How to Spot Polynomial Time Problems for a fixed language $\mathcal L$ of algebras

A property \mathcal{P} of \mathcal{L} -algebras is **polynomial time** if there is an algorithm and a polynomial p(x) such that, given any \mathcal{L} -algebra \mathbf{A} , the algorithm determines, within time p(|A|), if \mathcal{P} holds.

First-order properties are polynomial time

Thus testing an algebra for being a

lattice, group, ring, field, etc.

can be done in polynomial time.

(See Freese, Jezek and Nation's Free Lattices for a comprehensive discussion of computational aspects of **posets** and **lattices**.) One can augment the language \mathcal{L} of algebras with relation symbols. This gives polynomial time first-order properties in an expanded language.

S is a **subuniverse** of A

is expressed by:

$$x_1, \dots, x_n \in S \longrightarrow f(\vec{x}) \in S \text{ for } f \in \mathcal{F}$$

θ is a **congruence** of **A**

is expressed by:

$$\theta$$
 is an equivalence relation on A
 $\bigwedge_i(x_i, y_i) \in \theta \longrightarrow f(\vec{x}, \vec{y}) \in \theta$ for $f \in \mathcal{F}$

 $\underline{\theta, \theta'}$ is a **pair of factor congruences** of **A** is expressed by:

$$\theta,\theta'$$
 are congruence relations on A
$$\theta\circ\theta'=\nabla$$

$$\theta\cap\theta'=\Delta$$

Polynomial time constructions:

Least Fixpoints of Universal Horn Formulas

A construction that can be expressed as the least fixpoint of a system of Universal Horn formulas can be carried out in polynomial time.

S = Sg(X), the <u>subuniverse generated by</u> X is the least fixpoint of

$$x \in X \longrightarrow x \in S$$

 $x_1, \dots, x_n \in S \longrightarrow f(\vec{x}) \in S$ for $f \in \mathcal{F}$

 $\theta = \Theta(X)$, the <u>congruence generated by</u> $X \subset A \times A$ is the least fixpoint of

$$(x,y) \in X \longrightarrow (x,y) \in \theta$$

 $(x,x) \in \theta$
 $(x,y) \in \theta \longrightarrow (y,x) \in \theta$
 $(x,y), (y,z) \in \theta \longrightarrow (x,z) \in \theta$
 $\bigwedge_{i}(x_{i},y_{i}) \in \theta \longrightarrow (f\vec{x},f\vec{y}) \in \theta$ for $f \in \mathcal{F}$

Fixed point + First-order

The following characterizations are due to Berman and McKenzie

Let
$$X = \{(a, a, b, b) : a, b \in A\}$$

Let $Y = \{(a, b, a, b) : a, b \in A\}$
Let $Z = \{(a, b, c, c) : a, b \in A\}$

A is <u>abelian</u> is expressed by:

$$(x, x, y, z) \in Sg(X \cup Y) \longrightarrow y \approx z$$

 $(x, y, x, z) \in Sg(X \cup Y) \longrightarrow y \approx z$

A is strongly abelian is expressed by:

$$(x, x, y, z) \in Sg(Y \cup Z) \longrightarrow y \approx z$$

One can find the set of **principal congruences** of \mathbf{A} in polynomial time by applying the previous construction $\binom{|A|}{2}$ times.

One can test an algebra for being **congruence permutable** in polynomial time (by testing the principal congruences).

In 1920 Skolem used simultaneous least fixpoints of universal Horn formulas to give an efficient solution to the **word problem for lattices**.

Finding typesets

Berman, Kiss, Pröhle and Szendrei showed that one can find the **typeset of** $\bf A$ in polynomial time.

McKenzie showed that finding the **typeset of** $V(\mathbf{A})$ is undecidable.

Nondeterministic polynomial time properties

A property \mathcal{P} of \mathcal{L} -algebras is NP if there is an algorithm for \mathcal{P} that runs in polynomial time when given a polynomial size (suitable) hint.

<u>Fagin's theorem</u> says that NP properties are precisely those that can be expressed in the form:

$$\exists R_1 \cdots \exists R_k \varphi$$

where φ is a first-order formula.

 θ is a factor congruence is NP as one can express this by the \exists SO formula

$$\exists \theta' \left(\begin{array}{l} \theta, \theta' \text{ are congruences} \\ \theta \circ \theta' = \nabla \\ \theta \cap \theta' = \Delta \end{array} \right)$$

- R. Freese has proved that one can determine if \mathbf{A} is CD in polynomial time.
- C. Herrmann has proved that one can determine if \mathbf{A} is CM in polynomial time.

Are the following problems polynomial time?

