MATH 235/W08: Orthogonal Diagonalization, Symmetric \& Complex Matrices, Assignment 8

Hand in questions 1,3,5,7,9,11,13 by 9:30 am on Wednesday April 2, 2008.

Contents

1 Properties of Symmetric/Hermitian/Normal Matrices*** 2
2 More on Hermitian/Unitary Matrices 2
3 Hermitian, Orthogonal Projections*** 2
4 Hermitian and Skew-Hermitian Parts 2
5 Quadratic Forms*** 2
6 Normal Matrices 3
7 Orthogonal Diagonalization*** 3
8 Eigenspaces 3
9 Unitary Diagonalization*** 3
10 Symmetric Square Root 3
11 Orthogonal Eigenvectors*** 4
12 Common Eigenpairs 4
13 MATLAB*** 5
13.1 Colliding Eigenvalues*** 5
13.2 Equation of an Orbit*** 5

1 Properties of Symmetric/Hermitian/Normal Matrices***

A (complex) normal matrix is defined by $A^{*} A=A A^{*}$; it has orthogonal eigenvectors. A skewHermitian matrix is defined by $A^{*}=-A$.

1. Why is every skew-Hermitian matrix normal?

2 . Why is every unitary matrix normal?
3. For what values of a, d is the 2×2 matrix $\left(\begin{array}{cc}a & 1 \\ -1 & d\end{array}\right)$ normal?

2 More on Hermitian/Unitary Matrices

1. Let A, B be $n \times n$ matrices and suppose $B=A^{-1} A^{T}$ and B is symmetric. Prove that A^{2} is symmetric.
2. Suppose C is a real $n \times n$ matrix such that C is symmetric and $C^{2}=C$ and let $D=I_{n}-2 C$ with I_{n} denoting the $n \times n$ identity matrix. Prove that D is symmetric and orthogonal.
3. Find all complex 2×2 matrices $A=\left[a_{i j}\right]$ which are both unitary and Hermitian, and have $a_{11}=1 / 2$.

3 Hermitian, Orthogonal Projections***

Let Z be an $m \times n$ complex matrix such that $Z^{*} Z=I_{n}$ where I_{n} denotes the $n \times n$ identity matrix.

1. Show that $H=Z Z^{*}$ is Hermitian and satisfies $H^{2}=H$.
2. Show that $U=I_{n}-2 Z Z^{*}$ is both unitary and Hermitian.

4 Hermitian and Skew-Hermitian Parts

Let A be a complex $n \times n$ matrix.

1. Show that $A=H+K$ for some Hermitian matrix H and some skew-Hermitian matrix K.
2. Show that H and K in part (a) are unique.
3. For H and K defined in part (a), show that $A A^{*}=A^{*} A$ if and only if $H K=K H$.

5 Quadratic Forms***

Let A be a real $n \times n$ matrix and let H be a complex $n \times n$ Hermitian matrix.

1. Find a real symmetric $n \times n$ matrix B such that the quadratic forms $x^{T} A x=x^{T} B x, \forall x \in \mathbb{R}^{n}$.
2. Verify that $\mathbf{x}^{*} H \mathbf{x} \in \mathbb{R}$, for all $\mathbf{x} \in \mathbb{C}^{n}$.
3. Show that if a Hermitian matrix H can be written as $H=A^{*} A$ for some invertible complex matrix A, then $\mathbf{x}^{*} H \mathbf{x}>0$ for all nonzero vectors $\mathbf{x} \in \mathbb{C}^{n}$.

6 Normal Matrices

Recall that an $n \times n$ complex matrix N is normal if $N^{*} N=N N^{*}$ where $N^{*}=\bar{N}^{T}$. Prove that if N is normal, then $N-c I_{n}$ is also normal for any complex scalar c. Here, I_{n} denotes the $n \times n$ identity matrix.

7 Orthogonal Diagonalization***

Consider the real symmetric matrix $A=\left[\begin{array}{lll}2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2\end{array}\right]$.

1. Find an orthogonal matrix P and a diagonal matrix D such that $A=P D P^{T}$.
2. Find a 3×3 real symmetric matrix X such that $X^{3}=A$.

8 Eigenspaces

Consider the complex Hermitian matrix $C=\left[\begin{array}{ccc}5 & 2-i & -1+i \\ 2+i & 1 & 3-i \\ -1-i & 3+i & 4\end{array}\right]$.
(a) Find the eigenvalues of C and their corresponding eigenspaces. Note that the sum along every row of C is 6 .
(b) Find a unitary matrix U and a diagonal matrix D such that $C=U D U^{*}$.

9 Unitary Diagonalization***

1. A matrix H_{s} over \mathbf{C} is skew-Hermitian if $H_{s}^{*}=-H_{s}$. Prove that every eigenvalue of a skew-Hermitian matrix H_{s} has real part zero.
2. Find a unitary diagonalization of the following skew-symmetric matrix

$$
A=\left[\begin{array}{ccc}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{array}\right]
$$

10 Symmetric Square Root

Find a symmetric matrix B such that $B^{2}=\left[\begin{array}{ccc}17 & 16 & -16 \\ 16 & 41 & -32 \\ -16 & -32 & 41\end{array}\right]$.

