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AbstractSemide�nite programming, SDP, is an extension of linear programming, LP, wherethe nonnegativity constraints are replaced by positive semide�niteness constraintson matrix variables. SDP has proven successful in obtaining tight relaxations forNP -hard combinatorial optimization problems of simple structure such as the max-cut and graph bisection problems. In this work, we try to solve more complicatedcombinatorial problems such as the quadratic assignment, general graph partition-ing and set partitioning problems.A tight SDP relaxation can be obtained by exploiting the geometrical structureof the convex hull of the feasible points of the original combinatorial problem. Theanalysis of the structure enables us to �nd the so-called \minimal face" and \gang-ster operator" of the SDP. This plays a signi�cant role in simplifying the problemand enables us to derive a uni�ed SDP relaxation for the three di�erent problems.We develop an e�cient \partial infeasible" primal-dual interior-point algorithm byusing a conjugate gradient method and by taking advantage of the special datastructure of our relaxation. Numerical tests show that the approximations givenby our approach are of high quality.Future work for solving a large sparse problem with our approach is also dis-cussed for each of the applications. In particular, for a large sparse set partitioningproblem, we propose an approach combining a mixed LP-SDP relaxation with ma-trix decomposition techniques. iv
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Chapter 1Introduction and Notation1.1 IntroductionSemide�nite programming, SDP, is an extension of linear programming, LP, wherethe nonnegativity constraints are replaced by positive semide�niteness constraintson matrix variables. It possesses almost as simple and almost as nice a structureas LP does. SDP not only can approximate more problems than LP does butalso can provide better approximations. Moreover, through SDP, a lot of powerfultools developed in continuous optimization, such as interior-point methods, can beapplied to tackle many hard discrete optimization problems.SDP has recently been active in many mathematical and engineering researchareas such as control, min-max eigenvalue problems and combinatorial optimizationproblems, see e.g. Alizadeh [ALI95, ALI92] and Vandenberghe and Boyd [VB96].In those research activities, SDP has already shown its potential as a very pow-erful tool. In particular, SDP has proven successful in obtaining tight relaxationsfor NP -hard combinatorial optimization problems of simple structure such as the1



2max-cut and graph bisection problems. These relaxations can be obtained fromtheir corresponding quadratically constrained quadratic programming formulationthrough their Lagrangian dual, see e.g. [PRW95]. However, for a hard combina-torial problem with sophisticated structure, how to �nd a tight SDP relaxation isstill an open question. In this work, we try to present a uni�ed SDP approach forsolving more complicated combinatorial problems such as the quadratic assignmentproblem, general graph partitioning problems and set partitioning problems.The quadratic assignment problem, general graph partitioning problem and setpartitioning problem, denoted QAP, GP and SP, respectively, have all been exten-sively investigated because of their special structures and their numerous practicalapplications. Since they are all well-known as NP-hard problems (see e.g. [GJ79]),the current popular approaches are focused on �nding a \near optimal" solutionby solving a relaxation problem for each of them. Therefore, to �nd a tight relax-ation for each of these problems is essential for �nding high quality \near optimal"solutions.Although the QAP, GP and SP do not look alike, they do have some com-mon structure. They all can be formulated so that their constraints look like thefollowing. a11x1 + : : :+ a1nxn = 1... ...am1x1 + : : :+ amnxn = 1;where each aij is either 0 or 1 and x = (x1; : : : ; xn)t is a 0-1 vector. We call theabove constraints the assignment constraints. This common structure turns out tobe essential in developing an SDP framework to solve QAP, GP and SP.Our work in this thesis serves two purposes:



3� use semide�nite programming relaxations to obtain better lower bounds andhigh quality approximate solutions in order to solve QAP, GP and SP.� try to develop a uni�ed way of applying SDP to tackle hard combinatorialoptimization problems having similar structure to QAP, GP and SP.The structure of the thesis is as follows.In the second part of Chapter 1, we introduce some notation which will be usedthroughout this thesis.In Chapter 2 we introduce semide�nite programming. We will describe brie
ythe geometry of the feasible set of SDP and duality theory. We will demonstratean SDP relaxation procedure for general quadratically constrained quadratic pro-gramming problems.In Chapter 3, we develop an SDP relaxation for the quadratic assignment prob-lem by exploiting the geometrical structure and using the Gangster operator. Tosolve the large SDP relaxation, a truncated conjugate gradient method is triedwhen implementing a primal-dual interior-point algorithm.In Chapter 4, we develop an SDP relaxation for GP by following almost thesame procedure as for QAP. As a byproduct, the SDP relaxation is almost thesame as for the QAP. Therefore, it is solved by the same methods. Numerical testsare run for both unweighted and weighted graphs.In Chapter 5, we develop an SDP relaxation for SP. Again we follow almost thesame procedure as for QAP. Numerical tests are run by using the same algorithmfor QAP. For large sparse SP with block structure, a mixed LP-SDP relaxationapproach is proposed. Preliminary numerical tests are run by using an infeasibleprimal-dual interior-point algorithm.