- 1) θ is a factor congruence
- 2) A is directly decomposable

Are the following problems in NP?

- 3) A is directly indecomposable
- 4) $V(\mathbf{A})$ is **CP**, **CM**, or **CD**
- 5) A is primal, or quasiprimal

Investigating the power of computers

Everyone knows the **16 groupoids** on the two elements $\{0,1\}$, namely they are the truth tables for the binary connectives from the propositional logic, e.g.,

$$\begin{array}{c|cccc} \land & 0 & 1 \\ \hline 0 & 0 & 0 \\ 1 & 0 & 1 \\ \end{array}$$

But not the **19,683 groupoids** on the three elements $\{0,1,2\}$.

Actually, there are only **3,330**, up to isomorphism.

A computer study of 3-element groupoids by Berman and Burris in Logic and Algebra, 1996

(Proceedings of the Magari Conference, publ. Marcel Dekker)

A catalog of the 3,330 isomorphism types

Gives the weak isomorphism relation between them (there are 411 equivalence classes)

Analyzes the following 12 properties:

 ${f A}$ is quasiprimal, affine, strongly abelian, abelian, has an invertible binary term, has trivial abelian subalgebras, is simple, is rigid $V({f A})$ is decidable, CD, CM, CP

and gives

typeset(A), and |F(n)| for $n \leq 2$.

The future for making catalogs

3-element groupoids with a unary operation (A, +, f)

about 90,000 isomorphism types This looks tractable.

3-element bi-groupoids $(A, +, \times)$

about 65,000,000 isomorphism types This does not look feasible.

3-element ternary algebras (A, t)

about 10^{12} isomorphism types Clearly too many.

4-element groupoids (A, +)

about 200,000,000 isomorphism types
This does not look feasible.

The biggest early threat to the success of our catalog was determining if $V(\mathbf{A})$ was CP, i.e., if \mathbf{A} had a Mal'cev term p(x, y, z).

We know of no good algorithm for this, so we resorted to brute force in many cases:

determine if $m \in Sg(X)$, where

and

$$m = (1 \ 2 \ 0 \ 0 \ 1 \ 0 \ 2 \ 1 \ 2 \ 2 \ 0 \ 1 \ 0 \ 1 \ 2)$$

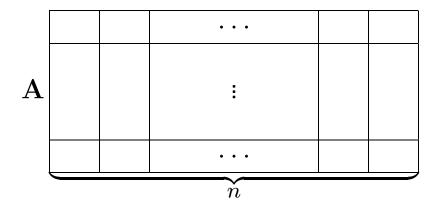
So we needed to generate

$$Sg(X) \subseteq A^{15}$$

This approach falls under the general computational problem studied by Berman and Wolk:

Generate $S(\mathbf{A}, n, X)$

 $S(\mathbf{A},n,X)$ is the subuniverse of \mathbf{A}^n generated by X



In the worst case one needs to carry out about

$$n \cdot |A|^{2n}$$

coordinate multiplications to generate $S(\mathbf{A}, n, X)$.

The n in $S(\mathbf{A}, n, X)$ for some popular questions

for	n
F(2)	$ A ^2$
Mal'cev term	$2 A ^2 - A $
Majority term } CD CM	$3 A ^2 - 2 A $
F(3)	$ A ^{3}$

Feasibility Study Bounds on computational resources

Current Machine	Dream Machine
10 ¹⁶ cycles/year	10 ²⁵ cycles/year

Current Machine is single 250 MHz CPU

Dream Machine has 1 million 100 GHz CPU's in parallel

The maximum n in $S(\mathbf{A}, n, X)$ for 1 Year of Computation

	Current	Dream
A = 2	24	38
3	15	24
4	12	19
5	10	17

Analyzing a single groupoid ${\bf A}$

Mal'cev term	size of algebra		
	3 elements	4 elements	
Current	4 mos	10 ²⁰ yrs	
Dream	< 1 sec	100 billion years	

$V(\mathbf{A})$ is CD	size of algebra	
	3 elements	4 elements
Current	200,000 years	
Dream	< 1 sec	10 ²⁵ years

size of $F(3)$	size of algebra	
	3 elements	4 elements
Current	100 billion years	
Dream	150 years	

Intractable 4-element Groupoids?

It seems that there may be a 4-element groupoid

with the property that we have no techniques to determine if it has a Mal'cev term; or a near unanimity term.

PROBLEM: Is there an **efficient algorithm** to determine if a **4-element groupoid** has a Mal'cev term? a near unanimity term?

The strategy for 3-element groupoids

Brush up on your **C-programming** skills.

