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1. An important step in the proof of Maschke’s theorem is the following lemma.

Lemma 1. Let (V, ρ) be a complex representation of a finite group G. Let W be a G-invariant subspace of V .
Then there exists a subspace W c of V such that W c is G-invariant and V = W ⊕W c as vector spaces.

In class, we proved lemma 1 by constructing a G-invariant inner product and taking W c to be the orthogonal
complement of W . This question asks you to give a different proof of lemma 1.

Let U be an arbitrary subspace of V such that V = W ⊕ U as vector spaces. Let π : V → W be the
corresponding projection onto W . I.e., every vector v ∈ V can be written uniquely as v = w + u with w ∈ W
and u ∈ U , and π(v) := w. Now define

πc :=
1

#G

∑
g∈G

ρ(g)πρ(g)−1.

Show that πc is also a projection V → W , and that the corresponding complement W c is G-invariant. Conclude
that lemma 1 follows.

Solution: For x ∈ W , we have ρ(g)−1x ∈ W also, since W is G-invariant by assumption. Moreover, π, when
restricted to W , is the identity map. Hence, πρ(g)−1x = ρ(g)−1x for every x ∈ W , and

πcx =
1

#G

∑
g∈G

ρ(g)πρ(g)−1x

=
1

#G

∑
g∈G

ρ(g)ρ(g)−1x

= x.

Now we show that πc commutes with ρ(h) for every h ∈ G:

ρ(h)πcρ(h)−1 =
1

#G

∑
g∈G

ρ(h)ρ(g)πρ(g)−1ρ(h)−1

=
1

#G

∑
g∈G

ρ(hg)πρ(gh)−1

=
1

#G

∑
g∈G

ρ(hg)πρ((hg)−1)

=
1

#G

∑
g′∈G

ρ(g′)πρ(g′)−1

= πc.

(In the penultimate step, the change of variables g′ = hg; left multiplication is a group automorphism.)
Suppose x ∈ kerπc. Then 0 = ρ(g)πcx = πcρ(g)x, i.e. ρ(g)x ∈ kerπc also. This proves that kerπc =: W c is

G-invariant. Hence V ∼= Imπc ⊕ kerπc = W ⊕W c with W and W c each G-invariant. ♣



2. Prove the following converse to Schur’s lemma. Let (V, ρ) be a complex representation of a finite group G
with positive dimension. Suppose every φ ∈ EndG(V ) := HomG(V, V ) is of the form φ = λI for some λ ∈ C,
where I is the identity matrix. Then V is irreducible.

Solution: Suppose that V is a reducible representation of G with positive dimension. Being reducible, there
exist two proper subrepresentations W1 and W2 with positive dimension, such that V ∼= W1 ⊕ W2. Consider
the projection map π1 : V → W1. This map is G-equivariant. Its kernel is W2 ̸= 0, so it is not a scalar multiple
of the identity. We have proved the contrapositive of the statement from the problem: if V is reducible, then
there exists an endomorphism of V which is not a scalar multiple of the identity. Hence, if every endomorphism
is a scalar multiple of the identity, then V cannot be reducible. ♣

3. Let G be a finite abelian group. Prove that every irreducible complex representation of G is 1-dimensional.

Solution: Let (V, ρ) be an irreducible representation of G. For all g ∈ G, the linear map ρ(g) is an endomorphism
of the vector space V . Let’s verify that ρ(g) ∈ EndG(V ), i.e. that it is G-equivariant. For any h ∈ G, consider
the diagram

V V

V V.

ρ(g)

ρ(h) ρ(h)

ρ(g)

The top and right arrows compose to give the map ρ(h)ρ(g) = ρ(hg) from V to V , while the left and bottom
arrows compose to give ρ(gh). Since G is abelian by assumption, ρ(gh) = ρ(hg), i.e. the diagram commutes.