4In the last chapter, we will give our summary and discussion about future work.1.2 NotationIn this section, we give some notations and terminologies which will be used through-out the thesis.We work with the space of real n�n symmetric matrices, denoted Sn , with thetrace inner product hA;Bi := traceAB: The dimension of the matrices is assumedto be n, unless otherwise noted.Suppose J � f(i; j) : 1 � i � j � ng. The subspace of n � n symmetricmatrices with nonzero index set J is denoted SJ , i.e.,SJ := fX 2 Sn : Xij = 0 if both (i; j) and (j; i) 62 Jg :The set of n � n positive semide�nite matrices, denoted Pn , forms a closedconvex cone, which is self-polar, i.e., the polar cone.P+n := fK = K t : traceKP � 0; 8P 2 Png = Pn:The space Sn is endowed with the L�owner partial order, i.e. A � (resp. �) Bdenotes A � B is positive de�nite (resp. positive semide�nite). (Similarly for �and �)For a matrix Q 2 S , Q? is de�ned as followsQ? := fX 2 S : trace (XQ) = 0g:For v 2 <n; Diag(v) denotes the diagonal matrix formed from the vector v .Conversely, for a matrix M , diag (M), with lower case d, denotes the column vectorformed from the diagonal of M .



5For an n �m matrix X , vec (X) denotes the nm� 1 vector formed from thecolumns of the matrix X , while Mat (x) denotes the n�m matrix reshaped froman nm� 1 vector x.For a vector v = (v1; : : : ; vn)t 2 <n , let vp:q 2 <q�p+1 denote the (q� p+1)� 1vector (vp; : : : ; vq)t . v > 0 denotes that vi > 0 for i = 1; : : : ; n.For a matrix M , M:j denotes its j th column.The vector en 2 <n denotes the vector of ones, while e is a vector of ones whenthere is no ambiguity. The vector ui is the i-th unit vector; and Eij = uiutj + ujuti .En is a n�n matrix with all its entries being equal to one. In is a n�n identicalmatrix. We use E and I when there is no ambiguity.R(M); N (M) denote range space and null space of M , respectively. For asquare matrix M , det(M) denotes the determinant. For two m � n matricesM;N , the Hadamard product, or entry-wise product, is denoted M � N . For twom�n matrices M;N , the Kronecker product, or tensor product, is denoted M
N .For a linear operator A : <n ! <m , the adjoint operator of A, denoted A� ,is a linear operator mapping from <m to <n such that for any x 2 <n and anyy 2 <m , hA(x); yi = hx;A�(y)i:The arrow operator, acting on an n� n matrix Y , is de�ned byarrow (Y ) := (diag (Y ))1:n � Y1:n;0;where Y1:n;0 is the n� 1 vector formed from the last n components of the �rst, or0th column of Y . The operator GJ : Sn ! Sn with its range R(GJ) = SJ is calledthe Gangster operator. It \shoots" holes or zeros in a given matrix, i.e., given a set



6J � f(i; j) : i � j 2 f1; : : : ; ngg and a matrix Y 2 Sn asY = 2666664 y11 : : : y1n... . . . ...yn1 : : : ynn 3777775 ;the operator GJ(Y ) satis�es(GJ(Y ))ij := 8><>: yij if (i; j) or (j; i) 2 J0 otherwise:The gangster operator is self-adjoint, i.e.,GJ = G�J :(See e.g [FLE95] for its application on large sparse quasi-Newton method. Thename of the gangster operator was introduced in [TOI77].)



