to consider.
4. SRGs and the distance regular graphs seem to be a natural place to study further!

The End

Acknowledgments:

- Multiple joint projects were referenced in this lecture with many extraordinary collaborators: PDF - S.A. Mojallal; U. Regina (DMRG '13 and '19); AIM ARC Research Groups (q and Bordering; Q/q Group - 2 separate projects) \& FRG/Squares Group '17.

The End

Acknowledgments:

- Multiple joint projects were referenced in this lecture with many extraordinary collaborators: PDF - S.A. Mojallal; U. Regina (DMRG '13 and '19); AIM ARC Research Groups (q and Bordering; Q/q Group - 2 separate projects) \& FRG/Squares Group '17.
- Special thanks to Sabrina M. Lato and the other organizers
for the kind invitation to speak in this Algebraic Graph -)

The End

Acknowledgments:

- Multiple joint projects were referenced in this lecture with many extraordinary collaborators: PDF - S.A. Mojallal; U. Regina (DMRG '13 and '19); AIM ARC Research Groups (q and Bordering; Q/q Group - 2 separate projects) \& FRG/Squares Group '17.
- Special thanks to Sabrina M. Lato and the other organizers for the kind invitation to speak in this Algebraic Graph -)

Thank you all for your time and attention...Any questions?

[^0]: Joins of unions of complete graphs have essentially been sorted out and for such graphs $q \leq 3$. [Levene, Oblak, Smigoc '22]

