MATH 235/W08: Orthogonality; Least-Squares; \& Best Approximation Assignment 6

Hand in questions 1,2,6,8 by 9:30 am on Wednesday March 19, 2008.

Contents

1 Least Squares and the Normal Equations*** 2
2 Best Polynomial Fit*** 2
3 Least Squares Solutions and Errors 3
4 Best Quadratic Polynomial Fit 3
5 Best Approximation in Continuous Function Space 3
6 Orthogonality*** 3
7 MATLAB; Best Line Fit 4
8 MATLAB; Best Quadratic Fit*** 4
9 BONUS: Eigenvalues and Best Approximation 5

1 Least Squares and the Normal Equations***

Find the least-squares approximation and the error to a solution of $A \mathbf{x}=\mathbf{b}$, by constructing the normal equations for $\hat{\mathbf{x}}$ and then solving for $\hat{\mathbf{x}}$:
(a) $A=\left[\begin{array}{cc}3 & 5 \\ -2 & -6 \\ -5 & -11\end{array}\right], \mathbf{b}=\left[\begin{array}{l}3 \\ 3 \\ 3\end{array}\right]$
(b) $A=\left[\begin{array}{cc}-2 i & 1 \\ -1 & 3 i \\ -1+2 i & -1+3 i\end{array}\right], \mathbf{b}=\left[\begin{array}{c}-3+i \\ -4+2 i \\ 2+i\end{array}\right]$ Note that the normal equations over \mathbb{C} for $A \mathbf{x}=\mathbf{b}$ are $A^{*} A \mathbf{x}=A^{*} \mathbf{b}$ where the operation $*$ denotes complex conjugation plus transposition, that is, $A^{*}=\bar{A}^{T}$.
(c)

$$
A=\left(\begin{array}{cccccc}
0 & -2 & -1 & -8 & -6 & -4 \\
2 & -3 & 8 & 1 & -9 & -2 \\
-3 & 1 & -1 & -1 & -4 & 0 \\
-7 & 3 & -7 & -3 & -1 & 1 \\
0 & 9 & 8 & 3 & 0 & -4 \\
-2 & -7 & -2 & -2 & 9 & 4 \\
20 & -51 & -1 & -23 & 37 & 7 \\
25 & 56 & 17 & 48 & -71 & -18 \\
17 & -56 & 42 & 7 & -58 & 4 \\
-54 & -107 & -174 & -50 & 60 & 84
\end{array}\right), \quad b=\left(\begin{array}{c}
-83 \\
-30 \\
-3 \\
-67 \\
-49 \\
191 \\
375 \\
-676 \\
-558 \\
734
\end{array}\right)
$$

Hint: The file tempoutput.txt at
http://orion.math.uwaterloo.ca/~hwolkowi/henry/teaching/w08/235.w08/miscfiles/tempoutput.txt and MATLAB may help.

2 Best Polynomial Fit***

You are given the four data points:
$y=4$ at $t=-2$;
$y=3$ at $t=-1$;
$y=1$ at $t=0$;
$y=0$ at $t=2$.
(a) Find the best straight-line fit (least squares) to this data having the form $y=\beta_{0}+\beta_{1}$ t.
(b) Find the best quadratic polynomial fit (least squares) to this data having the form $y=$ $\beta_{0}+\beta_{1} t+\beta_{2} t^{2}$.

3 Least Squares Solutions and Errors

For the inconsistent linear system $A x=b$ where

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & 1 & 1 \\
0 & -2 & 1 \\
0 & 0 & -3
\end{array}\right], b=\left[\begin{array}{l}
2 \\
4 \\
6 \\
8
\end{array}\right]
$$

find a least-squares solution and the corresponding least-squares error for the solution.

4 Best Quadratic Polynomial Fit

For the data set $\left\{(x, y) \in \mathbf{R}^{2} \mid(-1,-4),(0,-2),(2,-2),(3,-5)\right\}$, find the least squares quadratic polynomial of the form $y(x)=a+b x+c x^{2}$ that best approximates this data.