Chapter 2Semide�nite Programming2.1 IntroductionSemide�nite programming can be a very powerful tool for several di�erent applica-tions: e.g. min-max eigenvalue problem [RVW95]; trust region problems [RW95b];control problems [VB93] and hard combinatorial optimization problems [ALI95].In this chapter, we will �rst present some state of the art results on the theoryand algorithms for SDP. We will present the duality theory and the primal-dualinterior-point framework for SDP, which resembles that for linear programming.In order to have a deeper insight into SDP, we will have a look at the geometricalstructure such as faces and dimensions of feasible sets. Again we will see the sim-ilarity between the SDP feasible sets and polyhedra. Then we will discuss how toderive an SDP relaxation for the general quadratically constrained quadratic pro-gramming problem. We will see how an SDP relaxation, generated by Lagrangiandual relaxation and homogenization, yields a lower bound.7



82.2 Duality Theory and Interior Point MethodsA semide�nite programming problem has the following form(P ) max traceCXs.t. A(X) = aB(X) � bX � 0;where both A : Sn ! <p and B : Sn ! <q are linear operators. The dual problemof (P ) is (D) min aty + btts.t. A�(y) + B�(t) � Cy 2 <p t 2 <q+;where A� and B� are the adjoint operators of A and B , respectively. The linearoperators A and B acting on X 2 Sn can be expressed explicitly by the followingtwo vectors, respectively. A(X) = 0BBBBB@ trace (A1X)...trace (ApX) 1CCCCCA (2.2.0)and B(X) = 0BBBBB@ trace (B1X)...trace (BqX) 1CCCCCA ; (2.2.1)where Ai 2 Sn for i = 1; : : : ; p can be constructed using A(Eij), while similarlyfor Bi 2 Sn for for i = 1; : : : ; q .De�nition 2.1 1. Problem (P ) is called strictly feasible if there exists a feasiblepoint X̂ such that X̂ � 0 and B(X̂) < 0;



92. Problem (D) is called strictly feasible if there exists a feasible point ŷ and t̂such that A�(ŷ) + B�(t̂) � C and t̂ > 0.The following theorem characterizes the duality of SDP. For a general theoremfor cone-LP's and its proof, see e.g. [WOL81].Theorem 2.1 Let (P ) or (D) be strictly feasible. Then:(a) Let X and (y; t) be feasible solutions of (P ) and (D), respectively. ThentraceCX � aty + btt.(b) If one of the problems is infeasible, then the other is infeasible or unbounded.(c) Let both (P ) and (D) be feasible, then their optimal values are equal. Fur-thermore, the dual (primal) optimal solution is attained if the primal problem(P ) (the dual problem (D)) is strictly feasible.(d) Let X and (y; t) be feasible solutions of (P ) and (D), respectively. Then Xand (yt; tt)t are optimal if and only ifduality gap := tt(b� B(X)) + trace ((A�(y) + B�(t)� C)X) = 0;or equivalently, if and only ifti(B(X)� b)i = 0;8i; and (A�(y) + B�(t)� C)X = 0:The following example shows that if the primal problem is not strictly feasible, thenthe dual may not attain its optimal solution.



10Example 2.2.1 Consider the SDP pairmin 2X12s.t. Diag (X) = 0B@ 01 1CAX � 0; max y2s.t. 264 y1 00 y2 375 � 264 0 11 0 375 :The Slater condition holds for the dual but not for the primal. The optimal valuefor both is zero. The primal is attained, but the dual is not.Based on the above optimality condition for SDP, we now outline an infeasibleprimal-dual interior-point approach for solving the above primal-dual pair (P ) and(D). This approach is introduced in [HRVW96]. Because of examples like Example2.2.1, we need to make the following assumption:both the primal problem (P) and the dual problem (D) are strictly feasible.We introduce a slack variable Z � 0 for the dual constraint such thatA�(y) + B�(t)� C � Z = 0:Then the log-barrier problem for the dual problem (D) can be described as follows:min aty + btt� �(log detZ +Pqi=1 log ti)s:t: A�(y) + B�(t)� Z = Ct � 0; Z � 0:Here � is a positive real number called the barrier parameter. For each � > 0,there is a corresponding Lagrangian:L�(X; y; t; Z) = aty + btt� �(log detZ +Pqi=1 log ti)�trace ((A�(y) + B�(t)� Z �C)X):



11The stationary point of the Lagrangian yields the following optimality conditionsfor the log-barrier problem.Fp := A(X) � a = 0Fd := A�(y) + B�(t)� C � Z = 0FtB := t � (b� B(X))� �e = 0FZX := ZX � �I = 0X � 0; Z � 0; t > 0; (2.2.2)where the 4th equation is modi�ed from X � �Z�1 = 0. The strict concavityof log detZ and log ti implies that there exists a unique solution to the optimal-ity conditions for each � > 0. Denote the unique point corresponding to � as(X(�); y(�); t(�); Z(�)). The set of such points for each � > 0f(X(�); y(�); t(�); Z(�)) : � > 0gde�nes a smooth curve which is called the central path. The central path plays avital role in primal-dual interior-point methods. It has been found to be bene�cialthat the iterate points stay within a neighborhood of the central path. By doing so,robustness in convergence can be expected. For each point (X; y; t; Z) on the centralpath, it is easy to determine its associated � value using the last two equations ofthe optimality conditions:� = trace (ZX)n = tt(b� B(X))q = trace (ZX) + tt(b�B(X))n+ q : (2.2.3)(Note: trace (ZX) + tt(b � B(X)) is just the duality gap.) We will use (2.2.3) tode�ne the associated � value for a point (X; y; t; Z) even when it is not on thecentral path. The interior-point algorithm is the following. We start with a point(X; y; t; Z) which satis�es X � 0, Z � 0, t > 0 and b � B(X) > 0. We estimateits associated � value and divide it by two:� = trace (ZX) + tt(b� B(X))2(n + q) :