By Schur’s lemma, every φ ∈ EndG(V ), and hence every ρ(g), is a scalar multiple of the identity. Every
vector subspace W of V is invariant under scalar multiples of the identity, so every vector subspace of V is in
fact a subrepresentation. By definition, V is irreducible if and only if its only G-invariant proper subspace is
the 0-dimensional subspace. Hence V must be 1-dimensional. ♣

4. Exhibit all finite-dimensional (not necessarily irreducible) complex representations of Z/nZ, for arbitrary
n ∈ Z>0. Make sure to decide which are inequivalent.

Solution: Let’s begin by classifying all irreducible representations of Z/n. By problem 1, these irreducible
representations are all 1-dimensional, i.e. homomorphisms ρ : Z/n → GL1(C) = C×. For every x ∈ Z/n,
we have nx = 0. Since ρ is a homomorphism, ρ(nx) = ρ(x)n and ρ(0) = 1. Hence ρ(x) is an nth root of
unity. Explicitly, let µn := exp

(
2πi
n

)
, so that {1, µn, µ

2
n, . . . , µ

n−1
n } is the set of all complex numbers z with

the property that zn = 1. Since Z/n is cyclic, the representation ρ is determined entirely by its value on the
generator 1 ∈ Z/n. Hence there are n irreducible representations of Z/n:

ρa(x) = µax
n = exp

(
2πax

n

)
with a ∈ {0, 1, . . . , n− 1}. By inspection, we see that these are indeed all homomorphisms, i.e. representations.

The representations ρa are pairwise inequivalent: suppose φρa = ρbφ as maps Z/n → C×. Since C× is
abelian, ρbφ = φρb, and since the image of φ is in C×, φρa = φρb implies ρa = ρb.

By Maschke’s theorem, every finite-dimensional representation (V, ρ) of Z/n is isomorphic to a direct sum
of irreducible representations, all of which we’ve just described. I.e. there exist non-negative integers ma, for
each a ∈ {0, 1, . . . , n− 1} “=” Z/n, such that

ρ ∼=
⊕

a∈Z/n

maρa,



i.e.

ρ ∼=



ρ0
. . .

ρ0
ρ1

. . .
ρ1

. . .
ρn−1

. . .
ρn−1



m0 copies

m1 copies

...mn−1 copies.

Two such representations, say ρ ∼=
⊕

a∈Z/n maρa and ρ′ ∼=
⊕

a∈Z/n m
′
aρa are isomorphic iff all of the multiplicities

match, i.e. m0 = m′
0, m1 = m′

1, . . . , mn−1 = m′
n−1. Note that this description also captures the 0-dimensional

representation, with ma = 0 for all a ∈ Z/n. The 0-dimensional representation is not irreducible, though calling
it reducible is a little weird, like calling the integer 1 “composite”. ♣

5. Let G be a finite abelian subgroup of GLn(C). Prove that there is a matrix P such that for every M ∈ G, the
matrix P−1MP is diagonal. That is, prove that the matrices in G are simultaneously diagonalizable. [Note: I
have given the TA permission to mock any solution to this question that does not involve representation theory.]

Solution: Since G is abelian, every irreducible representation of G has dimension one. Let ρ : G → GLn(C)
be the inclusion homomorphism – this is a representation of G! So it must be isomorphic to the sum of n one-
dimensional representations: ρ ∼= τ1 ⊕ . . .⊕ τn. Write Cn = V1 ⊕ . . .⊕ Vn as the sum of G-invariant subspaces
of dimension one, and for each i let vi be a basis of Vi. Since Vi is G-invariant, we have [ρ(g)](vi) ∈ Vi for each
i. This means, for each i, and for each g ∈ G, there is some λi(g) ∈ C such that [ρ(g)](vi) = λi(g)vi. In other
words, vi is an eigenvector of ρ(g) for every g ∈ G (although the corresponding eigenvalues may be different for
different g).

Let P be the n by n matrix whose ith column is vi, written in the standard basis. Then for each g ∈ G, the
columns of P are all eigenvectors of the matrix ρ(g) = M , so the matrix P−1MP is diagonal for all M ∈ G. ♣


