

PMATH 445/745 — Assignment 1

Alex Cowan

Due 2026/01/14

1. a) Let $G = \mathbb{R}$ under addition, and let $\rho: G \rightarrow \mathrm{GL}_2(\mathbb{C})$ be defined by

$$\rho(x) = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}.$$

Prove that ρ is a representation of \mathbb{R} . That is, prove that ρ is an action of G on \mathbb{C}^2 , and that $\rho(g)$ is a linear transformation for all g . (OK, that second thing is obvious in this case, but it's part of what you need to show in general.)

1. b) Let $G = \mathbb{Z}/7\mathbb{Z}$, and let $\rho: G \rightarrow \mathrm{GL}_1(\mathbb{C})$ be defined by $\rho(n) = e^{2\pi in/7}$. (You may assume that this is well defined.) Prove that ρ is a representation of G .

2. a) For the representation of problem 1a, let $W = \mathrm{span}\{(1, 0)\} \subseteq \mathbb{C}^2$. Prove that $\rho|_W$ is a subrepresentation of ρ . Equivalently, prove that W is a G -invariant subspace.

2. b) Let $G = S_3$, and let $\rho: G \rightarrow \mathrm{GL}_3(\mathbb{C})$ be defined by $[\rho(\sigma)](z_1, z_2, z_3) = (z_{\sigma^{-1}(1)}, z_{\sigma^{-1}(2)}, z_{\sigma^{-1}(3)})$. (Remember that $\rho(\sigma)$ is a linear transformation, so this formula is just telling you which linear transformation it is.) You may assume that this is a representation of G . Let $W = \{(z_1, z_2, z_3) : z_1 + z_2 + z_3 = 0\}$ be a subspace of \mathbb{C}^3 . Prove that W is G -invariant; in other words, prove that $\rho|_W$ is a subrepresentation of ρ .

3. Let $G = S_3$, and let $\rho: G \rightarrow \mathrm{GL}_3(\mathbb{C})$ be the representation from problem 2b. Let $\tau: G \rightarrow \mathrm{GL}_1(\mathbb{C})$ be the representation $\tau(\sigma) = 1$ for all σ — that is, τ is the trivial representation of G . Define $T: \mathbb{C}^3 \rightarrow \mathbb{C}$ by $T(z_1, z_2, z_3) = z_1 + z_2 + z_3$. Show that T is a morphism from ρ to τ .

4. Let $G = S_3$, and let ρ and τ be as in question 3. Let W be the subspace from problem 2b. Prove that $\rho \cong \rho|_W \oplus \tau$. [Hint: $W' = \{(z, z, z) : z \in \mathbb{C}\}$ is also G -invariant.]

5. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a representation of a finite group G . Prove that for any element $g \in G$, all the eigenvalues λ of the linear transformation $\rho(g)$ satisfy $|\lambda| = 1$.