12(Note: this simple heuristic performs very well in practice, even though it doesnot guarantee monotonic decrease in �, see [VC93].) We attempt to �nd steps(�X; �y; �t; �Z) such that the new point (X + �X; y + �y; t+ �t; Z + �Z) becomesclose to the point (X(�); y(�); t(�); Z(�)) on the central path at this value of �.We can �nd such a step with a variant of Newton's method in the following way.In order to apply operators A and B to nonsymmetric matrices, we extend theirde�nition. For any nonsymmetric square matrix M , letA(M) := 12A(M +M t)and B(M) := 12B(M +M t):From the de�nitions of (2.2.0) and (2.2.1) and the fact that for A 2 Sntrace (AX) = trace (AX t) = trace 12 �A(X +X t)� ;the above de�nitions are well de�ned. We linearize the system (2.2.2) by the fol-lowing system of equationsA(�X) = �FpA�(�y) + B�(�t)� �Z = �Fd�t � (b� B(X))� t � B(�X) = �FtBZ(�X) + (�Z)X = �FZX: (2.2.4)This linear system, where �X , �Z are symmetric, may be inconsistent. By solvingfor �Z using the second equation, we have�Z = Fd +A�(�y) + B�(�t); (2.2.5)which is symmetric. Then we solve for �X using the 4th equation in (2.2.4) andthe de�nition of FZX from (2.2.2). We get�X = �Z�1 �X � Z�1FdX � Z�1(A�(�y) + B�(�t))X: (2.2.6)



13Evidently, �X is not symmetric in general. By substituting the above expressionfor �X into the �rst and the third equation of the linear system (2.2.4), we obtainthe following linear system for (�y; �t), called the normal equations.A(Z�1FdX � Z�1(A�(�y) + B�(�t))X) = A(�Z�1 �X � Z�1FdX) + Fpt � B(Z�1FdX � Z�1(A�(�y) + B�(�t))X)+�t � (b� B(X)) = t � B(�Z�1 �X � Z�1FdX)� FZX :(2.2.7)We solve the normal equations for (�y; �t). Then, by substituting (�y; �t) into(2.2.5) and (2.2.6), we have �Z and �X . Finally, we let�X  �X + �X t2to symmetrize �X . As we have seen, we always symmetrize �X in order to updateX . Hence, the symmetrized �X may no longer be a Newton direction. However,it is still a descent direction for the objective as shown in [HRVW96]. This isthe reason we call this method a variant of Newton's method. This nonsymmetryissue has also been dealt with by other people, see e.g. Kojima et al. [KSH94],Monteiro [MON95], Zhang [ZHA95], Alizadeh et al. [AHO94] and Nesterov et al.[NT94, NT95].The last part of the algorithm is the line search. To measure the progress of thealgorithm, we use the convex merit functionf�(X; y; t; Z) = trace (ZX)� � log det(ZX)+tt(b� B(X))� �et log(t � (b�B(X)))+12kFpk2 + 12kFdk2: (2.2.8)To guarantee global convergence of the algorithm, the key conditions given in[HRVW96] state that the step size � should be such that the following Goldstein-



14Armijo conditions are satis�ed.�1� �����@f�@s �s����� � f�(s)� f�(s+ ��s) � �2� �����@f�@s �s����� ; (2.2.9)where 0 < �1 < �2 < 1, s := (X; y; t; Z) and �s := (�X; �y; �t; �Z). Because of thisresult, a line search method was developed in [HRVW96]. This line search methodhas been used successfully in solving the SDP relaxation for the max-cut problemand the min-max eigenvalue problems, see [HRVW96]. We demonstrate this linesearch method by �nding the primal step �p in the following.step 0: set �p := 1;step 1: if b� B(X + �p�X) > 0 and X + �p�X � 0, stop. Otherwise, go to step 2;step 2: repeat �p 0:8�p until both b�B(X + �p�X) > 0 and X + �p�X � 0 aresatis�ed. go to step 3;step 3: �p 0:95�p . (to make sure the next point is not too close to the boundary.)Similarly, we can �nd the dual step size �d .After we �nd the constants �p and �d , we step to the new pointX + �p�Xy + �d�yt+ �d�tZ + �d�Z:We repeat the same procedure as above until some stopping criterion is satis�ed.A stopping criterion will be discussed in the next chapter.



