C\&O 367, Winter 2008

Assignment 2, Due Feb. 4 (at start of class; late assign will not be accepted)

To Hand in:

1. Section 1: Problems 3,5;
2. Section 2: Problems 1;
3. Section 3: Problems 1,2,5;
4. Section 4: Problems 1.
5. Section 5: Problems 1. (This BONUS question is optional.)

1 Background/Theory

1. Suppose that $\mathrm{C}[\mathrm{a}, \mathrm{b}]$ denotes the vector space of all real valued continuous functions on the interval $[a, b]$. Show that

$$
\langle f, g\rangle=\int_{a}^{b} f(t) g(t) d t
$$

defines an inner product on $\mathrm{C}[\mathrm{a}, \mathrm{b}]$.
2. Find an (simple) example of a function that is continuous on $[-1,1]$ but not Lipschitz continuous. (No oscillating junk is permitted.)
3. (9 marks) Compute the gradient and Hessian of the following functions:
(a) $f(x)=x^{t} \mathcal{A} x$, where A is an $n \times n$ matrix (A is not assumed to be symmetric).
(b) $f(x)=\frac{1}{2} x^{t} A x+b^{t} x$ (A symmetric).
(c) $f(x)=g(x)^{t} g(x)$ where $g: \mathfrak{R}^{\mathfrak{n}} \rightarrow \mathfrak{R}^{\mathfrak{m}}$ and g is twice differentiable.
4. Let $x:[-1,+1] \rightarrow \mathfrak{R}^{n}, x \in C^{2}([-1,+1])$, and let $f \in C^{2}\left(\mathfrak{R}^{n}\right)$. Compute the gradient and Hessian of $f(x(t))$ at $t=0$.
5. (5 marks) Consider the problem

$$
\min _{x} x^{2}-x y+2 y^{2}-2 x+e^{x+y}
$$

Is the first-order necessary optimality condition also sufficient for optimality? Why?
6. (10 marks) Suppose $f: \Re \rightarrow \Re$ is convex and bounded above. Show that f is constant.
7. (10 marks)From the text: page $32, \# 7 \mathrm{~b}), \mathrm{e})$; page $33, \# 12 \mathrm{~b}), \mathrm{f}) ; \# 16 \mathrm{a})$.

2 Optimality Conditions

1. (10 marks) Suppose that $q(x)=\frac{1}{2} x^{\top} P x+b^{\top} x+\alpha$ is a quadratic function on \mathbb{R}^{n} and $P=$ $\mathrm{P}^{\top} \in \mathcal{S}^{n}$, the space of $n \times n$ symmetric matrices. Prove that the following three statements are equivalent.
(a) $\mathrm{q}(\mathrm{x})$ is bounded below.
(b) $\mathrm{P} \succeq 0$ (positive semidefinite) and $\mathrm{b} \in \mathcal{R}(\mathrm{P})$, the range of P .
(c) $-\mathrm{P}^{\dagger} \mathrm{b} \in \operatorname{argmin}_{x}\{\mathrm{q}(\mathrm{x})\} \quad\left(\mathrm{P}^{\dagger}\right.$ denotes Moore-Penrose generalized inverse of P$)$.

3 Convexity

1. (10 marks) A set C is midpoint convex if

$$
a, b \in C \text { implies } \frac{1}{2}(a+b) \in C .
$$

Suppose that C is closed and midpoint convex. Show that C is convex.
2. (10 marks) Let $\mathrm{C} \subset \mathbb{R}^{n}$ be the solution set of a quadratic inequality

$$
C=\left\{x \in \mathbb{R}^{n}: x^{\top} A x+b^{\top} x+c \leq 0\right\}
$$

where $A \in \mathcal{S}^{n}, b \in \mathbb{R}^{n}, c \in \mathbb{R}$.
(a) Show that C is convex if $A \succeq 0$.
(b) Show that the intersection of C and the hyperplane defined by $g^{\top} x+h=0($ where $g \neq 0)$ is convex if $A+\lambda g g^{\top} \succeq 0$, for some $\lambda \in \mathbb{R}$.

Are the converses of these statements true?
3. The conic hull of a set C, is the smallest convex cone that contains the set C. Consider the set of rank-k outer products, defined as $\left\{\mathrm{XX}^{\top}: \mathrm{X} \in \mathbb{R}^{\mathrm{n} \times \mathrm{k}}, \operatorname{rank} \mathrm{X}=\mathrm{k}\right\}$. Describe its conic hull in simple terms.
4. Give an example of two closed convex sets that are disjoint but cannot be strictly separated.
5. (10 marks) Let $C \subset \mathbb{R}^{n}$. Define the distance to the farthest point of C

$$
f(x)=\sup _{y \in C}\|x-y\| .
$$

Show that f is a convex function.

4 MATLAB

1. (10 marks) Consider Rosenbrock's test function

$$
f(x)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2} .
$$

Find the minimum point for this function from the initial estimate $x^{(1)}=(-11)^{\top}$. Use the MATLAB package and use the following three methods:
(a) Newton with approximate linesearch,
(b) quasi-Newton with BFGS update with approximate linesearch,
(c) steepest descent with exact line search.

You can experiment with different approximate linesearches, e.g. backtracking with initial steplength of 1 . Or you can use MATLAB to do the exact line search for you. (Please include well-documented programs.)
HINT: Try help bandem in MATLAB. Then look for the files related to this demo in the optimization toolbox. Alternatively, you can try optimtool in MATLAB.

5 BONUS Question

1. Consider the problem of minimizing $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, where

$$
f(x)=\frac{\|A x-b\|_{2}^{2}}{c^{T} x+d}, \quad \operatorname{dom} f=\left\{x: c^{T} x+d>0\right\}
$$

and $\operatorname{rank} \mathrm{A}=\mathrm{n}, \mathrm{b} \notin \mathcal{R}(\mathrm{A})$, range of A . Show that the minimizer x^{*} of f is given by

$$
x^{*}=x_{1}+t x_{2},
$$

where $x_{1}=\left(A^{\top} A\right)^{-1} A^{\top} b, x_{2}=\left(A^{\top} A\right)^{-1} c$, and $t \in \mathbb{R}$ can be found by solving a quadratic equation.

