Q1

Find the minimum polynomial of A, and thus determine whether or not A is diagonalisable.

$$A = \left[\begin{array}{cccc} 3 & 4 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 1 \end{array} \right].$$

Q2

Find the minimum polynomials of A and B (a and b are real numbers)

$$A = \left[\begin{array}{cc} 2 & a \\ 0 & 2 \end{array} \right], \qquad B = \left[\begin{array}{ccc} 3 & a & 0 \\ 0 & 3 & b \\ 0 & 0 & 3 \end{array} \right]$$

Q3

Let A be a real $n \times n$ matrix and suppose $A^2 = A$.

- (i) Assuming that $A \neq I_n$ and $A \neq 0_n$, find the minimum polynomial of A.
 - (ii) Prove that A is not invertible.
 - (iii) Prove that A is diagonalisable.
 - (iv) What are the possible choices for the characteristic polynomial of A? Q4

Show that A and B have different characteristic polynomials, but have the same minimum polynomial.

$$A = \left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{array} \right], \qquad B = \left[\begin{array}{ccc} 2 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 0 & 1 \end{array} \right].$$