C&O 367/CM 442 Nonlinear Optimization – Winter 2009

Assignment 5

Due date: Wednesday Apr. 1, 2009

Assignments are due before the <u>start</u> of class on the due date. Write your name and ID# clearly, and <u>underline</u> your last name.

C&O 367 Assignment 1

Due on Thursday, Apr. 1 (before start of class) Instructor H. Wolkowicz

1 LP and QP Duality

For each primal problem (P): construct the appropriate Lagrangian/payoff function $L(x, \lambda)$; write down the equivalent max min for (P) and the min max problem for (D). (E.g. $\min_{x \in C} \max_{\lambda \in D} L(x, \lambda)$, for appropriate sets C, D.) Derive a dual using the appropriate *hidden constraint*.

1.1 LP

—— 5 Marks

 $\begin{array}{lll} \min & \sum_{j=1}^{3} c_{j} x_{j} \\ \text{subject to} & \sum_{j=1}^{3} A_{ij} x_{j} & \text{sign}_{i} & b_{i}, \quad i=1,2,3 \\ & x_{i} \in C_{i}, & i=1,2,3, \end{array}$

where, for i = 1, 2, 3 we have sign i is $\geq, \leq, =$, respectively; and C_i is $\mathbb{R}_+, \mathbb{R}_-, \mathbb{R}$, respectively.

1.2 QP

------ 5 Marks

$$\begin{array}{ll} \min & \frac{1}{2}x^TQx + g^Tx\\ \text{subject to} & Ax \ge a\\ & Bx \le b\\ & Cx = c. \end{array}$$

2 Problems from Text

2.1	Page 236, $\#2$	5 Marks
2.2	Page 236-7, #7	10 Marks
2.3	Page 267, $#4,7$	10 Marks
3	BONUS: Page 269, #20	5 Marks

(Note: This problem must be done on your own. No books, internet pages, etc... are allowed.)