C\&O 463/663 Convex Optimization and Analysis (Fall 2007)
 Assignment 2

Due 1PM (before class), on Tuesday, Oct. 23, 2007

1 Convex, Gauge and Support Functions

1. Suppose that the function $f: E \rightarrow(-\infty,+\infty]$ is essentially strictly convex. Prove that all distinct points x, y in E satisfy $\partial f(x) \cap \partial f(y)=\emptyset$. Deduce that f has at most one minimizer.
2. For real $p>1$, define q by $\frac{1}{p}+\frac{1}{q}=1$ and for $x \in \mathfrak{R}^{n}$ define $\|x\|_{p}=\left(\sum_{1}^{n}\left|x_{i}\right|^{p}\right)^{1 / p}$.
(a) Prove $\frac{1}{p}\|x\|_{p}^{p}$ is a convex function and deduce the set $B_{p}=\left\{x:\|x\|_{p} \leq 1\right\}$ is convex.
(b) Prove the gauge function $\gamma_{B_{\mathfrak{p}}}(\cdot)$ is exactly $\|\cdot\|_{\mathfrak{p}}$, and deduce $\|\cdot\|_{\mathfrak{p}}$ is convex.
(c) Use the Fenchel-Young inequality to prove that any vectors χ, ϕ in \Re^{n} satisfy the inequality

$$
\frac{1}{\mathrm{p}}\|x\|_{\mathrm{p}}^{\mathrm{p}}+\frac{1}{\mathrm{q}}\|\phi\|_{\mathrm{q}}^{\mathrm{q}} \geq\langle\phi, x\rangle
$$

3. Suppose that C, D are closed convex sets in E. Show that $C=D$ if and only if their support functions are equal, $\sigma_{C}=\sigma_{B}$.
4. Show that: $\sigma_{B}=\sigma_{\text {conv } B} ; \sigma_{A+B}=\sigma_{A}+\sigma_{B} ; \sigma_{A \cup B}=\max \left\{\sigma_{A}, \sigma_{B}\right\}$.

2 Recession and Normal Cones

1. Suppose that $S \subset E$ is nonempty, closed, and convex. Define the recession cone of S to be

$$
0^{+} S:=\{d \in E: x+t d \in S, \forall x \in S, \forall t \geq 0\}
$$

(a) Prove that $\mathrm{d} \in 0^{+} S$ iff $\exists x \in S$ s.t. $x+t d \in S, \forall t \geq 0$.
(b) Prove that 0^{+}relint $(S)=0^{+} \mathrm{cl}(S)$, i.e. the recession cones of the relative interior and the closure are equal.
2. (a) Prove that the normal cone is a closed convex cone.
(b) Compute the normal cone $\mathrm{N}_{\mathrm{C}}(\overline{\mathrm{x}})$ for points $\bar{\chi}$ in the sets: $\mathrm{C}=\mathrm{B}$ the unit ball; C a closed halfspace.

