PMATH 445/745 — Assignment 2 solutions

Alex Cowan

1. An important step in the proof of Maschke’s theorem is the following lemma.

Lemma 1. Let (V,p) be a complex representation of a finite group G. Let W be a G-invariant subspace of V.
Then there exists a subspace W€ of V' such that W€ is G-invariant and V. =W @& W€ as vector spaces.

In class, we proved lemma 1 by constructing a G-invariant inner product and taking W€ to be the orthogonal
complement of W. This question asks you to give a different proof of lemma 1.

Let U be an arbitrary subspace of V' such that V = W @ U as vector spaces. Let m : V' — W be the
corresponding projection onto W. l.e., every vector v € V' can be written uniquely as v = w + u with w € W
and v € U, and 7(v) :== w. Now define
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Show that 7€ is also a projection V' — W, and that the corresponding complement W€ is G-invariant. Conclude
that lemma 1 follows.

Solution: For x € W, we have p(g) "'z € W also, since W is G-invariant by assumption. Moreover, 7, when
restricted to W, is the identity map. Hence, mp(g) 'z = p(g) 'z for every x € W, and
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Now we show that 7¢ commutes with p(h) for every h € G:
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(In the penultimate step, the change of variables ¢’ = hg; left multiplication is a group automorphism.)
Suppose x € ker . Then 0 = p(g)m°x = 7°p(g)z, i.e. p(g)x € ker 7€ also. This proves that ker 7¢ = W€ is
G-invariant. Hence V 2 Im 7€ @ ker 7¢ = W @ W€ with W and W€ each G-invariant. *



2. Prove the following converse to Schur’s lemma. Let (V) p) be a complex representation of a finite group G
with positive dimension. Suppose every ¢ € Endg(V) := Homg(V,V) is of the form ¢ = AI for some \ € C,
where [ is the identity matrix. Then V is irreducible.

Solution: Suppose that V is a reducible representation of G with positive dimension. Being reducible, there
exist two proper subrepresentations Wi and Wy with positive dimension, such that V' = W; & W,. Consider
the projection map 71 : V' — W7. This map is G-equivariant. Its kernel is W5 # 0, so it is not a scalar multiple
of the identity. We have proved the contrapositive of the statement from the problem: if V' is reducible, then
there exists an endomorphism of V' which is not a scalar multiple of the identity. Hence, if every endomorphism
is a scalar multiple of the identity, then V' cannot be reducible. *

3. Let G be a finite abelian group. Prove that every irreducible complex representation of G is 1-dimensional.

Solution: Let (V, p) be an irreducible representation of G. For all g € G, the linear map p(g) is an endomorphism
of the vector space V. Let’s verify that p(g) € Endg(V), i.e. that it is G-equivariant. For any h € G, consider
the diagram
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The top and right arrows compose to give the map p(h)p(g) = p(hg) from V to V, while the left and bottom
arrows compose to give p(gh). Since G is abelian by assumption, p(gh) = p(hg), i.e. the diagram commutes.

By Schur’s lemma, every ¢ € Endg(V), and hence every p(g), is a scalar multiple of the identity. Every
vector subspace W of V is invariant under scalar multiples of the identity, so every vector subspace of V is in
fact a subrepresentation. By definition, V' is irreducible if and only if its only G-invariant proper subspace is
the 0-dimensional subspace. Hence V' must be 1-dimensional. *

4. Exhibit all finite-dimensional (not necessarily irreducible) complex representations of Z/nZ, for arbitrary
n € Z~g. Make sure to decide which are inequivalent.

Solution:  Let’s begin by classifying all irreducible representations of Z/n. By problem 1, these irreducible
representations are all 1-dimensional, i.e. homomorphisms p : Z/n — GL;(C) = C*. For every = € Z/n,
we have nx = 0. Since p is a homomorphism, p(nz) = p(x)" and p(0) = 1. Hence p(z) is an n'" root of
unity. Explicitly, let p1, == exp(2%), so that {1, n, p2,...,u2"} is the set of all complex numbers z with
the property that 2" = 1. Since Z/n is cyclic, the representation p is determined entirely by its value on the
generator 1 € Z/n. Hence there are n irreducible representations of Z/n:
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with a € {0,1,...,n — 1}. By inspection, we see that these are indeed all homomorphisms, i.e. representations.
The representations p, are pairwise inequivalent: suppose pp, = ppe as maps Z/n — C*. Since C* is
abelian, pp = ppp, and since the image of ¢ is in C*, pp, = @pp implies p, = pp.
By Maschke’s theorem, every finite-dimensional representation (V, p) of Z/n is isomorphic to a direct sum
of irreducible representations, all of which we’ve just described. I.e. there exist non-negative integers m,, for
each a € {0,1,...,n — 1}“="Z/n, such that
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Two such representations, say p = @, ., /n MaPa and p' = P,y /n m., pe are isomorphic iff all of the multiplicities
match, i.e. mog =mg, my =mj, ..., my—1 =m,_;. Note that this description also captures the 0-dimensional
representation, with m, = 0 for all a € Z/n. The 0-dimensional representation is not irreducible, though calling
it reducible is a little weird, like calling the integer 1 “composite”. *

5. Let G be a finite abelian subgroup of GL, (C). Prove that there is a matrix P such that for every M € G, the
matrix P~'M P is diagonal. That is, prove that the matrices in G are simultaneously diagonalizable. [Note: I
have given the TA permission to mock any solution to this question that does not involve representation theory.]

Solution: Since G is abelian, every irreducible representation of G has dimension one. Let p: G — GL,(C)
be the inclusion homomorphism — this is a representation of G! So it must be isomorphic to the sum of n one-
dimensional representations: p = 71 @ ... P 7,. Write C* =V; @ ... ® V, as the sum of G-invariant subspaces
of dimension one, and for each 4 let v; be a basis of V;. Since V; is G-invariant, we have [p(g)](v;) € V; for each
i. This means, for each ¢, and for each g € G, there is some \;(g) € C such that [p(g)](v;) = Ai(g)v;. In other
words, v; is an eigenvector of p(g) for every g € G (although the corresponding eigenvalues may be different for
different g).

Let P be the n by n matrix whose ith column is v;, written in the standard basis. Then for each g € G, the
columns of P are all eigenvectors of the matrix p(g) = M, so the matrix P~ M P is diagonal for all M € G. &



