# MATH 235/W08 Assignment 4B Eigenvalues, Eigenvectors, Diagonalization 

Do NOT hand in this assignment.

1. Let $A$ be an $n \times n$ matrix. Also, let $\alpha, \beta, \gamma$ be three distinct eigenvalues of $A$ having corresponding eigenvectors $\mathbf{x}, \mathbf{y}, \mathbf{z}$, respectively. Consider the vector $\mathbf{v}=\mathbf{x}+\mathbf{y}+\mathbf{z}$. Can $\mathbf{v}$ be an eigenvector of $A$ corresponding to an eigenvalue $\lambda$ (possibly different from $\alpha, \beta, \gamma$ ? Explain.
2. Recall that the trace of an $n \times n$ matrix $A=\left[a_{i j}\right]$, denoted by $\operatorname{tr}(A)$, is the sum of the diagonal elements, that is, $\operatorname{tr}(A)=\sum_{i=1}^{n} a_{i i}$.
(a) Let $C$ and $D$ be any two $m \times n$ matrices. Prove that $\operatorname{tr}\left(C^{T} D\right)=$ $\operatorname{tr}\left(D C^{T}\right)$.
(b) Prove that if $A$ and $B$ are similar $n \times n$ matrices, then $\operatorname{tr}(A)=\operatorname{tr}(B)$ and $\operatorname{det}(A)=\operatorname{det}(B)$.
3. Let $M, N$ be $n \times n$ matrices and suppose that $M$ is invertible. Denote $A=M N$ and $B=N M$. Prove that $A$ is similar to $B$.
4. Let $A$ and $B$ be invertible $n \times n$ matrices. Prove that $A B$ and $B A$ have the same eigenvalues.
5. Determine if the following pair of matrices are similar to each other:

$$
A=\left[\begin{array}{lll}
1 & 1 & 5 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right], B=\left[\begin{array}{lll}
1 & 7 & 0 \\
0 & 2 & 7 \\
0 & 0 & 2
\end{array}\right] .
$$

