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A Simple Question

Example
Does the graph above describe a pattern of a 4x4 symmetric
orthogonal matrix? Sure... Consider:

( 1√
3
)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 1 1 0
1 0 1 1
1 1 0 −1
0 1 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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Existing Works on ‘Sparse’
Orthogonal Matrices

Brief Literature Review:

1 (Fiedler ’91) Conjectured that an n ×n fully indecomposable
orthogonal matrix has at least 4n − 2 nonzero entries. This
was proved by Beasley, Brualdi, & Shader in ’93 and later a
short proof was given by Shader ’97.

2 (Craigen ’93) Developed a ‘product’ called weaving that
was used to construct weighing matrices.

3 (Cheon & Shader ’99) Determined the fewest number of
nonzero entries in fully indecomposable row-orthogonal
matrices.

4 (Cheon, Johnson, Lee, & Pribble ’99) Proved the existence
of an n × n fully indecomposable orthogonal matrix with k
zero entries whenever 0 ≤ k ≤ (n − 2)2.
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Existing Works on ‘Sparse’
Orthogonal Matrices

Brief Literature Review, cont’d:

1 (Cheon ’99) Explored weaving further and constructed
classes of n × n orthogonal matrices with 4n − 2 nonzero
entries.

2 (Cheon, Hwang, Rim, Shader, & Song ’03) Found the
fewest number of nonzero entries in an n × n orthogonal
matrix with a totally nonzero row or column, or both.

3 (Ahmadi, Alinaghipour, Cavers, F, Meagher, & Nasserasr
’13) Established graphs that admit orthogonal matrices:
Kn, Kn,n and the hypercube...(diamond from pg. 2
appeared in Duarte & Johnson ’02).

4 (Bailey & Craigen ’19) Investigated (symmetric) orthogonal
matrices with zero diagonal and all off-diagonal entries
nonzero (OMZD(n)).
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Graphs & Matrices...

Central CMT Problem
Given a simple graph G = (V ,E), we consider various
properties (rank, nullity, spectrum, etc...) for a given collection
of matrices “associated" to G.

• Set of n × n real symmetric matrices S(G), in which for i ≠ j
the (i , j) entry is nonzero iff i ∼ j , while entries on the main
diagonal are free to be chosen;

• Important subset: S+(G) denote the PSD subset in S(G) -
connected to faithful orthogonal labelling for graphs;

• The set S(G) includes the classical matrices associated
with graphs: adjacency, Laplacian (and its variants), and
others...



Graphs & Matrices...

Central CMT Problem
Given a simple graph G = (V ,E), we consider various
properties (rank, nullity, spectrum, etc...) for a given collection
of matrices “associated" to G.

• Set of n × n real symmetric matrices S(G), in which for i ≠ j
the (i , j) entry is nonzero iff i ∼ j , while entries on the main
diagonal are free to be chosen;

• Important subset: S+(G) denote the PSD subset in S(G) -
connected to faithful orthogonal labelling for graphs;

• The set S(G) includes the classical matrices associated
with graphs: adjacency, Laplacian (and its variants), and
others...



Graphs & Matrices...

Central CMT Problem
Given a simple graph G = (V ,E), we consider various
properties (rank, nullity, spectrum, etc...) for a given collection
of matrices “associated" to G.

• Set of n × n real symmetric matrices S(G), in which for i ≠ j
the (i , j) entry is nonzero iff i ∼ j , while entries on the main
diagonal are free to be chosen;

• Important subset: S+(G) denote the PSD subset in S(G) -
connected to faithful orthogonal labelling for graphs;

• The set S(G) includes the classical matrices associated
with graphs: adjacency, Laplacian (and its variants), and
others...



Graphs & Matrices...

Central CMT Problem
Given a simple graph G = (V ,E), we consider various
properties (rank, nullity, spectrum, etc...) for a given collection
of matrices “associated" to G.

• Set of n × n real symmetric matrices S(G), in which for i ≠ j
the (i , j) entry is nonzero iff i ∼ j , while entries on the main
diagonal are free to be chosen;

• Important subset: S+(G) denote the PSD subset in S(G) -
connected to faithful orthogonal labelling for graphs;

• The set S(G) includes the classical matrices associated
with graphs: adjacency, Laplacian (and its variants), and
others...



Figure: A graph G

Then the matrix B =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0
1 3.1 −1.5 2
0 −1.5 1 1
0 2 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

belongs to S(G).



Inverse Eigenvalue Problem

IEP-G
The inverse eigenvalue problem for a graph G is to determine if
a given multi-set of real numbers is the spectrum of a matrix in
S(G).

