MATH 235/W08 Assignment 4B Eigenvalues, Eigenvectors, Diagonalization

Do NOT hand in this assignment.

- 1. Let A be an $n \times n$ matrix. Also, let α, β, γ be three distinct eigenvalues of A having corresponding eigenvectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$, respectively. Consider the vector $\mathbf{v} = \mathbf{x} + \mathbf{y} + \mathbf{z}$. Can \mathbf{v} be an eigenvector of A corresponding to an eigenvalue λ (possibly different from α, β, γ ? Explain.
- 2. Recall that the trace of an $n \times n$ matrix $A = [a_{ij}]$, denoted by tr(A), is the sum of the diagonal elements, that is, $tr(A) = \sum_{i=1}^{n} a_{ii}$.
 - (a) Let C and D be any two $m \times n$ matrices. Prove that $tr(C^T D) = tr(DC^T)$.
 - (b) Prove that if A and B are similar $n \times n$ matrices, then tr(A) = tr(B)and det(A) = det(B).
- 3. Let M, N be $n \times n$ matrices and suppose that M is invertible. Denote A = MN and B = NM. Prove that A is similar to B.
- 4. Let A and B be invertible $n \times n$ matrices. Prove that AB and BA have the same eigenvalues.
- 5. Determine if the following pair of matrices are similar to each other:

$$A = \begin{bmatrix} 1 & 1 & 5 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} , B = \begin{bmatrix} 1 & 7 & 0 \\ 0 & 2 & 7 \\ 0 & 0 & 2 \end{bmatrix} .$$