MATH 235/W08 Review of Linear Algebra I Assignment 1 due by 9:30 am on Wed. Jan. 16/08.

Hand in questions $2,6,10,11,13,15,17$.

1. Solve the following system of equations for x and y :

$$
\begin{gathered}
2 x^{2}-2 x y+y^{2}=17 \\
-x^{2}+2 x y+3 y^{2}=20 \\
x^{2}+4 x y+2 y^{2}=7
\end{gathered}
$$

2. Solve $A \mathbf{x}=\mathbf{b}$ and $\mathbf{y} A=\mathbf{c}$ where

$$
A=\left[\begin{array}{ccc}
1 & -1 & -1 \\
2 & -1 & -3 \\
1 & 0 & -2
\end{array}\right], \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \mathbf{b}=\left[\begin{array}{c}
-2 \\
-3 \\
-1
\end{array}\right], \mathbf{y}=\left(y_{1}, y_{2}, y_{3}\right), \mathbf{c}=(5,-3,-7)
$$

3. A system of linear equations in x_{1}, x_{2}, x_{3} has the augmented matrix $\left[\begin{array}{lll|l}1 & 0 & 1 & b \\ 1 & 1 & 0 & a \\ 1 & a & b & a\end{array}\right]$,
where a and b are real numbers. Determine values of a and b, if they exist, such that the system has:
(a) no solution;
(b) a unique solution;
(c) infinitely many solutions.

For the values of a and b that you find in part (c) above, give the general solution to the system of equations.
4. Find A^{-1} for $A=\left[\begin{array}{ccc}1 & i & 2 \\ 2 & 0 & 6 \\ -i & 1 & -i\end{array}\right]$.
5. Determine if the following set of vectors in $\mathbf{C}^{\mathbf{3}}$ is linearly independent: $\mathbf{v}_{1}=(1,0,-i), \mathbf{v}_{2}=(1+i, 1,1-2 i), \mathbf{v}_{3}=(0, i, 2)$.
6. Determine whether the following subsets W are subspaces of V :
(a) $V=M_{33}, \quad W=\left\{A \in M_{33}: A\right.$ is singular $\}$;
(b) $B \in V=M_{n n}, \quad W=\left\{A \in M_{n n}: B A B^{T}=A\right.$ for a fixed $n \times n$ matrix $B\}$.
7. Let $V=\mathbf{R}^{4}$. Consider the subspaces:
$U=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbf{R}^{4}: a_{1}+2 a_{2}+3 a_{3}=0, a_{1}+a_{2}+a_{3}+a_{4}=0\right\}$,
$W=\left\{\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \in \mathbf{R}^{4}: a_{1}+a_{4}=0, a_{2}+a_{3}=0\right\}$
(a) Find a basis for U and a basis for W.
(b) Find a basis for $U \cap W$.
8. Let $p_{1}(x)=1+x+\alpha x^{2}, p_{2}(x)=1+\alpha x+x^{2}$ and $p_{3}(x)=\alpha+x+x^{2}$ where $\alpha \in \mathbf{R}$. For what value(s) of α are p_{1}, p_{2}, p_{3} linearly independent in P_{2} ?
9. Suppose that $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ are linearly independent vectors in a vector space V.
If $\mathbf{x} \notin \operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ then prove that $\mathbf{x}+\mathbf{v}_{1}, \mathbf{x}+\mathbf{v}_{2}, \ldots, \mathbf{x}+\mathbf{v}_{n}$ are linearly independent vectors.
10. Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear operator such that
$T\left(e_{1}\right)=\left(\begin{array}{l}1 \\ 0 \\ 4\end{array}\right), T\left(e_{2}\right)=\left(\begin{array}{l}2 \\ 3 \\ 5\end{array}\right), T\left(e_{3}\right)=\left(\begin{array}{c}0 \\ -7 \\ 5\end{array}\right)$, where e_{1}, e_{2}, e_{3} are the columns of I_{3}.
Determine if T is one-to-one. Mention an appropriate theorem to justify your answer.
11. Let $T: V \rightarrow V$ be a linear operator, and let $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ be nonzero vectors such that $T\left(\mathbf{v}_{\mathbf{1}}\right)=5 \mathbf{v}_{\mathbf{2}}, T\left(\mathbf{v}_{\mathbf{2}}\right)=3 \mathbf{v}_{\mathbf{1}}$. Is the set $\left\{\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right\}$ linearly independent? Why? If not, then find the dependency between $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$.
12. Let $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$. Consider the linear transformation
$T: M_{2 \times 3}(\mathbf{R}) \rightarrow M_{2 \times 3}(\mathbf{R})$ defined by $T(X)=A X-X B$ where $X \in$ $M_{2 \times 3}(\mathbf{R})$.
(a) If $X=\left[\begin{array}{lll}x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23}\end{array}\right]$, compute $T(X)$.
(b) Find a basis for $\operatorname{Nul}(T)$. What is the dimension of the null space (also known as nullity)?
(c) Is T one-to-one? Justify.
(d) Find a basis for range (T). Is T onto? Justify.
(e) Find the matrix A representing T with respect to the basis $E_{11}, E_{12}, E_{13}, E_{21}, E_{22}, E_{23}$ of $M_{2 \times 3}$, where $E_{11}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], E_{12}=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right], \cdots, E_{23}=$ $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$.
13. Let