Two Extreme Examples:
The only graph G that realizes a single eigenvalue is the empty
graph (scalar matrix), and for the complete graph, any list of
real numbers λ1 ≤ λ2 ≤ ⋯ ≤ λn is realizable whenever λ1 < λn.
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IEP-G for paths
Fiedler’s Tridiagonal Matrix Theorem, 1969
If A is a real symmetric n×n matrix such that for all real diagonal
matrices D, rank(A +D) ≥ n − 1, then A is irreducible and there
is a permutation matrix P such that PT AP is tridiagonal.
Observations...

• The only graph that requires distinct spectra (i.e., nullity is
1) is the path;

• Use orthogonal polynomials, for example, to deduce that
any distinct spectra can be realized by some real
tridiagonal matrix;

• Work of Leal Duarte on interlacing also implies that any
collection of distinct spectra can be realized by any tree
(not just a path);

• More recent work by Monfared/Shader extends Duarte’s
work to any connected graph.
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Facts about q(G)

Definitions & Basic Facts:

• For a square matrix A, q(A) denotes the number of distinct
eigenvalues of A.

• The minimum number of distinct eigenvalues of G, q(G), is
defined

q(G) = min{q(A) ∶ A ∈ S(G)}.

• 1 ≤ q(G) ≤ n, and q(G) = 1 iff G is empty,

• Further, q(G) = n iff M(G) = 1 (ie, G is a path) [F69].



q & adjacency matrix

Diameter
The length of a path P is the # of edges in P . The distance
between two vertices is the length of the shortest path between
them, and the diameter of G is the maximum distance in G.

Result
The number of distinct eigenvalues of the adjacency matrix is at
least the diameter of G plus 1.

• The proof uses the degree of the minimal polynomial
• The proof applies verbatim to nonnegative matrices in

S(G)
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Unique shortest paths...

Question
A natural question that arises: Is there still a relationship
between q(G) and diam(G)?

Simple Lower Bound
If there are vertices u, v in G at distance d and the path of
length d from u to v is unique, then q(G) ≥ d + 1.

Notes:

1 For any tree T , q(T ) ≥ diam(T ) + 1,
2 For general trees, it is known that q can be much larger

than diam(T ) + 1,
3 The hypercube, Qn, satisfies q(Qn) = 2 and diam(Qn) = n
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Example – Trees

Facts:

• If G is a tree, then
M(G) = P(G) = Z (G)
([JL99], [AIM08]).

• Trees T with diameter at
most 5 are known to
satisfy
q(T ) = diam(T ) + 1.
However, the tree T1
with diameter 6 satisfies
q(T1) = 8 [BF04].

Figure: BF-tree T1

• The gap can be much
larger for general binary
trees [KS13]
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Graphs with q = ∣V (G)∣ − 1

Theorem [FRG 2017] - Conjecture from [DMRG ’13]
A graph G has q(G) ≥ ∣V (G)∣ − 1 if and only if G is one of the
following:
(a) a path,
(b) the disjoint union of a path and an isolated vertex,
(c) a path with one leaf attached to an interior vertex,
(d) a path with an extra edge joining two vertices at distance 2.
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Graphs with q = 2

Observation 1:
S(G) contains an orthogonal matrix iff q(G) = 2.

Observation 2:
q(G) = 2 iff ∃ A ∈ S(G) such that A2 is in span{A, I}.

Observation 3:
q(G) = 2. Then, for any independent set of vertices
{v1,v2, . . . ,vk}, that satisfies for each i = 1,2, . . . ,k there exists
a j ≠ i for which N(vi) ∩N(vj) ≠ ∅, we have

RRRRRRRRRRR
⋃
i≠j

(N(vi) ∩N(vj))
RRRRRRRRRRR
≥ k .
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Hypercube

Theorem [DMRG ’13]
For n ≥ 1, we have q(Qn) = 2. In fact this result follows from a
slightly stronger statement of the form: for any graph G,
q(G2K2) ≤ 2q(G) − 2.

Notes:

• This result is tied to the so-called ‘sensitivity conjecture’ of
Nisan and Szegedy ’92 that was resolved by Huang in ’19...

• Recently, Ahmad, F. proved that q(Ks2K2) = 2 for s ≥ 3
and that there exists an SSP matrix realization in
S(Ks2K2) with two distinct eigenvalues.
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Other Sporadic Results on q = 2

Facts:

• q(Kp1,...pl ;q1,...ql ′
) = 2 for l , l ′ ≥ 2, if ∑pi = ∑qj [DMRG ’19].

• q(Kn ∖M) = 2 (n ≥ 3) M - perfect matching [Johnson &
Zhang ’18 or Bailey & Craigen ’19].

• q(Kn,n −M) = 2 (n ≥ 4) M - perfect matching [Bailey &
Craigen ’19].