5 Best Approximation in Continuous Function Space

1. Consider the vector space $C[-1,1]$ of continuous functions on the interval $[-1,1]$, together with the inner product given by $\langle f, g\rangle=\int_{-1}^{1} f(t) g(t) d t$, for $f, g \in C[-1,1]$. Let $\mathbf{P}_{2}[-1,1]$ be the subspace of $C[-1,1]$ having an orthonormal basis given by $B=\left\{\sqrt{\frac{45}{8}}\left(t^{2}-\frac{1}{3}\right), \sqrt{\frac{3}{2}} t, \frac{1}{\sqrt{2}}\right\}$. Find the best quadratic approximation to e^{t} on $[-1,1]$.
2. Consider the vector space $C[0,1]$ of continuous functions on the interval [0,1$]$, together with the inner product given by $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$, for $f, g \in C[0,1]$. Let $\mathbf{P}_{2}[0,1]$ be the subspace of $C[0,1]$ having a basis given by $B=\left\{1, x, x^{2}\right\}$. Find the best quadratic approximation to \sqrt{x} on $[0,1]$.

6 Orthogonality***

1. Suppose that A is a $m \times n$ real matrix. And suppose that $A x=0$ and $A^{T} y=2 y$. Show that x is orthogonal to y.
2. State and justify whether the following three statements are True or False (give an example in either case):
(a) Q^{-1} is an orthogonal matrix when Q is an orthogonal matrix.
(b) If Q (a $m \times n$ matrix with $m>n$) has orthonormal columns, then $\|Q x\|$ always equals $\|x\|$.
(c) If $Q($ a $m \times n$ matrix with $m>n)$ has orthonormal columns, then $\left\|Q^{T} y\right\|$ always equals $\|y\|$.

7 MATLAB; Best Line Fit

Over the past four Winter Olympics Games, the Canadian team won the following numbers of medals:

Year	Location	Number of Medals
1994	Lillehammer, Norway	13
1998	Nagano, Japan	15
2002	Salt Lake City, USA	17
2006	Turin, Italy	24

 $(3,24)$.
(a) Determine the least squares line $y=\beta_{0}+\beta_{1} x$ which best fits these data points.
(b) Using your line from (a), predict the total number of medals that Canada will win at the Winter Olympics in Vancouver in 2010.

8 MATLAB; Best Quadratic Fit***

Newton's Laws of Motion imply that an object thrown vertically with a velocity of v meters per second will be at a height of

$$
h(t)=v t-\frac{1}{2} g t^{2}
$$

meters after t seconds, where g is the acceleration due to gravity. The values in the table were observed. By fitting a quadratic

$$
h(t)=c_{0}+c_{1} t+c_{2} t^{2}
$$

to these data, estimate the values of v and g in this question.

\mathbf{t}	0.5	1.0	1.5	2.0
\mathbf{h}	23.7	45.1	64.0	80.4

9 BONUS: Eigenvalues and Best Approximation

1. Consider the 3×3 matrix

$$
A=\left(\begin{array}{lll}
a & b & c \\
1 & d & e \\
0 & 1 & f
\end{array}\right)
$$

Determine the entries a, b, c, d, e, f so that:
The top left 1×1 block is a matrix with eigenvalue 2 ;
The top left 2×2 block is a matrix with eigenvalues 3 and -3 ;
The matrix A has eigenvalues 0,1 and -2 .
2. Find the best line $y=c+d t$ by calculus (not MATLAB). Choose c and d to minimize the least squares problem

$$
E(c, d):=\int_{0}^{1}\left(c+d t-t^{2}\right)^{2} d t
$$

3. (MATLAB) First note that: The command $\mathbf{a}=\mathbf{o n e s}(\mathbf{n}, \mathbf{1})$ produces an $n \times 1$ matrix of 1's. The command $\mathbf{r}=(\mathbf{1}: \mathbf{n})$ ' produces the vector $(1,2, \ldots, n)$, transposed to a column vector. The command $\mathbf{s}=\mathbf{r} .^{2}$ produces the vector $\left(1^{2}, 2^{2}, \ldots, n^{2}\right)$, because the dot means a component at a time.
This problem looks for the line $y=c+d t$ closest to the parabola $y=t^{2}$.
With $n=10$, choose C and D to give the line $y=C+D t$ that is closest to t^{2} at the points $t=\frac{1}{10}, \frac{2}{10}, \ldots, 1$ (in the vector $r / 10$ with r). The inconsistent equations $A x=b$ are $\left(\begin{array}{ll}a & r / n\end{array}\right)\binom{C}{D}=s / n^{2}$.
