MATH 235/W08 Assignment 4A Eigenvalues, Eigenvectors, Diagonalization

Hand in questions 2,3,4,5,6,7,12

Due by 9:30 am on Wed. Feb. 27/08.

1. Find the eigenvalues and eigenvectors of $A=\left[\begin{array}{cccc}1 & 1 & 0 & 0 \\ 4 & 1 & 0 & 0 \\ a & 0 & 2 & 0 \\ c & 0 & b & 2\end{array}\right]$. Is A diagonalizable?
2. Diagonalize, if possible, the following matrices, i.e. find the eigenvalues and then find the corresponding eigenspaces.

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
0 & -1 & 3 \\
5 & 0 & -3 \\
1 & -1 & 2
\end{array}\right], B=\left[\begin{array}{ccc}
-2 & -4 i & 4 i \\
-4 i & 2 & 0 \\
-4 i & 0 & 2
\end{array}\right] \\
C=\left[\begin{array}{ccccc}
4 & 4 & 2 & 3 & -2 \\
0 & 1 & -2 & -2 & 2 \\
6 & 12 & 11 & 2 & -4 \\
9 & 20 & 10 & 10 & -6 \\
15 & 28 & 14 & 5 & -3
\end{array}\right]
\end{gathered}
$$

3. Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{4}$ be the transformation that maps a polynomial $p(t)$ into the polynomial $p(t)+t^{2} p(t)$.
(a) Find the image of $p(t)=2-t+t^{2}$.
(b) Show that T is a linear transformation.
(c) Find the matrix for T relative to the bases $\left\{1, t, t^{2}\right\}$ and $\left\{1, t, t^{2}, t^{3}, t^{4}\right\}$.
4. Suppose that the matrices A, B are similar. Prove that they have the same rank.
5. A 3×3 real matrix A has eigenvalues $\lambda_{1}=\lambda_{2}=-2, \lambda_{3}=3$ and associated eigenvectors

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \mathbf{v}_{\mathbf{3}}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

respectively. Find A.
6. Consider the matrix: $A=\left[\begin{array}{cccc}0 & 2 & 0 & 0 \\ k & 0 & 2 & 0 \\ 0 & k & 0 & 2 \\ 0 & 0 & k & 0\end{array}\right]$ where $k \in \mathbf{R}$ is a constant.
(a) Find all values of $k \in \mathbf{R}$ such that A is diagonalizable.
(b) Find all values of $k \in \mathbf{R}$ such that A is not diagonalizable.
7. Suppose that A is a $n \times n$ real matrix, n is odd. Show that A has at least one real eigenvalue.
8. For $A=\left[\begin{array}{ll}4 & -6 \\ 3 & -5\end{array}\right]$, evaluate A^{n} for arbitrary positive integer n.
9. Let $A, B \in M_{n \times n}(\mathbf{R})$, we say that A and B are simultaneously diagonalizable (S.D.) if there exists an invertible matrix Q in $M_{n \times n}(\mathbf{R})$ such that

$$
Q^{-1} A Q=D_{1} \quad \text { and } \quad Q^{-1} B Q=D_{2}
$$

where D_{1} and D_{2} are both diagonal matrices in $M_{n \times n}(\mathbf{R})$.
(a) Suppose that $C \in M_{n \times n}(\mathbf{R})$ and that p is a positive integer. Show that if C is diagonalizable then C and C^{p} are S.D.
(b) Suppose that $C \in M_{n \times n}(\mathbf{R})$ and that C is both invertible and diagonalizable. Show that C and C^{-1} are S.D.
(c) Let $A, B \in M_{n \times n}(\mathbf{R})$ and suppose that A and B are S.D. Show that A and B commute, that is show that $A B=B A$.
10. Let $A \in M_{n \times n}(\mathbf{C})$.
(a) Show that A and A^{T} have the same characteristic polynomial and conclude that A and A^{T} have the same eigenvalues.
(b) Let λ be an eigenvalue of A with eigenspace E_{λ} and let \tilde{E}_{λ} be the eigenspace of A^{T} corresponding to the eigenvalue λ. Note that E_{λ} and \tilde{E}_{λ} need not be identical. Prove that $\operatorname{dim}\left(E_{\lambda}\right)=\operatorname{dim}\left(\tilde{E}_{\lambda}\right)$.
(c) Hence, or otherwise, show that if A is diagonalizable then A^{T} is also diagonalizable.
11. Solve the initial value problem

