C\&O 367/CM 442 Nonlinear Optimization - Winter 2009

Assignment 5 Due date: Wednesday Apr. 1, 2009

Assignments are due before the start of class on the due date.
Write your name and ID\# clearly, and underline your last name.

C\&O 367
 Assignment 1

Due on Thursday, Apr. 1 (before start of class)
Instructor H. Wolkowicz

1 LP and QP Duality

For each primal problem (P): construct the appropriate Lagrangian/payoff function $L(x, \lambda)$; write down the equivalent max min for (P) and the min max problem for (D). (E.g. $\min _{x \in C} \max _{\lambda \in D} L(x, \lambda)$, for appropriate sets C, D.) Derive a dual using the appropriate hidden constraint.

1.1 LP

- 5 Marks

$$
\begin{array}{ccl}
\min & \sum_{j=1}^{3} c_{j} x_{j} & \\
\text { subject to } & \sum_{j=1}^{3} A_{i j} x_{j} & \operatorname{sign}_{i} \\
x_{i} \in C_{i}, & b_{i}, \quad i=1,2,3 \\
i=1,2,3,
\end{array}
$$

where, for $i=1,2,3$ we have sign_{i} is $\geq, \leq,=$, respectively; and C_{i} is $\mathbb{R}_{+}, \mathbb{R}_{-}, \mathbb{R}$, respectively.

1.2 QP
 - 5 Marks

$$
\begin{array}{cr}
\min & \frac{1}{2} x^{T} Q x+g^{T} x \\
\text { subject to } & A x \geq a \\
& B x \leq b \\
C x=c .
\end{array}
$$

2 Problems from Text

2.1 Page 236, \#2

5 Marks
2.2 Page 236-7, \#7
2.3 Page 267, \#4,7

3 BONUS: Page 269, \#20
10 Marks 5 Marks
(Note: This problem must be done on your own. No books, internet pages, etc... are allowed.)