152.3 Geometrical Structure of SDPNote that in the SDP problem (P ) the inequality constraints can always be changedto equality constraints by adding slack variables. Without loss generality, we rewritethe SDP problem (P ) as the following SDP problem in matrix form.max traceCXs.t. traceAiX = ai for 1 � i � mX � 0: (2.3.10)Its dual is min atys.t. Pmi=1 yiAi � Cy 2 <m: (2.3.11)The feasible set of the primal SDP (2.3.10) is de�ned asFP := fX 2 Sn : trace (AiX) = ai; for i = 1; : : : ;m; X � 0g: (2.3.12)The set FP is called an elliptope, see e.g. Laurent and Poljak [LP95].The feasible set of the dual SDP (2.3.11) is de�ned asFD := fy 2 <m : mXi=1 yiAi � Cg: (2.3.13)The set FD is called spectrahedra in e.g. [RAM93].In this section we will mainly discuss the geometrical structure of elliptopes FP ,since the geometrical structure of spectrahedra FD follows from similar arguments,see e.g. Ramana [RAM93]. The study of the facial structure of elliptopes is rela-tively new in the optimization literature. The facial structure of general convex setswas used by Borwein and Wolkowicz [BW81]. Pataki (in [PAT94a] and [PAT94b])



16discussed the facial structure of cone-LP's and SDP's. Similar work can also befound in Ramana [RAM93] and Laurent and Poljak [LP95]. An introduction to thegeneral structure of convex sets can be found in Rockafellar [ROC70].De�nition 2.2 Given a convex set G, F is a face of G ifx; y 2 G and 12(x+ y) 2 Fimply that x; y 2 F .Now we characterize the faces of the closed convex cone of n�n positive semide�nitematrices. Recall that the closed convex cone is denoted Pn .Theorem 2.2 The following statements are equivalent.(i) F is a face of Pn .(ii) There exists an orthogonal projection matrix Q,Q = Qt = Q2;such that F= Pn \ Q? .(iii) There exists an orthogonal projection matrix Q,Q = Qt = Q2;such that F = (I �Q)Pn(I �Q).Moreover, F = fX � 0 : N (X) � R(Q)g for some Q = Qt;and the relative interior of F satis�esriF = fX � 0 : N (X) = R(Q)g for some Q = Qt:



17For proof and other details, see e.g. [BC75].Now we consider the faces of elliptopes FP . The following two results arestraightforward. See e.g. Pataki [PAT96].Theorem 2.3 The set F is a face of FP if and only if there exists a face G ofPn such that F = G \ FP :Denote the dimension of a set F by dimF .Theorem 2.4 Let G be a face of Pn . Then, there exists a n�m matrix V withrank (V ) = m such that:Y 2 G if and only if there exists a matrix X 2 Pm such that Y = V XV t ;furthermore, dimG = m(m+ 1)2. Now, we discuss the extreme points and extreme rays of the elliptope FP , seee.g. Rockafellar [ROC70].De�nition 2.3 The ray Y is an extreme ray of FP if:for any rays, Y1andY2 of FP , Y = 12Y1 + 12Y2implies Y1 = �Y2 , for some � � 0.The following theorem characterizes the structure of elliptopes FP using its extremepoints and extreme rays. For a more general result see e.g. Klee [KLE57].Theorem 2.5 An elliptope FP is the Minkowski sum of convex hull of its set ofextreme points and extreme rays.



