C&O 463/663 Convex Optimization and Analysis (Fall 2007) Assignment 1

Due 1PM (before class), on Thursday, Oct. 4, 2007

1 Convex Sets

- 1. Let \mathbb{E} be a Euclidean space and $S \subset \mathbb{E}$.
 - (a) Show that S is convex if and only if its intersection with any line is convex.
 - (b) Show that S is affine if and only if its intersection with any line is affine.
- 2. (Solution set of a quadratic inequality.) Let $C \subset \mathbb{R}^n$ be the solution set of a quadratic inequality,

$$C = \{x \in \mathbb{R}^n : x^T A x + b^T x + c \le 0\},\$$

where $A \in S^n$, the space of $n \times n$ real, symmetric matrices, $b \in \mathbb{R}^n$, and $c \in \mathbb{R}$.

- (a) Show that C is convex if $A \succeq 0$, i.e. is positive semidefinite.
- (b) Show that the intersection of C and the hyperplane defined by $g^T x + h = 0$ (where $g \neq 0$) is convex if $A + \lambda g g^T \succeq 0$ for some $\lambda \in \mathbb{R}$.
- (c) (Hyperbolic sets. Show that the hyperbolic set $\{x \in \mathbb{R}^2_+ : x_1x_2 \ge 1\}$ is convex. As a generalization, show that $\{x \in \mathbb{R}^n_+ : \prod_{i=1}^n x_i \ge 1\}$ is convex. Hint: If $a, b \ge 0$ and $0 \le \theta \le 1$, then $a^{\theta}b^{1-\theta} \le \theta a + (1-\theta)b$.
- 3. (Converse supporting hyperplane theorem) Suppose that the set $C \subset \mathbb{E}$ is closed, has nonempty interior, and has a supporting hyperplane at every point in its boundary. Show that C is convex.
- 4. (Polar Cones) The nonnegative polar of a set $K \subset \mathbb{E}$ is $K^+ = \{ \varphi : \langle \varphi, k \rangle \ge 0, \forall k \in K \}$. Show that the set K is a closed convex cone if and only if $K^{++} = K$. (Here, the second polar $K^{++} = (K^+)^+$.)

2 Convex Functions

- 1. (Epigraphs.) When is the epigraph of a function a:
 - (a) halfspace?
 - (b) convex cone?
 - (c) polyhedron?

2. (Convex hull or envelope of a function) The convex hull or convex envelope of a function $f : \mathbb{R}^n \to \mathbb{R}$ is defined as

 $g(x) = \inf\{t : (x, t) \in \operatorname{conv} \operatorname{epi} f\}.$

Geometrically, the epigraph of g is the convex hull of the epigraph of f. Show that g is the largest convex understimator of f. In other words, show that if h is convex and satisfies $h(x) \leq f(x)$ for all x, then $h(x) \leq g(x)$ for all x.

3 Conjugate Functions

1. Derive the conjugates of the following functions.

- (a) (Max function.) $f(\mathbf{x}) = \max_{i=1,\dots,n} \mathbf{x}_i$ on \mathbb{R}^n .
- (b) (Sum of largest elements.) $f(x) = \sum_{i=1}^{r} x_{[i]}$ on \mathbb{R}^{n} , where $x_{[i]}$ refers to the vector x sorted in nondecreasing order.
- (c) (Largest eigenvalue.) $f(X) = \max_{i=1}^{n} \lambda_i(X)$, where $\lambda_i(X)$ denotes the i-th largest eigenvalue of $X \in S^n$.

4 Geometric Programming

1. Express the following problems as convex optimization problems.

(a)

$$\min_{\mathbf{x}} \left\{ \max\{p(\mathbf{x}), q(\mathbf{x})\} \right\},\$$

where p, q are posynomials.

(b)

$$\min_{x} \exp\left(p(x)\right) + \exp\left(q(x)\right),$$

where p, q are posynomials.

(c)

$$\min_{r(x)>q(x)}\frac{p(x)}{r(x)-q(x)},$$

where p, q are posynomials, and r is a monomial.