$$
\begin{gathered}
y_{1}^{\prime}=4 y_{1}+y_{3} \\
y_{2}^{\prime}=-2 y_{1}+y_{2} \\
y_{3}^{\prime}=-2 y_{1}+y_{3}
\end{gathered}
$$

where $\mathbf{y}(0)=\left[\begin{array}{l}y_{1}(0) \\ y_{2}(0) \\ y_{3}(0)\end{array}\right]=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$.
12. (MATLAB) Application of Diagonalization: Linear Recurrences

A sequence x_{0}, x_{1}, \ldots of numbers is said to be given recursively if each number in the sequence is determined by those that precede it. Such sequences often occur in mathematics and science. A linear equation that describes this type of sequence is called a linear recurrence.
For example, one of the most famous sequences associated with a linear recurrence equation is the Fibonacci sequence. This sequence is generated by the linear recurrence equation

$$
x_{n+2}=x_{n+1}+x_{n}
$$

where $x_{1}=1=x_{2}$. It follows that

$$
\begin{aligned}
& x_{3}=x_{1+2}=x_{2}+x_{1}=1+1=2, \\
& x_{4}=x_{2+2}=x_{3}+x_{2}=2+1=3, \\
& x_{5}=x_{3+2}=x_{4}+x_{3}=3+2=5, \\
& x_{6}=x_{4+2}=x_{5}+x_{4}=5+3=8,
\end{aligned}
$$

and

$$
x_{7}=x_{5+2}=x_{6}+x_{5}=8+5=13 .
$$

In theory, given enough time, we could find the n-th term by first calculating all of the terms preceding it (this would take a very long time if n was large!). However, we can use what we know about diagonalization and eigenvalues to find an explicit formula for the n-th term of this sequence. To see how to do this, consider a general 2nd-order linear recurrence equation:

$$
x_{n+2}=b x_{n+1}+a x_{n}
$$

Associate this equation with a matrix A of the form

$$
A=\left[\begin{array}{ll}
0 & 1 \\
\mathrm{a} & \mathrm{~b}
\end{array}\right]
$$

Note that

$$
\begin{aligned}
A\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] & =\left[\begin{array}{ll}
0 & 1 \\
\mathrm{a} & \mathrm{~b}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& =\left[\begin{array}{c}
x_{2} \\
a x_{1}+b x_{2}
\end{array}\right] \\
& =\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right]
\end{aligned}
$$

Similarly, we have

$$
\begin{aligned}
A^{2}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] & =A\left(A\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right) \\
& =A\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 1 \\
\mathrm{a} & \mathrm{~b}
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
x_{3}
\end{array}\right] \\
& =\left[\begin{array}{c}
x_{3} \\
a x_{2}+b x_{3}
\end{array}\right] \\
& =\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]
\end{aligned}
$$

We can continue in this manner to get that for any $n \geq 3$

$$
A^{n-2}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{n-1} \\
x_{n}
\end{array}\right]
$$

Suppose that A is diagonalizable with

$$
D=P^{-1} A P
$$

Then we also have

$$
A=P D P^{-1}
$$

and hence

$$
A^{n-2}=P D^{n-2} P^{-1}
$$

Putting this all together would give us that

$$
\left[\begin{array}{c}
x_{n-1} \\
x_{n}
\end{array}\right]=P D^{n-2} P^{-1}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]
$$

From this equation, we have a means of calculating x_{n} directly given A, x_{1} and x_{2}.
In the case of the Fibonacci sequence, find the associated matrices A, P and D.
Thus, to find the 8th term in the Fibonacci sequence all that is required is one line in MATLAB given by:
>> $\mathrm{P} * \mathrm{D} \wedge 6 * \operatorname{inv}(\mathrm{P}) *[1 ; 1]$
which returns the vector $\left[x_{7} ; x_{8}\right]$ from which it is found that $x_{8}=21$.
Use Matlab to find the 23 rd and 32 nd terms in the Fibonacci sequence.