182.4 SDP Relaxation for QuadraticallyConstrained Quadratic ProgrammingConsider the following quadratically constrained quadratic programming problem�� = min xtA0x+ 2bt0x+ c0subject to xtAix+ 2btix+ ci � 0; i = 1; : : : ; pxtAix+ 2btix+ ci = 0; i = p+ 1; : : : ;m; (2.4.14)where Ai 2 Sn , bi 2 <n and ci is a scalar. The matrices Ai can be inde�nite, there-fore, problem (2.4.14) is generally a very hard, non-convex optimization problem.(Note: if matrices Ai are all positive semide�nite, problem (2.4.14) can be solvede�ciently by an interior point method. See e.g. [NN93]) A lot of hard combinato-rial optimization problems can be written in the above form. For example, a 0-1quadratic programming problem can be written in the form (2.4.14) by expressingits 0-1 variables as xi(xi� 1) = 0. The feasible set of (2.4.14) can be either a �nitediscrete set or a continuous dense set.Now we describe the Lagrangian dual approach, by which an SDP relaxationfor problem (2.4.14) can be derived.Problem (2.4.14) can be written as�� := min (1; xt)264 c0 bt0b0 A0 3750B@ 1x 1CAsubject to (1; xt)264 ci btibi Ai 3750B@ 1x 1CA � 0 i = 1; : : : ; p(1; xt)264 ci btibi Ai 3750B@ 1x 1CA = 0 i = p + 1; : : : ;m:



19We can homogenize the above problem by adding a new variable x0 such thatx20 = 1. As a result, we get the following equivalent problem�� = min (x0; xt)264 c0 bt0b0 A0 3750B@ x0x 1CAsubject to (x0; xt)264 ci btibi Ai 3750B@ x0x 1CA � 0 i = 1; : : : ; p(x0; xt)264 ci btibi Ai 3750B@ x0x 1CA = 0 i = p + 1; : : : ;m(x0; xt)264 1 00 0 3750B@ x0x 1CA � 1 = 0:From the Lagrangian of the above problem, we get the following lower bound.�� � �R := maxt; �i � 01 � i � p minx0;x (x0; xt)0B@264 c0 � t bt0b0 A0 375+ mXi=1 �i 264 ci btibi Ai 3751CA0B@ x0x 1CA + t:To prevent the above quadratic form from going to negative in�nity, the hiddenconstraint has to be satis�ed.264 c0 � t bt0b0 A0 375+ mXi=1 �i 264 ci btibi Ai 375 � 0:Therefore, we can get a lower bound for problem (2.4.14) by solving the Lagrangiandual relaxation problem�R = max tsubject to 264 c0 � t bt0b0 A0 375+Pmi=1 �i 264 ci btibi Ai 375 � 0�i � 0 for i = 1; : : : ; p: (2.4.15)



20The dual of the Lagrangian dual relaxation is thenmin trace 264 c0 bt0b0 A0 375Ysubject to Y00 = 1trace 264 ci btibi Ai 375Y � 0 i = 1; : : : ; ptrace 264 ci btibi Ai 375Y = 0 i = p+ 1; : : : ;mY � 0: (2.4.16)To justify that the problem (2.4.16) is an SDP relaxation, we letY = 0B@ x0x 1CA (x0; xt): (2.4.17)Then the above problem (2.4.16) becomes the original quadratic optimization prob-lem. Therefore, the SDP problem (2.4.16) is really a relaxation for problem (2.4.14).In other words, the SDP relaxation can be derived by the following approach calledthe direct approach.1. Find a representation for each of the original quadratic constraints for therank-one matrix 0B@ x0x 1CA (x0; xt) with x20 = 1;2. replace the rank-one matrix by an matrix Y � 0.Before we apply the Lagrangian dual approach to derive an SDP relaxation for eachof the applications, we would like to point out the following:



21� a redundant constraint for the original problem (2.4.14) may yield a non-redundant constraint for the SDP relaxation (2.4.16).This means that �nding the \right" constraints of the original problem is essential.As we will see when we move on, this can be achieved by exploiting the specialstructure for each of the applications. For a 0-1 quadratic programming problem, arecipe for deriving an SDP relaxation was given by Poljak, Rendl and Wolkowicz,see e.g. [PRW95]. Also see e.g. [FK95] for some characterization of an SDPrelaxation for nonconvex quadratic programs.



Chapter 3Quadratic Assignment Problem3.1 IntroductionThe quadratic assignment problem, QAP, can best be described by the followingproblem:We are given n facilities and n locations. There is a given amount of
ow between every pair of facilities and a given cost rate per unit 
ow(distance) between every pair of locations; and, there is a setup cost fora facility in a given location. We want to assign each facility to a uniquelocation in such a way that the total cost (sum of cost for every pair offacilities plus the sum of the setup cost) is minimized.We use aij for the 
ow between facility i and facility j , bij for the cost rateper unit 
ow between location i and location j and fij for the cost for setting up22