• q(T c) = 2, for almost all trees T (e.g. not P4) [Levene,
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Studying q(G ∨H)

Known Results on Joins of Graphs

• G connected, q(G ∨G) = 2 [DMRG ’13].

• If G,H connected & ∣G∣ = ∣H ∣, then q(G ∨H) = 2 [Monfared
& Shader ’16].

• If G,H connected, & ∣H ∣ ≤ ∣G∣ + 2, then q(G ∨H) = 2 [AIM
ARC Bordering Group ’23]

• If q(G ∨H) = 2, then G and H have compatible multiplicity
matrices. Further, if G is generically realizable & H is sane,
then q(G ∨H) = 2, iff G and H have compatible multiplicity
matrices. [Levene, Oblak, Smigoc ’22].
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Studying q(G ∨K1)

Various Results

• Paths: q(Pn ∨K1) = ⌈n+1
2 ⌉.

• A ∈ S(G), λ an eigenvalue with a nowhere zero
eigenvector. Then ∃ A′ ∈ S(G ∨K1) such that:

1 q(A′) = q(A) + 1, if λ is extreme,
2 q(A′) = q(A), if λ is not extreme,
3 q(A′) = q(A) − 1, if λ is extreme and simple.

• Hypercube: q(Qn ∨K1) ≤ 3, and q(Q4 ∨K1) = 3 [AIM ARC
Bordering Group ’23]

• Using a fact about join duplicating a vertex, we know that
q(G ∨Ks+1) ≤ q(G ∨Ks).
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Threshold Graphs
Creation Sequence
Any threshold graph G can be represented as a binary
sequence, depending on a vertex being isolated or dominating,
and the trace T of G, is the number of ones in its creation
sequence.

Results for q = 2 [F., Mojallal ’22]:

• For a threshold graph G, q(G) = 2 if and only if there exists
a matrix A ∈ S(G) s.t. A(1̄, 0̄) is column orthogonal.

• Let G be a connected threshold graph of order n and trace
T . If q(G) = 2, then T ≥ ⌈n

2 ⌉.
• (Complete Split) Let G ≅ (0, . . . ,0

´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
k1

,1, . . . ,1
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

t1

), where

t1,k1 ≥ 1. If k1 ≤ t1, then q(G) = 2 and otherwise if k1 > t1,
then q(G) = 3.
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r - Regular Graphs

Case r ≤ 3 [AIM ARC Q/q Group]
If G is a connected r -regular graph with q(G) = 2 for some
r ≤ 3, then G is one of:
(1) K2;
(2) K3 or C4; or,
(3) K4, K3,3, K32K2, or Q3.

Cartesian product of cliques
For m,n ≤ 3, we have q(Km2Kn) = 3.
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r - Regular graphs
1

17
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8

4-regular case [AIM ARC Q/q Group]
If G is a connected 4-regular graph with q(G) = 2, then G is
either:
(1) K5;
(2) K32C4, K3,32K2, Q4,
(3) a closed candle Hk for some k ≥ 3,
(4) one of 11 other sporadic 4-regular graphs on at most 16

vertices.



SRGs and q

Observations

• If G is an SRG, then q(G) ≤ 3.

• If µ = 0, then q(G) = 2 and q(Gc) = 2.

• If µ = 1, then q > 2.

• Line graph of Kn has q = 2 [Furst, Grotts ’21].

• Open Question: Characterize the SRGs with q = 2
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Graphs that Allow q = 2
Allows Theorem [AIM ARC Q/q Group]
If G is a connected graph on n ≥ 3 vertices with q(G) = 2, then

∣E(G)∣ ≥
⎧⎪⎪⎨⎪⎪⎩

2n − 4, if n is even, and
2n − 3, if n is odd.

Moreover, the only graphs that meet this bound with n even are
Q3 and the double-ended candles. The only graphs that meet
this bound with n odd are the single-ended candles.

We are currently studying the graphs that ‘require’ q = 2. Such
graphs are necessarily dense and we can remove n − 2 edges
from Kn to produce H such that q(H) > 2...to be continued!
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Summary and Future
Considerations

1 BIG Question: Characterize the graphs G with q(G) = 2?
There are a number of avenues to explore and work is
on-going! One thing to keep in mind: Every graph is an
induced subgraph of a graph that admits an orthogonal
matrix!!!

2 It seems eigenvectors will play a bigger role in any such
characterizations...

3 The bipartite case seems interesting (not just q = 2, but
what q values are possible), with my PIMS PDF P.
Viskwakarma, we are making progresst...imposing other
structure constraints is also a direction to consider.

4 SRGs and the distance regular graphs seem to be a
natural place to study further!
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natural place to study further!
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