C&O 367/CM 442 Nonlinear Optimization – Winter 2009

Assignment 2

Due date: Wednesday Jan. 28, 2009

Assignments are due before the <u>start</u> of class on the due date. Write your name and ID# clearly, and <u>underline</u> your last name.

Contents

1	Quadratic Forms and Projections — 9 Marks	2
2	Differential Geometry	2
	2.1 Contours and Tangent Planes — 6 Marks	2
	2.2 Direction of Steepest Ascent — 4 Marks	
3	Convex Sets	3
	3.1 Halfspaces — 5 Marks \ldots	3
	3.2 Solution Set of a Quadratic Inequality — 5 Marks $\ldots \ldots \ldots \ldots \ldots$	3
4	Convex Functions	3
	4.1 Pointwise Maximum and Supremum	3
	4.1.1 Maximum of Norms — 5 Marks	3
	4.1.2 Largest Components — BONUS: 5 Marks	3

C&O 367 Assignment 1

Due on Thursday, Jan. 14 (before start of class) Instructor H. Wolkowicz

Quadratic Forms and Projections —— 9 Marks 1

An $n \times n$ matrix P is called a *projection* matrix if $P^T = P$ and PP = P. Prove that if P is a projection matrix, then

- 1. I P is a projection matrix.
- 2. P is positive semidefinite.
- 3. $||Px|| \leq ||x||$, for any x, where $||\cdot||$ is the Euclidean norm.

2 **Differential Geometry**

Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable. Let $\bar{x} \in \mathbb{R}^n$ with $\nabla f(\bar{x}) \neq 0$.

Contours and Tangent Planes 2.1

Let $C = \{x : f(x) = f(\bar{x})\}$ be the contour (level curve) of f at \bar{x} , and let T denote the tangent plane to the level curve at \bar{x} . Show that the two direction vectors

$$\pm \frac{1}{||\nabla f(\bar{x})||} \nabla f(\bar{x})$$

are orthogonal to the contour C at \bar{x} , i.e. show that they are orthogonal to the tangent plane T at \bar{x} .

2.2**Direction of Steepest Ascent**

Show that the direction vector $s = \frac{1}{||\nabla f(\bar{x})||} \nabla f(\bar{x})$ has the greatest slope, over all vectors for which $s^T s = 1$. (The slope refers to the directional derivative.)

4 Marks

$$-6$$
 Marks

3 **Convex Sets**

3.1Halfspaces

When does one halfspace contain another? More precisely, give conditions on a, \bar{a}, b, \bar{b} under which

$$\{x: a^T x \le b\} \subseteq \{x: \bar{a}^T x \le \bar{b}\},\$$

where both $a \neq 0, \bar{a} \neq 0$. Also, find conditions under which the two halfspaces are equal.

3.2Solution Set of a Quadratic Inequality —— 5 Marks

Let $F \subseteq \mathbb{R}^n$ be the solution set of a quadratic inequality,

$$F = \{ x \in \mathbb{R}^n : x^T A x + b^T x + c \le 0 \},\$$

where $A \in \mathcal{S}^n$, the set of $n \times n$ symmetric matrices, $b \in \mathbb{R}^n$, and $c \in \mathbb{R}$.

Show that F is convex if and only if $A \succeq 0$ (is positive semidefinite).

Convex Functions 4

Pointwise Maximum and Supremum 4.1

Show that the following functions $f : \mathbb{R}^n \to \mathbb{R}$ are convex.

4.1.1Maximum of Norms

 $f(x) = \max_{i=1,\dots,k} \|A^{(i)}x - b^{(i)}\|_2$, where $A^{(i)} \in \mathbb{R}^{m \times n}, b^{(i)} \in \mathbb{R}^m$.

Largest Components 4.1.2

 $f(x) = \sum_{i=1}^{r} |x|_{[i]}$ on \mathbb{R}^n , where |x| denotes the vector with $|x|_i = |x_i|$ (i.e. —x— is the absolve value of x, componentwise), and $|x|_{[i]}$ is the *i*th largest component of |x|. In other words, $|x|_{[1]}, |x|_{[2]}, \ldots, |x|_{[n]}$ are the absolute values of the components of x, sorted in nonincreasing order.

BONUS: 5 Marks

5 Marks

- 5 Marks