MATH 235/W08

Determinants

Assignment 2 due by 9:30 am on Wed. Jan. 23/08.

Hand in questions $1,2,3,4,5,6,7,8$

1. Evaluate the determinants of the following matrices:
(a)

$$
\left(\begin{array}{ccc}
1 & i & 1+i \\
2-i & 3 & 0 \\
-1+i & 3 & 1-i
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{cccc}
0 & 2 & 3 & \pi \\
1 & -1.56 & -1.58 & 4.34 \\
0 & 0 & 0 & 4 \\
0 & 0 & 9 & 102
\end{array}\right)
$$

(c)

$$
\left(\begin{array}{ccc}
a & b & c \\
2 a+3 d & 2 b+3 e & 2 c+3 f \\
d & e & f
\end{array}\right), \quad \text { where } a, b, c, d, e, f \in \mathbb{C} .
$$

(d)

$$
\left(\begin{array}{ccccc}
6 & 0 & -1 & 0 & 0 \\
9 & 3 & 2 & 3 & 7 \\
8 & 0 & 3 & 2 & 9 \\
0 & 0 & 4 & 0 & 0 \\
5 & 0 & 5 & 0 & 1
\end{array}\right)
$$

2. Find the value of the determinants of the following matrices. Explain your answer in terms of cofactor expansion:
(a)

$$
\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right)
$$

(b) The 100×100 matrix A below:

$$
A=\left(\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 1 & 0 \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 1 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

The $i j$ th entry of A is 1 if $i+j=101$; all other entries are 0 .
3. Evaluate the following determinants by row-reducing to an upper triangular matrix:
(a)

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & 4 & 4 \\
1 & -1 & 2 & -2 \\
1 & -1 & 8 & -8
\end{array}\right)
$$

(b)

$$
\left(\begin{array}{cccc}
1 & 2 & 3 & 0 \\
2 & 6 & 6 & 1 \\
-1 & 0 & 0 & 3 \\
0 & 2 & 0 & 5
\end{array}\right)
$$

(c)

$$
\left(\begin{array}{ccccc}
2 & -1 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & -1 & 1
\end{array}\right)
$$

4. Suppose that $A \in \mathcal{M}_{4 \times 4}(\mathbb{C})$ i.e. a 4×4 matrix with complex entries. Suppose that the columns of A are given by the 4 vectors $v_{1}, v_{2}, v_{3}, v_{4}$ and $\operatorname{det}(A)=9$. Find:

$$
\operatorname{det}\left(\begin{array}{llll}
v_{1} & v_{4} & v_{3} & v_{2}
\end{array}\right) ; \quad \operatorname{det}\left(6 v_{1}+2 v_{4} \quad v_{2} \quad v_{3} \quad 3 v_{1}+v_{4}\right)
$$

5. Find the determinant of the matrix representation (with respect to the standard basis) of the linear operator $T(p(t))=p(4 t-1)$, where $T: P_{2} \rightarrow$ P_{2} i.e. T is a linear operator on the vector space of polynomials of degree 2.
6. Use the determinant of an appropriate matrix to find the area of the triangle defined by $\binom{3}{7}$ and $\binom{8}{2}$.
7. Let A be an $n \times n$ matrix with integer entries and with $\operatorname{det}(A)=1$. Are the entries of A^{-1} integers? Why?
8. MATLAB: You will need the two Teaching Code file cofactor.m available from the course webpage or http://web.mit.edu/18.06/www/Course-Info/Mfiles/cofactor.m
Use the diary command to save your input/output in MATLAB, e.g. diary inoutassign2.txt will save your output in the file inoutassign2.txt.
(a) Create a random 5×5 matrix A using the MATLAB randn command. (Use help randn in MATLAB if you need to.)
(b) Evaluate the determinant using the MATLAB det command. Then exchange rows 3 and $5: ~ B=A\left(:,\left[\begin{array}{llll}1 & 2 & 5 & 4\end{array}\right]\right)$. Use MATLAB to verify that $\operatorname{det} \mathrm{B}=-\operatorname{det} \mathrm{A}$.
(c) Now let C be the matrix obtained from A by adding 3 times row 4 to row 1. Again, use MATLAB to verify that now the determinant is unchanged.
(d) The file cofactor.m calculates the matrix of cofactors of a square matrix. Construct an integer matrix from A using $\mathrm{D}=\operatorname{round}\left(2^{*} \mathrm{~A}\right)$. Then find the cofactor matrix using $\mathrm{COF}=$ cofactor (D). The adjunct matrix is $\mathrm{ADJ}=\mathrm{COF}^{\prime}$. Find the inverse of D using ADJ.
(e) Generate a random integer vector b to solve the system $\mathrm{Dx}=\mathrm{b}$ using Cramer's rule. Verify that you have the solution using the \backslash command in MATLAB.
9. For each of the following, find all values of x for which the matrix is invertible.
(a) $\left[\begin{array}{ccc}\cos x & 1 & -\sin x \\ 0 & 2 & 0 \\ \sin x & 3 & \cos x\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 1 & x \\ 1 & x & x \\ x & x & x\end{array}\right]$
10. Theorem 9, p. 205, of Lay interprets $\operatorname{det} A$ in terms of area and volume. This generalizes to
Theorem: The k-volume of a k-parallelepiped defined by vectors v_{1}, \ldots, v_{k} in \mathbb{R}^{n} is $\sqrt{\operatorname{det}\left(A^{T} A\right)}$ where A is the $n \times k$ matrix whose column vectors are v_{1}, \ldots, v_{k}. When $k=n$, this reduced to $|\operatorname{det} A|$.
Note: 2 -volume $=$ area; 2 -parallelepiped= parallelogram, etc. Apply this Theorem to answer the following problems:
(a) Find the area of the parallelogram defined by the vectors

$$
\left[\begin{array}{c}
1 \\
1 \\
1 \\
1
\end{array}\right] \text { and }\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]
$$

(b) Find the volume of the parallelpiped defined by the vectors
$\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right], \quad\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \quad\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$.
11. (a) Prove that $\operatorname{det}\left[\begin{array}{cc}A & B \\ 0 & D\end{array}\right]=(\operatorname{det} A)(\operatorname{det} D)$, if A and D are square blocks not necessarily of the same size. (Hint: Expand along the last row of D and use induction.)
(b) Let a $2 n \times 2 n$ matrix M be in the form $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$, where each block is an $n \times n$ matrix. Suppose that A is invertible and that $A C=C A$. Prove that $\operatorname{det} M=\operatorname{det}(A D-C B)$. (Hint: Post-multiply M by the triangular matrix
$\left[\begin{array}{cc}I_{n} & -A^{-1} B \\ 0 & I_{n}\end{array}\right]$, whose determinant has value 1.)

