
C&O 367: Optimality Conditions and
Duality, Assignment 5

Due on Friday, April 4, 2008.
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1 Preliminaries

This assignment extends the results presented in class for the convex program, (CP), to include
the case where (CP) can have affine equality constraints. We first recall the following definitions
for this new case.

1. Convex Program:

(CP )
min f(x)
s.t. gk(x) ≤ 0, k = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , p,

where the functions f, gk, hj are all real valued (sufficiently smooth) convex functions defined
on Ω ⊂ R

n, the functions −hj are also convex for all j, (i.e. the functions ±hj are both
convex and concave, ∀j) and Ω is an open convex set.

(a) The feasible set of (CP) is

F := {x ∈ Ω : gk(x) ≤ 0,∀k, and hj(x) = 0,∀j} .

The active set of (CP) at x̄ is A(x̄) := {k : gk(x̄) = 0}.
The generalized Slater constraint qualification for (CP), denoted (GCQ), is:
∃x̂ ∈ Ω such that gk(x̂) < 0,∀k and hj(x̂) = 0,∀j.

(b) For x̄ ∈ F , the tangent cone of F at x̄ is

TF (x̄) := cone(F − x̄),

i.e. it is the closure of the convex cone generated by the set F − x̄.

(c) For x̄ ∈ F , the linearizing cone of (CP) at x̄ is

L(x̄) :=
{

d ∈ R
n : dT∇gk(x̄) ≤ 0,∀k ∈ A(x̄), dT∇hj(x̄) = 0,∀j

}

.

2 Problems on Definitions of (CP)

1. Show that the feasible set F is a convex set. Is it a closed set as well? If not, are there cases
when it is a closed set?

2. Let x̄ ∈ F and

D(x̄) := {d ∈ R
n : gk(x̄ + ᾱd) ≤ 0,∀k ∈ A(x̄), and hj(x̄ + ᾱd) = 0,∀j, for some ᾱ > 0} .

Show that TF (x̄) = {0} ∪ D(x̄).

3. Let x̄ ∈ F . Show that the linearizing cone L(x̄) is the polar cone of a finite set, i.e.

L(x̄) = S+ := {v1, . . . , vt}+; (1)

and state what the vectors vi in S are.
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3 Rockafellar-Pshenichnyi Optimality Conditions for

(CP)

State and prove the RP characterization of optimality for (CP), i.e. the optimality conditions for
x̄ ∈ argmin x∈Ff(x).

4 Generalized Farkas’ Lemma

Consider the linear system

(

A B
)

(

λ

µ

)

= b, λ ∈ R
tm
+ nonnegative and, µ ∈ R

p free, (2)

where the matrices A and B are n × tm and n × p, respectively. And consider the implication
{

(

A B
)T

d =

(

p

z

)

, p ∈ R
tm
+ , z = 0 ∈ R

p

}

=⇒ bT d ≥ 0. (3)

State and prove a generalized version of Farkas’ Lemma based on (2) and (3), i.e. (2) holds if and
only if (3) holds.
(Hint: You can use a result proved in a previous assignment.)

5 Karush-Kuhn-Tucker Optimality Conditions for (CP)

State the KKT optimality conditions for (CP) at a point x̄. State carefully when necessity holds
and when sufficiency holds. In particular, state when a constraint qualification (CQ) is needed and
state an appropriate (CQ).

6 Duality for Quadratic Programs

Let the matrices: Q be n × n symmetric, positive semidefinite; A be m × n; and B be p × n. let
g, a, b be vectors of appropriate dimension. Derive a (Wolfe type) dual program for the (convex)
quadratic program

min{q(x) :=
1

2
xT Qx + gT x : Ax ≤ a,Bx = b}.

Then, show that strong duality holds.

7 BONUS Questions

7.1 BONUS: Proof and (CQ) for KKT Optimality Conditions

1. Prove the above KKT optimality conditions at x̄. In particular, state and use an appropriate
weakest constraint qualification, WCQ.
(Hint: Use Items 1b) and1c) in Section 1 for the WCQ. then use (1) and the generalized
Farkas Lemma to connect the KKT and the RP optimality conditions.)

2. Show that the generalized Slater constraint qualification, (GCQ), is a valid (CQ) for (CP),
by using the above WCQ.
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7.2 BONUS: Applications for Eigenvalue Bounds

Let S be a given n × n symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. Let m := trace S
and s2 := trace S2

n
− m2. Recall the convex program solved in class

vp := min λn

s.t.
∑n

i=1
λi = trace S

∑n
i=1

λ2
i ≤ trace S2.

(4)

The optimal solution of this program resulted in the lower bound on the smallest eigenvalue of S,
i.e.

λn ≥ m −
√

n − 1s.

By adding the appropriate constraints λi ≥ λn, i = 1, . . . , n−1 and changing the objective function
appropriately, in (4), derive and prove a lower bound on the second smallest eigenvalue λn−1.
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