23facility i at location j , for all i; j 2 f1; : : : ; ng. LetA = 2666664 a11 � � � a1n... . . . ...an1 � � � ann 3777775 ;B = 2666664 b11 � � � b1n... . . . ...bn1 � � � bnn 3777775 :For convenience let cij = �0:5fij and de�neC = 2666664 c11 � � � c1n... . . . ...cn1 � � � cnn 3777775 :The diagonal elements of A and B are all zero and both A and B are symmetricmatrices. For a given assignment, let X be the permutation matrix de�ned byXij := 8><>: 1 if i assigned to j0 otherwise:Thus the j th column X:j is the indicator set for the j th location. Such an X canrepresent the assignment. For each such assignment X ,trace (AXBX t � 2CX t)gives the total cost. Therefore, the minimal total cost is obtained by solving thequadratic assignment problem in the trace formulation(QAP ) �� := minX2� trace (AXBX t � 2CX t);where � denotes the set of permutation matrices. As we can see, (QAP) is a 0-1 quadratic minimization problem. The quadratic term comes from the 
ow anddistance matrices and the linear term arises from the setup cost.



24The QAP is well known to be NP -hard and the traveling salesman problem(TSP), a well known NP -hard problem, can be formulated as QAP (see e.g.[SG76]). In practice, QAP problems larger than order n = 16 are still consideredvery hard. The Nugent test problem (see e.g. [CNR68] and [BKR91]) of dimensionn = 20 has only recently been solved (See e.g.[LPR93]). The techniques used so farare based on branch and bound methods which use bounding techniques, such asGilmore-Lawler bound [GIL62, LAW63], eigenvalue bounds [HRW92a, HRW92b]and bounds based on linear programming relaxation [AJ94] and [RRD94]. Manyheuristic techniques, such as simulated annealing, also need a lower bound to seehow good a solution is.In both the Gilmore-Lawler bound technique and the eigenvalue bound tech-nique, the quadratic term and the linear term are relaxed separated to form twodi�erent problems. The sum of the optimal values of the two relaxed problemsgives the lower bound. This is the disadvantage of these two techniques due to thefact that the sum of the minimal values of two functions is less than or equal to theminimal value of the sum of the two functions. Therefore, a further improvementof the lower bound can be expected if the quadratic and linear terms are combined.In this chapter, we describe and test a new approach based on a semide�niteprogramming relaxation. This relaxation prove to be numerically successful. In theSDP approach, the quadratic term and the linear term are treated together. Therelaxation of the linear equality constraints, corresponding to the doubly stochasticproperty of permutation matrices, implies that the primal of our SDP relaxationdoes not satisfy the Slater constraint quali�cation (strict feasibility). Althoughthere is no duality gap in theory, since the dual does satisfy the Slater constraintquali�cation, this leads to an unbounded dual optimal solution set. see Exam-ple 2.2.1. Numerical di�culties can arise when trying to implement interior-point



25methods. However, the minimal face of the semide�nite cone can be found byexploiting the structure of the barycenter of the convex hull of the permutationmatrices. Then, the primal problem can be projected onto the minimal face. This,combined with the so called Gangster operator, yields a regularized SDP of smallerdimension, which can be solved in a numerically stable way.Now we would like to present some special notations for this chapter.We use the Kronecker product, or tensor product, of two matrices, B
A, whendiscussing the quadratic assignment problem QAP. Note that the objective functionq(X) = trace (AXBX t � 2CX t) = vec (X)t(B 
A)vec(X) � 2vec (C)tvec (X):The Kronecker product gives rise to generalized notions of trace and diagonal.For any n� n matrix X , we de�ne the following (n2 + 1)� (n2 + 1) matrixYX := 264 1 vec (X)tvec (X) vec (X)vec (X)t 375 : (3.1.18)The principal-block-diagonal-operator denoted b0diag : Sn2+1 ! Sn , is de�nedby b0diag (Y ) := nXi=1 Yii;where Y is written as Y = 2666666664 Y00 Y01 : : : Y0nY10 Y11 : : : Y1n... ... . . . ...Yn0 Yn1 : : : Ynn 3777777775 ;where Y00 is a scalar, Yi0 and Y0i , for i = 1; : : : ; n, are n � 1 and 1 � n vectors,respectively, and Yij , for i; j = 1; : : : ; n, are n� n blocks of Y .