11 Orthogonal Eigenvectors***

This A is nearly symmetric. But its eigenvectors are far from orthogonal: $A=\left(\begin{array}{cc}1 & 10^{-5} \\ 0 & 1+10^{-5}\end{array}\right)$.
One eigenvector is $\binom{1}{0}$. What is another linearly independent eigenvector and what is the angle between the two eigenvectors?

12 Common Eigenpairs

Note that a well known theorem states: $A B=B A$ implies that A, B share the same eigenvectors. Suppose that A is normal. Therefore, $A A^{T}=A^{T} A$ and so A and A^{T} share the same eigenvectors. But A and A^{T} always share the same eigenvalues. Therefore they must have the same matrices U, D in a unitary diagonalization. Therefore, $A=A^{T}$? Where is the paradox?

13 MATLAB***

13.1 Colliding Eigenvalues***

Choose two simple 2×2 symmetric matrices with different eigenvectors. Say $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right)$ and another nondiagonal symmetric matrix. Graph the two eigenvalues of $A+t B$ as t varies $-8<t<8$. Use e.g.

```
t=linspace(-8,8);
l1s=[];
12s=[];
for i=1:length(t),
    l=eig(A+t(i)*B);
    l1s=[11s l(1)];
    12s=[12s l(2)];
end
plot(t,l1s,'ob')
hold on
plot(t,12s,'xr')
hold off
```

Note that the eigenvalues appear to be on a collision course, yet at the last minute they turn aside. How close do they come?

13.2 Equation of an Orbit***

The general equation of a conic section in the plane (a parabola, hyperbola, ellipse, or degenerate forms of these) is given by

$$
c_{1} x^{2}+c_{2} x y+c_{3} y^{2}+c_{4} x+c_{5} y+c_{6}=0
$$

Given five distinct points on the conic, the constants c_{1}, \cdots, c_{6} can be determined and will be unique to within a multiplicative constant. To see why this is so, let $\left(x_{i}, y_{i}\right), i=1, \cdots, 5$ denote the distinct points. Then, we can form the following system of equations:

$$
\begin{gathered}
x^{2} c_{1}+x y c_{2}+y^{2} c_{3}+x c_{4}+y c_{5}+c_{6}=0 \\
x_{1}^{2} c_{1}+x_{1} y_{1} c_{2}+y_{1}^{2} c_{3}+x_{1} c_{4}+y_{1} c_{5}+c_{6}=0 \\
x_{2}^{2} c_{1}+x_{2} y_{2} c_{2}+y_{2}^{2} c_{3}+x_{2} c_{4}+y_{2} c_{5}+c_{6}=0 \\
x_{3}^{2} c_{1}+x_{3} y_{3} c_{2}+y_{3}^{2} c_{3}+x_{3} c_{4}+y_{3} c_{5}+c_{6}=0 \\
x_{4}^{2} c_{1}+x_{4} y_{4} c_{2}+y_{4}^{2} c_{3}+x_{4} c_{4}+y_{4} c_{5}+c_{6}=0 \\
x_{5}^{2} c_{1}+x_{5} y_{5} c_{2}+y_{5}^{2} c_{3}+x_{5} c_{4}+y_{5} c_{5}+c_{6}=0
\end{gathered}
$$

This system can be written in the form of a homogeneous linear system of six equations for the six unknowns c_{1}, \cdots, c_{6}. Because c_{1}, \cdots, c_{6} are not all zero, this system has a nontrivial solution.

Now, recall that a homogeneous linear system with as many equations as unknowns has a nontrivial solution if and only if the determinant of the coefficient matrix is zero. Thus, we must have that

$$
\left|\begin{array}{cccccc}
x^{2} & x y & y^{2} & x & y & 1 \tag{*}\\
x_{1}^{2} & x_{1} y_{1} & y_{1}^{2} & x_{1} & y_{1} & 1 \\
x_{2}^{2} & x_{2} y_{2} & y_{2}^{2} & x_{2} & y_{2} & 1 \\
x_{3}^{2} & x_{3} y_{3} & y_{3}^{2} & x_{3} & y_{3} & 1 \\
x_{4}^{2} & x_{4} y_{4} & y_{4}^{2} & x_{4} & y_{4} & 1 \\
x_{5}^{2} & x_{5} y_{5} & y_{5}^{2} & x_{5} & y_{5} & 1
\end{array}\right|=0
$$

Hence, every point (x, y) on the conic must satisfy $(*)$; conversely, it can be shown that every point (x, y) that satisfies $(*)$ lies on the conic. So, $(*)$ represents the equation of the conic.

Use this result to determine the orbit of an asteroid about the sun. Let the sun be positioned at the origin of a Cartesian coordinate system in the plane of the orbit. An astronomer makes five observations of the asteroid at five different times and finds five distinct points $\left(x_{i}, y_{i}\right), i=1, \cdots, 5$ along the orbit to be:
$(8.025,8.310),(10.170,6.355),(11.202,3.212),(10.736,0.375),(9.092,-2.267)$
Here, astronomical units of measurement are used along the axes where 1 astronomical unit $=$ mean earth - to - sun distance (i.e. 150 million kms). With the aid of MATLAB, find the equation of the orbit.

