C\&O 463/663 Convex Optimization and Analysis (Fall 2007) Assignment 1

Due 1PM (before class), on Thursday, Oct. 4, 2007

1 Convex Sets

1. Let \mathbb{E} be a Euclidean space and $S \subset \mathbb{E}$.
(a) Show that S is convex if and only if its intersection with any line is convex.
(b) Show that S is affine if and only if its intersection with any line is affine.
2. (Solution set of a quadratic inequality.) Let $C \subset \mathbb{R}^{n}$ be the solution set of a quadratic inequality,

$$
\mathrm{C}=\left\{x \in \mathbb{R}^{n}: x^{\top} A x+\mathrm{b}^{\top} x+\mathrm{c} \leq 0\right\}
$$

where $A \in \mathcal{S}^{n}$, the space of $\mathfrak{n} \times \mathfrak{n}$ real, symmetric matrices, $b \in \mathbb{R}^{n}$, and $c \in \mathbb{R}$.
(a) Show that C is convex if $A \succeq 0$, i.e. is positive semidefinite.
(b) Show that the intersection of C and the hyperplane defined by $g^{\top} x+h=0$ (where $g \neq 0)$ is convex if $A+\lambda g g^{\top} \succeq 0$ for some $\lambda \in \mathbb{R}$.
(c) (Hyperbolic sets. Show that the hyperbolic set $\left\{x \in \mathbb{R}_{+}^{2}: x_{1} x_{2} \geq 1\right\}$ is convex. As a generalization, show that $\left\{x \in \mathbb{R}_{+}^{n}: \prod_{i=1}^{n} x_{i} \geq 1\right\}$ is convex. Hint: If $a, b \geq 0$ and $0 \leq \theta \leq 1$, then $a^{\theta} b^{1-\theta} \leq \theta a+(1-\theta) b$.
3. (Converse supporting hyperplane theorem) Suppose that the set $C \subset \mathbb{E}$ is closed, has nonempty interior, and has a supporting hyperplane at every point in its boundary. Show that C is convex.
4. (Polar Cones) The nonnegative polar of a set $\mathrm{K} \subset \mathbb{E}$ is $\mathrm{K}^{+}=\{\phi:\langle\phi, \mathrm{k}\rangle \geq 0, \forall \mathrm{k} \in \mathrm{K}\}$. Show that the set K is a closed convex cone if and only if $\mathrm{K}^{++}=\mathrm{K}$. (Here, the second polar $\mathrm{K}^{++}=\left(\mathrm{K}^{+}\right)^{+}$.)

2 Convex Functions

1. (Epigraphs.) When is the epigraph of a function a:
(a) halfspace?
(b) convex cone?
(c) polyhedron?
2. (Convex hull or envelope of a function) The convex hull or convex envelope of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is defined as

$$
g(x)=\inf \{t:(x, t) \in \text { conv epi } f\}
$$

Geometrically, the epigraph of g is the convex hull of the epigraph of f. Show that g is the largest convex understimator of f. In other words, show that if h is convex and satisfies $h(x) \leq f(x)$ for all x, then $h(x) \leq g(x)$ for all x.

3 Conjugate Functions

1. Derive the conjugates of the following functions.
(a) (Max function.) $f(x)=\max _{i=1, \ldots, n} x_{i}$ on \mathbb{R}^{n}.
(b) (Sum of largest elements.) $f(x)=\sum_{i=1}^{r} x_{[i]}$ on \mathbb{R}^{n}, where $x_{[i]}$ refers to the vector x sorted in nondecreasing order.
(c) (Largest eigenvalue.) $f(X)=\max _{i=1}^{n} \lambda_{i}(X)$, where $\lambda_{i}(X)$ denotes the i-th largest eigenvalue of $\mathrm{X} \in \mathcal{S}^{n}$.

4 Geometric Programming

1. Express the following problems as convex optimization problems.
(a)

$$
\min _{x}\{\max \{p(x), q(x)\}\},
$$

where p, q are posynomials.
(b)

$$
\min _{x} \exp (p(x))+\exp (q(x))
$$

where p, q are posynomials.
(c)

$$
\min _{r(x)>q(x)} \frac{p(x)}{r(x)-q(x)},
$$

where p, q are posynomials, and r is a monomial.

