C&O 463/663 Convex Optimization and Analysis (Fall 2007) Assignment 2

Due 1PM (before class), on Tuesday, Oct. 23, 2007

1 Convex, Gauge and Support Functions

- 1. Suppose that the function $f : E \to (-\infty, +\infty]$ is essentially strictly convex. Prove that all distinct points x, y in E satisfy $\partial f(x) \cap \partial f(y) = \emptyset$. Deduce that f has at most one minimizer.
- 2. For real p > 1, define q by $\frac{1}{p} + \frac{1}{q} = 1$ and for $x \in \mathfrak{R}^n$ define $\|x\|_p = (\sum_{1}^n |x_i|^p)^{1/p}$.
 - (a) Prove $\frac{1}{p} \|x\|_p^p$ is a convex function and deduce the set $B_p = \{x : \|x\|_p \le 1\}$ is convex.
 - (b) Prove the gauge function $\gamma_{B_p}(\cdot)$ is exactly $\|\cdot\|_p$, and deduce $\|\cdot\|_p$ is convex.
 - (c) Use the Fenchel-Young inequality to prove that any vectors x,φ in \mathfrak{R}^n satisfy the inequality

$$\frac{1}{p} \|x\|_p^p + \frac{1}{q} \|\varphi\|_q^q \ge \langle \varphi, x \rangle.$$

- 3. Suppose that C, D are closed convex sets in E. Show that C = D if and only if their support functions are equal, $\sigma_C = \sigma_B$.
- 4. Show that: $\sigma_B = \sigma_{\text{conv }B}$; $\sigma_{A+B} = \sigma_A + \sigma_B$; $\sigma_{A\cup B} = \max\{\sigma_A, \sigma_B\}$.

2 Recession and Normal Cones

1. Suppose that $S \subset \mathsf{E}$ is nonempty, closed, and convex. Define the recession cone of S to be

$$0^+S := \{ d \in E : x + td \in S, \forall x \in S, \forall t \ge 0 \}$$

- (a) Prove that $d \in 0^+S$ iff $\exists x \in S$ s.t. $x + td \in S$, $\forall t \ge 0$.
- (b) Prove that 0^+ relint $(S) = 0^+$ cl(S), i.e. the recession cones of the relative interior and the closure are equal.
- 2. (a) Prove that the normal cone is a closed convex cone.
 - (b) Compute the normal cone $N_C(\bar{x})$ for points \bar{x} in the sets: C = B the unit ball; C a closed halfspace.