C\&O 367/CM 442 Nonlinear Optimization - Winter 2009

Assignment 2
Due date: Wednesday Jan. 28, 2009

Assignments are due before the start of class on the due date. Write your name and ID\# clearly, and underline your last name.

Contents

1 Quadratic Forms and Projections 9 Marks 2
2 Differential Geometry 2
2.1 Contours and Tangent Planes - $\mathbf{6}$ Marks 2
2.2 Direction of Steepest Ascent - 4 Marks 2
3 Convex Sets 3
3.1 Halfspaces - 5 Marks 3
3.2 Solution Set of a Quadratic Inequality - $\mathbf{5}$ Marks 3
4 Convex Functions 3
4.1 Pointwise Maximum and Supremum 3
4.1.1 Maximum of Norms 5 Marks 3
4.1.2 Largest Components BONUS: 5 Marks 3

C\&O 367
 Assignment 1

Due on Thursday, Jan. 14 (before start of class) Instructor H. Wolkowicz

1 Quadratic Forms and Projections
 9 Marks

An $n \times n$ matrix P is called a projection matrix if $P^{T}=P$ and $P P=P$. Prove that if P is a projection matrix, then

1. $I-P$ is a projection matrix.
2. P is positive semidefinite.
3. $\|P x\| \leq\|x\|$, for any x, where $\|\cdot\|$ is the Euclidean norm.

2 Differential Geometry

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable. Let $\bar{x} \in \mathbb{R}^{n}$ with $\nabla f(\bar{x}) \neq 0$.

2.1 Contours and Tangent Planes

- 6 Marks

Let $C=\{x: f(x)=f(\bar{x})\}$ be the contour (level curve) of f at \bar{x}, and let T denote the tangent plane to the level curve at \bar{x}. Show that the two direction vectors

$$
\pm \frac{1}{\|\nabla f(\bar{x})\|} \nabla f(\bar{x})
$$

are orthogonal to the contour C at \bar{x}, i.e. show that they are orthogonal to the tangent plane T at \bar{x}.

2.2 Direction of Steepest Ascent

- 4 Marks

Show that the direction vector $s=\frac{1}{\|\nabla f(\bar{x})\|} \nabla f(\bar{x})$ has the greatest slope, over all vectors for which $s^{T} s=1$. (The slope refers to the directional derivative.)

3 Convex Sets

3.1 Halfspaces

When does one halfspace contain another? More precisely, give conditions on a, \bar{a}, b, \bar{b} under which

$$
\left\{x: a^{T} x \leq b\right\} \subseteq\left\{x: \bar{a}^{T} x \leq \bar{b}\right\}
$$

where both $a \neq 0, \bar{a} \neq 0$. Also, find conditions under which the two halfspaces are equal.

3.2 Solution Set of a Quadratic Inequality

Let $F \subseteq \mathbb{R}^{n}$ be the solution set of a quadratic inequality,

$$
F=\left\{x \in \mathbb{R}^{n}: x^{T} A x+b^{T} x+c \leq 0\right\},
$$

where $A \in \mathcal{S}^{n}$, the set of $n \times n$ symmetric matrices, $b \in \mathbb{R}^{n}$, and $c \in \mathbb{R}$.
Show that F is convex if and only if $A \succeq 0$ (is positive semidefinite).

4 Convex Functions

4.1 Pointwise Maximum and Supremum

Show that the following functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are convex.

4.1.1 Maximum of Norms

$f(x)=\max _{i=1, \ldots, k}\left\|A^{(i)} x-b^{(i)}\right\|_{2}$, where $A^{(i)} \in \mathbb{R}^{m \times n}, b^{(i)} \in \mathbb{R}^{m}$.

4.1.2 Largest Components

BONUS: 5 Marks
$f(x)=\sum_{i=1}^{r}|x|_{[i]}$ on \mathbb{R}^{n}, where $|x|$ denotes the vector with $|x|_{i}=\left|x_{i}\right|$ (i.e. -x - is the absolve value of x, componentwise), and $|x|_{[i]}$ is the i th largest component of $|x|$. In other words, $|x|_{[1]},|x|_{[2]}, \ldots,|x|_{[n]}$ are the absolute values of the components of x, sorted in nonincreasing order.

