MATH 235/W08: Orthogonal Diagonalization, Symmetric & Complex Matrices, Assignment 8

Hand in questions 1,3,5,7,9,11,13 by 9:30 am on Wednesday April 2, 2008.

Contents

1	Properties of Symmetric/Hermitian/Normal Matrices***	2
2	More on Hermitian/Unitary Matrices	2
3	Hermitian, Orthogonal Projections***	2
4	Hermitian and Skew-Hermitian Parts	2
5	Quadratic Forms***	2
6	Normal Matrices	3
7	Orthogonal Diagonalization***	3
8	Eigenspaces	3
9	Unitary Diagonalization***	3
10	Symmetric Square Root	3
11	Orthogonal Eigenvectors***	4
12	Common Eigenpairs	4
13	MATLAB***	5
	13.1 Colliding Eigenvalues***	5
	13.2 Equation of an Orbit***	5

1 Properties of Symmetric/Hermitian/Normal Matrices***

A (complex) normal matrix is defined by $A^*A = AA^*$; it has orthogonal eigenvectors. A skew-Hermitian matrix is defined by $A^* = -A$.

- 1. Why is every skew-Hermitian matrix normal?
- 2. Why is every unitary matrix normal?
- 3. For what values of a, d is the 2×2 matrix $\begin{pmatrix} a & 1 \\ -1 & d \end{pmatrix}$ normal?

2 More on Hermitian/Unitary Matrices

- 1. Let A, B be $n \times n$ matrices and suppose $B = A^{-1}A^T$ and B is symmetric. Prove that A^2 is symmetric.
- 2. Suppose C is a real $n \times n$ matrix such that C is symmetric and $C^2 = C$ and let $D = I_n 2C$ with I_n denoting the $n \times n$ identity matrix. Prove that D is symmetric and orthogonal.
- 3. Find all complex 2×2 matrices $A = [a_{ij}]$ which are both unitary and Hermitian, and have $a_{11} = 1/2$.

3 Hermitian, Orthogonal Projections***

Let Z be an $m \times n$ complex matrix such that $Z^*Z = I_n$ where I_n denotes the $n \times n$ identity matrix.

- 1. Show that $H = ZZ^*$ is Hermitian and satisfies $H^2 = H$.
- 2. Show that $U = I_n 2ZZ^*$ is both unitary and Hermitian.

4 Hermitian and Skew-Hermitian Parts

Let A be a complex $n \times n$ matrix.

- 1. Show that A = H + K for some Hermitian matrix H and some skew-Hermitian matrix K.
- 2. Show that H and K in part (a) are unique.
- 3. For H and K defined in part (a), show that $AA^* = A^*A$ if and only if HK = KH.

5 Quadratic Forms***

Let A be a real $n \times n$ matrix and let H be a complex $n \times n$ Hermitian matrix.

- 1. Find a real symmetric $n \times n$ matrix B such that the quadratic forms $x^T A x = x^T B x, \forall x \in \mathbb{R}^n$.
- 2. Verify that $\mathbf{x}^* H \mathbf{x} \in \mathbb{R}$, for all $\mathbf{x} \in \mathbb{C}^n$.
- 3. Show that if a Hermitian matrix H can be written as $H = A^*A$ for some invertible complex matrix A, then $\mathbf{x}^*H\mathbf{x} > 0$ for all nonzero vectors $\mathbf{x} \in \mathbb{C}^n$.

6 Normal Matrices

Recall that an $n \times n$ complex matrix N is normal if $N^*N = NN^*$ where $N^* = \overline{N}^T$. Prove that if N is normal, then $N - cI_n$ is also normal for any complex scalar c. Here, I_n denotes the $n \times n$ identity matrix.

7 Orthogonal Diagonalization***

Consider the real symmetric matrix $A = \begin{bmatrix} 2 & 3 & 3 \\ 3 & 2 & 3 \\ 3 & 3 & 2 \end{bmatrix}$.

- 1. Find an orthogonal matrix P and a diagonal matrix D such that $A = PDP^{T}$.
- 2. Find a 3×3 real symmetric matrix X such that $X^3 = A$.

8 Eigenspaces

Consider the complex Hermitian matrix $C = \begin{bmatrix} 5 & 2-i & -1+i \\ 2+i & 1 & 3-i \\ -1-i & 3+i & 4 \end{bmatrix}$.

- (a) Find the eigenvalues of C and their corresponding eigenspaces. Note that the sum along every row of C is 6.
- (b) Find a unitary matrix U and a diagonal matrix D such that $C = UDU^*$.

9 Unitary Diagonalization***

- 1. A matrix H_s over **C** is skew-Hermitian if $H_s^* = -H_s$. Prove that every eigenvalue of a skew-Hermitian matrix H_s has real part zero.
- 2. Find a unitary diagonalization of the following skew-symmetric matrix

 $A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}.$

10 Symmetric Square Root

Find a symmetric matrix B such that $B^2 = \begin{bmatrix} 17 & 16 & -16 \\ 16 & 41 & -32 \\ -16 & -32 & 41 \end{bmatrix}$.

