C\&O 463/663 Convex Optimization and Analysis (Fall 2007) Assignment 3

Due 1PM (before class), on Thursday, Nov. 8, 2007

1 Cones and Theorems of the Alternative

1. Suppose that S is a ccc, i.e. a closed convex cone. S is called pointed if $S \cap(-S)=\{0\}$. Show that: $\operatorname{int}\left(S^{+}\right) \neq \emptyset$ iff S is pointed.
2. Let T be a polyhedral cone in \mathbb{R}^{m}, and S_{i} be polyhedral cones in $\mathbb{R}^{n_{i}}, i=1,2$, where S_{1} is pointed. Let A_{i} be an $m \times n_{i}$ real matrix, $i=1,2,3$, with $\mathcal{A}_{1} \neq 0$. Show that exactly one of the following two systems is consistent:

$$
\begin{array}{ll}
A_{1} x^{1}+A_{2} x^{2}+A_{3} x^{3} \in T, \quad 0 \neq x^{1} \in S_{1}, \quad x^{2} \in S_{2} ; \\
y \in-T^{+}, & A_{1}^{\top} y \in \operatorname{int}\left(S_{1}^{+}\right), \quad A_{2}^{\top} y \in S_{2}^{+}, \quad A_{3}^{\top} y=0 . \tag{II}
\end{array}
$$

(Hint: First show that they cannot both have a solution. Then assume that (I) is inconsistent and apply Farkas Lemma.)
3. Conclude from Item 1 that exactly one of the following two systems is consistent:
(I) $\quad A_{1} x^{1}+A_{2} x^{2}+A_{3} x^{3}=0, \quad 0 \neq x^{1} \geq 0, \quad x^{2} \geq 0 ;$

$$
\begin{equation*}
A_{1}^{\top} y>0, \quad A_{2}^{\top} y \geq 0, \quad A_{3}^{\top} y=0 . \tag{II}
\end{equation*}
$$

2 Normal Cones and Subdifferentials

1. (Normals to Epigraphs) For a function $f: \mathbb{E} \rightarrow(-\infty,+\infty]$ and a point $\bar{x} \in \operatorname{int}(\operatorname{dom} f)$, calculate the normal cone $\mathrm{N}_{\text {epi }} f(\bar{x}, f(\bar{x}))$.
2. (Chain Rules) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a convex function.
(a) Let \mathcal{A} be an $\mathfrak{n} \times \mathfrak{m}$ matrix. Show that the subdifferential of $F(x):=f(A x)$ is given by

$$
\partial F(x)=A^{\top} \partial f(A x) .
$$

(b) Let $\mathrm{g}: \mathbb{R} \rightarrow \mathbb{R}$ be a smooth scalar function. Show that the function $\mathrm{F}(\mathrm{x}):=\mathrm{g}(\mathrm{f}(\mathrm{x}))$ is directionally differentiable at all x, and its directional derivative is given by

$$
F^{\prime}(x ; d)=\nabla g(f(x)) f^{\prime}(x ; d), \quad \forall x, d .
$$

Furthermore, if g is convex and monotonically nondecreasing, then F is convex and its subdifferential is given by

$$
\partial F(x)=\nabla g(f(x)) \partial f(x), \quad \forall x .
$$

(c) (BONUS QUESTION/OPTIONAL:) Let $f: \mathbb{E} \rightarrow \mathbb{R}$ be proper and convex and let $\mathbb{A}: \mathbb{Y} \rightarrow \mathbb{E}$ be a linear transformation. Show that

$$
\partial(f \circ \mathbb{A})(x) \supset \mathbb{A}^{\mathrm{adj}} \partial(\mathbb{A} x), \quad \forall \mathbb{A} x \in \operatorname{dom}(f)
$$

and equality holds if $\operatorname{int}(\operatorname{dom} f) \cap \mathbb{A}(\mathbb{Y}) \neq \emptyset$.

