C\&O 367 Assignment 1

Instructor: Prof. Henry Wolkowicz

Due on Wed. Jan. 16, 2008

Note: Please explain your answers and proofs carefully. A yes or no does not constitute a valid answer; nor does a numerical value with no explanation constitute a valid answer.

1 GEOMETRY

Definition 1 For a vector $x=\left(x_{1}, \cdots, x_{n}\right)^{\top} \in \mathbb{R}^{n}$, we define the (Euclidean) norm and (Euclidean) inner product

$$
\begin{gathered}
\|x\|:=\left(x_{1}^{2}+\cdots+x_{n}^{2}\right)^{1 / 2} \\
\langle x, y\rangle:=x \cdot y:=x_{1} y_{1}+\cdots+x_{n} y_{n} .
\end{gathered}
$$

Theorem 1 (Cauchy-Schwarz) $|\mathrm{x} \cdot \mathrm{y}| \leq\|\mathrm{x}\|\|\mathrm{y}\|$, with equality if and only if $\mathrm{x}=\lambda \mathrm{y}$, for some λ.

1.1 EXERCISES

1. (10) Explain the geometrical significance for the vectors x and y of:
(a)

$$
x \cdot y=0
$$

(b)

$$
x \cdot y>0
$$

(c)

$$
\frac{x \cdot y}{\|x\|\|y\|} \geq \frac{1}{\sqrt{2}}
$$

2. (10) Prove that the function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f(x)=a \cdot x+\alpha$ is continuous, where $a \in \mathbb{R}^{n}$ is a given vector and $\alpha \in \mathbb{R}$ is a given scalar.

2 CALCULUS

For a function $\mathrm{g}: \mathbb{R}^{n} \rightarrow \mathbb{R}$, the gradient is denoted

$$
\nabla g(x):=\left(\begin{array}{c}
\frac{\partial g(x)}{\partial x} \\
\frac{\partial g(x)}{\partial x_{2}} \\
\cdots(\\
\frac{\partial g(x)}{\partial x_{n}}
\end{array}\right)
$$

2.1 EXERCISES

1. (5) If $g(x)=\|x\|$, calculate $\nabla g(x)$.
2. (10) Suppose $g: \mathbb{R}^{n} \rightarrow \mathbb{R}, a, b \in \mathbb{R}^{n}$, and $f(t):=g(a+t b)$. Calculate $f^{\prime}(t)$.

2.2 EXERCISES

Definition 2 Suppose $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ is infinitely differentiable at $\mathrm{x}=\mathrm{a}$. The Taylor Series of f about a is:

$$
f(a)+f^{\prime}(a)(x-a)+\frac{1}{2!} f^{\prime \prime}(a)(x-a)^{2}+\frac{1}{3!} f^{\prime \prime \prime}(a)(x-a)^{3}+\cdots
$$

Write down the Taylor series of:

1. (5)

$$
f(x)=x^{3}, \text { about } x=1
$$

2. (5)

$$
f(x)=\log (1+x), \text { about } x=0
$$

3 TOPOLOGY

Definition 3 The open ball $\mathrm{B}(\mathrm{x} ; \mathrm{r}):=\left\{\mathrm{y} \in \mathbb{R}^{\mathrm{n}}:\|\mathrm{x}-\mathrm{y}\|<\mathrm{r}\right\}$. Suppose that D is a subset of \mathbb{R}^{n}.

Interior: $\mathrm{x} \in \operatorname{int} \mathrm{D}$ if there exists $\mathrm{r}>0$ with $\mathrm{B}(\mathrm{x} ; \mathrm{r}) \subset \mathrm{D}$.
Closure: $x \in \operatorname{clD}$ if there exists a sequence $\chi^{k} \in \mathrm{D}$ with $\chi^{k} \rightarrow x$.
Boundary: $x \in \partial \mathrm{D}$ if $x \in \operatorname{cl} \mathrm{D} \backslash$ int D .
D is open if $\mathrm{D}=\operatorname{int} \mathrm{D} . \mathrm{D}$ is closed if $\mathrm{D}=\mathrm{cl} \mathrm{D}$.

3.1 EXERCISES

1. (15) For each of the following sets, find the interior, the closure, and the boundary. Then determine which of the sets are open, closed, neither, or both.
(a)

$$
\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 0, x_{2} \geq 0\right\}
$$

(b)

$$
\left\{\left(x_{1}, x_{2}\right): x_{1}>0, x_{2}>0\right\} .
$$

(c)

$$
\left\{\left(x_{1}, x_{2}\right): x_{1}>0, x_{2} \geq 0\right\} .
$$

(d)

$$
\mathbb{R}^{n}
$$

(e)

$$
\left\{\left(x_{1}, x_{2}\right): x_{1}^{2}+x_{2}^{2}<0\right\} .
$$

(f)

\emptyset.

2. (a) (10) Prove that D is closed if and only if the complement D^{c} is open.
(b) (10) Prove that $x \in \partial D$ if and only if for any $r>0$ there exists a $y \in B(x ; r) \cap D$ and a $z \in B(x ; r) \cap D^{c}$.

4 MATRICES

4.1 EXERCISES

1. (10) Let

$$
A=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 2 & 1
\end{array}\right)
$$

(a) Calculate the determinant of \mathcal{A}.
(b) Calculate the rank of A.
(c) What is the rank of A^{\top}.
2. (10) Let

$$
B=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

Calculate the eigenvalues and eigenvectors of B.
3. (10) Let

$$
C=\left(\begin{array}{cccc}
3 & 1 & 1 & 4 \\
\rho & 4 & 10 & 1 \\
1 & 7 & 17 & 3 \\
2 & 2 & 4 & 3
\end{array}\right)
$$

Using elementary transformations (elementary row and column operations), find the value of ρ that minimizes the rank of C.