11 Orthogonal Eigenvectors***

This A is *nearly symmetric*. But its eigenvectors are far from orthogonal: $A = \begin{pmatrix} 1 & 10^{-5} \\ 0 & 1+10^{-5} \end{pmatrix}$. One eigenvector is $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$. What is another linearly independent eigenvector and what is the angle between the two eigenvectors?

12 Common Eigenpairs

Note that a well known theorem states: AB = BA implies that A, B share the same eigenvectors. Suppose that A is normal. Therefore, $AA^T = A^T A$ and so A and A^T share the same eigenvectors. But A and A^T always share the same eigenvalues. Therefore they must have the same matrices U, D in a unitary diagonalization. Therefore, $A = A^T$? Where is the paradox?

13 MATLAB***

13.1 Colliding Eigenvalues***

Choose two simple 2×2 symmetric matrices with *different eigenvectors*. Say $A = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$ and another nondiagonal symmetric matrix. Graph the two eigenvalues of A+tB as t varies -8 < t < 8. Use e.g.

```
t=linspace(-8,8);
l1s=[];
l2s=[];
for i=1:length(t),
    l=eig(A+t(i)*B);
    l1s=[l1s l(1)];
    l2s=[l2s l(2)];
end
plot(t,l1s,'ob')
hold on
plot(t,l2s,'xr')
hold off
```

Note that the eigenvalues appear to be on a collision course, yet at the last minute they turn aside. How close do they come?

13.2 Equation of an Orbit***

The general equation of a conic section in the plane (a parabola, hyperbola, ellipse, or degenerate forms of these) is given by

$$c_1x^2 + c_2xy + c_3y^2 + c_4x + c_5y + c_6 = 0$$

Given five distinct points on the conic, the constants c_1, \dots, c_6 can be determined and will be unique to within a multiplicative constant. To see why this is so, let $(x_i, y_i), i = 1, \dots, 5$ denote the distinct points. Then, we can form the following system of equations:

$$x^{2}c_{1} + xyc_{2} + y^{2}c_{3} + xc_{4} + yc_{5} + c_{6} = 0$$

$$x_{1}^{2}c_{1} + x_{1}y_{1}c_{2} + y_{1}^{2}c_{3} + x_{1}c_{4} + y_{1}c_{5} + c_{6} = 0$$

$$x_{2}^{2}c_{1} + x_{2}y_{2}c_{2} + y_{2}^{2}c_{3} + x_{2}c_{4} + y_{2}c_{5} + c_{6} = 0$$

$$x_{3}^{2}c_{1} + x_{3}y_{3}c_{2} + y_{3}^{2}c_{3} + x_{3}c_{4} + y_{3}c_{5} + c_{6} = 0$$

$$x_{4}^{2}c_{1} + x_{4}y_{4}c_{2} + y_{4}^{2}c_{3} + x_{4}c_{4} + y_{4}c_{5} + c_{6} = 0$$

$$x_{5}^{2}c_{1} + x_{5}y_{5}c_{2} + y_{5}^{2}c_{3} + x_{5}c_{4} + y_{5}c_{5} + c_{6} = 0$$

This system can be written in the form of a homogeneous linear system of six equations for the six unknowns c_1, \dots, c_6 . Because c_1, \dots, c_6 are not all zero, this system has a nontrivial solution.

Now, recall that a homogeneous linear system with as many equations as unknowns has a nontrivial solution if and only if the determinant of the coefficient matrix is zero. Thus, we must have that

$$\begin{vmatrix} x^2 & xy & y^2 & x & y & 1 \\ x_1^2 & x_1y_1 & y_1^2 & x_1 & y_1 & 1 \\ x_2^2 & x_2y_2 & y_2^2 & x_2 & y_2 & 1 \\ x_3^2 & x_3y_3 & y_3^2 & x_3 & y_3 & 1 \\ x_4^2 & x_4y_4 & y_4^2 & x_4 & y_4 & 1 \\ x_5^2 & x_5y_5 & y_5^2 & x_5 & y_5 & 1 \end{vmatrix} = 0 \quad (*)$$

Hence, every point (x, y) on the conic must satisfy (*); conversely, it can be shown that every point (x, y) that satisfies (*) lies on the conic. So, (*) represents the equation of the conic.

Use this result to determine the orbit of an asteroid about the sun. Let the sun be positioned at the origin of a Cartesian coordinate system in the plane of the orbit. An astronomer makes five observations of the asteroid at five different times and finds five distinct points $(x_i, y_i), i = 1, \dots, 5$ along the orbit to be:

(8.025, 8.310), (10.170, 6.355), (11.202, 3.212), (10.736, 0.375), (9.092, -2.267)

Here, astronomical units of measurement are used along the axes where 1 astronomical unit = mean earth - to - sun distance (i.e. 150 million kms). With the aid of MATLAB, find the equation of the orbit.