Find isomorphism types.

Determine some **easy properties**: rigidity, number of 1-element subalgebras, etc.

Find enough tricks to determine which have **Mal'cev terms**.

Determine the **weak isomorphism** relation \sim .

Determine the weak embeding relation <.

Determine **other properties**: majority term, Jónsson terms, etc.

Invertible binary terms

A basic tool for simplifying the search for a Mal'cev term is the existence of a **binary term** b(x,y), and **two unary terms** $u_1(x), u_2(x)$ such that

range
$$(u_i) \neq A$$
, and $b(u_1x, u_2x) \approx x$ holds in **A**.

Then A has a Mal'cev term iff each of the ranges of the u_i have a Mal'cev term m_i .

Namely use
$$m(x, y, z) = b(m_1(u_1x, u_1y, u_1z), m_2(u_2x, u_2y, u_2z)).$$

This worked for nearly half of the 3 element groupoids.

The properties studied are **invariant under transpose**.

Some known polynomial time properties were quickly analyzed, e.g., rigidity.

Determine which have a Mal'cev term

This was formulated as a question about $S(\mathbf{A}, 15, X)$, namely is \mathbf{m} in the subuniverse generated by $X = \{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ where

$$x = 0 0 0 0 1 1 1 1 1 2 2 2 2 0 1 2$$

 $y = 0 0 1 2 0 1 1 2 0 1 2 2 0 1 2$
 $z = 1 2 1 2 0 0 2 2 0 1 0 1 2$
 $m = 1 2 0 0 1 0 2 1 2 2 0 1 0 1 2$

Use **projections on few coordinates** to reject many cases

Use **invertible** binary terms to accept many cases

Finally use **full computations** on $S(\mathbf{A}, n, X)$.

Finding the **weak embedding** preorder \leq

First determine when $\mathbf{A} \sim \mathbf{B}$ (weakly isomorphic):

Find an **upper bound** (132 classes) using known properties such as rigidity, Mal'cev, etc.

Find a **lower bound** (440 classes) using time limited attempts with **F(2)**'s

Choose 440 representatives, and use F(2)'s to show that

there are 411 equivalence classes

Choose 411 representatives and use F(2)'s to determine \leq

Applications of \leq

Determine all |F(2)| and all Typeset(A)

Use the **covers** and **subcovers** of \leq

plus **programs** for finding <u>majority terms</u> <u>Jónsson terms</u> <u>Gumm terms</u>

to analyze the properties

has a majority term $V(\mathbf{A})$ is congruence distributive $V(\mathbf{A})$ is congruence modular has a near unanimity term

Conclusions

The partial ordering \leq is a powerful tool to analyze further properties. In particular **Mal'cev** conditions look quite tractable.

The 3-Element Groupoid (#534) has a **4-ary Near Unanimity** term

$$U(x, y, z, w) = ((x^{2}y^{2})((x^{2}(x^{2}y^{2}))(z^{2}w^{2})^{2}))$$
$$\cdot ((x^{3}y^{3})((x^{3}(x^{3}y^{3}))(z^{3}w^{3})^{2}))$$

[Paweł Idziak (1994)] A 3-element groupoid has a near unanimity term iff it has a majority term or is equivalent to #534.

Skolem's axioms for the Calculus of Groups

in the relational language $\{J, M, \leq\}$

$$\begin{array}{l} x \leq x \\ x \leq y \ , \quad y \leq z \ \longrightarrow \ x \leq z \end{array}$$

 $\forall x \forall y \exists z \ Mxyz$ $\forall x \forall y \exists z \ Jxyz$

Let $A = (A, J, M, \leq)$ be a finite structure.

Let \leq^* be the **least fixpoint of** \leq under the universal Horn portion of Skolem's axioms.

Then the equivalence relation θ determined by \leq^* gives the smallest congruence θ such that \mathbf{A}/θ can be (weakly) embedded in a lattice.

Theorem Let V be a variety of algebras. T.F.A.E.

- (a) The uniform word problem for V is solvable in polynomial time.
- (b) Given a partial algebra \mathbf{P} , one can find the smallest congruence θ such that \mathbf{P}/θ embeds in a member of V.

Corollary. Skolem had a polynomial time algorithm to solve the word problem for lattices.

How to generalize Skolem's result:

Let V be a variety of algebras.

Let W be the **relational** version of V.

Let S(W) be the class of substructures of W.

Let S'(W) be the class of structures that are weakly embeddable in W.

Theorem If K is a finitely axiomatizable universal Horn class with

$$S(W) \subseteq K \subseteq S'(W)$$

then the uniform word problem for V is solvable in polynomial time.