$$
A=\left(\begin{array}{cccccc}
1 & 1 & 1 & 0 & 0 & 0 \\
-1 & 0 & 0 & 1 & 1 & 0 \\
0 & -1 & 0 & -1 & 0 & 1 \\
0 & 0 & -1 & 0 & -1 & -1
\end{array}\right) .
$$

(a) Find the largest number of linearly independent vectors among the columns of the matrix A.
(b) Determine the rank of A and the nullity of A.
(c) Give a basis for the column space of A.
(d) Give a basis for the nullspace of A.
(e) Give a basis for the column space of A^{T} and a basis for the nullspace of A^{T}. (Hint: Use the steps from row reduction of A.)
(f) State the Rank Theorem and use the results above to confirm that it holds for both A and A^{T}.
14. Let

$$
A=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 6 & 10 \\
1 & 4 & 10 & 20
\end{array}\right), \quad \text { a Pascal Matrix. }
$$

(a) Apply row elimination to A and find the pivots and the upper triangular U. Factor this "Pascal matrix" into L times U.
(To save arithmetic, you can leave L as the product of elementary matrices. But clearly state what these elementary matrices are and the order of the product.)
(b) How do L and U and the pivots confirm that A is invertible?
(c) How can you change the entry " 20 " so as to make A singular?
15. Let W be the subspace of \mathbb{C}^{3} given by

$$
W:=\operatorname{span}\left\{\left(\begin{array}{c}
2 \\
2 i \\
4
\end{array}\right)\right\} .
$$

(a) Define the orthogonal complement of W.
(b) What is the dimension of W and what is the dimension of the orthogonal complement, W^{\perp} ?
(c) Find a basis for the orthogonal complement W^{\perp}.
(d) Find an orthonormal basis for W; and find an orthonormal basis for W^{\perp}. Denote the latter basis by Γ.
(e) Set $x=\left(\begin{array}{c}-2 \\ i \\ .5\end{array}\right)$.
i. Verify that $x \in W^{\perp}$.
ii. Find the coordinate vector $[x]_{\Gamma}$, for the basis Γ found above.
16. Consider \mathbb{P}_{1}, the vector space of all polynomials, with real coefficients, and with degree at most 1 . Define the two sets in \mathbb{P}_{1}

$$
\Gamma:=\{-9+t,-5-t\}, \quad \beta:=\{1-4 t, 3-5 t\} .
$$

(a) Define what is meant by a basis for a vector space V.
(b) Show that both Γ and β form a basis for \mathbb{P}_{1}.
(c) Let $p(t)=-14$ and $q(t)=7 t$. Find the coordinates

$$
[p(t)]_{\Gamma}, \quad[q(t)]_{\beta}
$$

Explain how the coordinates were found.
(d) Find the change of coordinate matrix from Γ to β.
(e) Find the change of coordinate matrix from β to Γ.
17. How many rows and columns must a matrix A have in order to define a mapping from \mathbb{R}^{4} into \mathbb{R}^{12}. (Recall that we define the mapping $T_{A}(v)=$ $A v$.
18. Suppose that the vector in the plane $v=\binom{x_{1}}{x_{2}}$ is given. Define the transformation T on v to be the clockwise rotation in the plane through an angle $\theta=45$ degrees, i.e. $T(v)$ is the vector in the plane obtained by rotating v clockwise 45 degrees. Similarly, define the transformation S on v to be the counter-clockwise rotation in the plane through an angle $\theta=60$ degrees, i.e. $S(v)$ is the vector in the plane obtained by rotating v counter-clockwise 60 degrees. (You can assume that both T, S are linear transformations.)
(a) Find the matrix representations A_{T}, A_{S} of T and S, respectively.
(b) What is $W(v)=S(T(v))$? Find a simpler description of the product $W=S T$; and find a matrix representation A_{W} of W.
(c) Confirm that $A_{W}=A_{S} A_{T}$.