26The adjoint operator of b0diag is denoted B0DiagB0Diag : Sn ! Sn2+1and for a matrix S 2 Sn B0Diag (S) := 264 0 00 I 
 S 375 :Thus the adjoint equationtrace (Wb0diag (Y )) = trace (B0Diag (W )Y )holds for all W 2 Sn and Y 2 Sn2+1 .The o�-block-diagonal-operator denoted o0diag (Y ) : Sn2+1 ! Sn , is de�ned byo0diag (Y ) := 2666664 trace (Y11) : : : trace (Y1n)... . . . ...trace (Yn1) : : : trace (Ynn) 3777775 ;where Y is written in the same block matrix form as for the b0diag operator.The adjoint operator of o0diag is denoted O0Diag (S),O0Diag : Sn ! Sn2+1and for a matrix S 2 Sn O0Diag (S) := 264 0 00 S 
 I 375 :Thus the adjoint equationtrace (Wo0diag (Y )) = trace (O0Diag (W )Y )



27holds for all W 2 Sn and Y 2 Sn2+1 .The adjoint operator of arrow is de�ned byArrow : <n2 ! Sn2+1;and for a vector w 2 <n2Arrow (w) = 264 0 �12wt�12w Diag (w) 375 :(The name arrow comes from the pattern of nonzero elements.) Note thattrace (Arrow (w)Y ) = wtarrow (Y ):The set of matrices with row and column sums one is denotedE := fX : Xe = X te = eg = fX : kXe� ek2 + kX te� ek2 = 0g:The set of 0-1 matrices is denotedZ := fX : X2ij = Xij ; i; j = 1; : : : ; ng:The set of orthogonal matrices is denoted as O , and the set of (entrywise) non-negative matrices is denoted as N .The set of matrices for which the Hadamard product of any pair of distinct rows(and any two distinct columns) is equal to the zero vector is denotedH := fX : 8p 6= q ;XipXiq = 0;8i; and XpjXqj = 0 8jg:3.2 An SDP RelaxationIt is well known that the set of permutation matrices � can be characterized asthe intersection of Z and E and also as the intersection of O and N (see e.g.



28[HRW92a]) i.e. � = E \ Z = O \N : (3.2.19)With the introduction of the matrix set H , we have the following result.Lemma 3.1 � = E \ H .Proof. It is easy to see that � � E \H:We want to show that E \ H � �:Let X 2 E \ H:From the de�nition of E , we know that in each column or row there exists an entryXij 6= 0. Since X 2 H , we have Xip = 0 for p 6= j and Xqj = 0 for q 6= j .Therefore Xij = 1 and thus is the only nonzero entry in row i and column j , i.e.X 2 �. 2The set H will be used later. We rewrite QAP using (3.2.19).(QAPE) �� := min trace (AXBX t � 2CX t)s.t. XX t = X tX = I (X is orthogonal)Xe = X te = e (X is doubly stochastic)X2ij �Xij = 0; 8i; j: (X is 0-1)We can see that there are a lot of redundant constraints in QAPE . Surprisingly,however, the SDP relaxation of these constraints are not all redundant. This canhelp tighten the SDP relaxation. We will discuss the reason in detail for using the



29redundant constraints XX t = X tX = I below. We will also see the advantage ofusing Xe = X te = e.The constraints can now be relaxed to get an SDP relaxation of QAPE . Thiscan be done either via Lagrangian duality or directly from the QAP. We shalloutline how the Lagrangian relaxation yields an SDP relaxation of QAP. (See also[PRW95].) In the process, we also introduce several of the linear operators used inour relaxations. We change the row and column sum constraints into kXe� ek2+kX te�ek2 = 0. Consider the following equivalent formulation of the QAP problem(QAP). (QAP1) �O := min trace (AXBX t � 2CX t)s.t. XX t = IX tX = IkXe� ek2 + kX te� ek2 = 0X2ij �Xij = 0; 8i; j:As we can see from the Lagrangian dual approach described in Chapter 2.4, we willhomogenize the problem by increasing the dimension of the problem by one. We�rst add the (0,1)-constraints and equation kXe � ek2 + kX te � ek2 = 0 to theobjective function using Lagrange multipliers Wij and u0 respectively. We get�O = minXXt=XtX=ImaxW;u0 trace (AXBX t � 2CX t) +Pij Wij(X2ij �Xij)+u0(kXe� ek2 + kX te� ek2): (3.2.20)Interchanging min-max yields�O � maxW;u0 minXXt=XtX=I trace (AXBX t � 2CX t) +PijWij(X2ij �Xij)+u0(kXe� ek2 + kX te� ek2): (3.2.21)



30We now homogenize the objective function by multiplying the linear terms by aconstrained scalar x0 .�O � �R := maxW minXXt = IXtX = Ix20 = 1 trace �AXBX t+W (X �X)t + u0(kXek2 + kX tek2)�x0(2C +W )X t� � 2x0u0et(X +X t)e+ 2nu0: (3.2.22)Introducing a Lagrange multiplier w0 for the constraint on x0 and Lagrange mul-tipliers Sb for XX t = I and So for X tX = I , we get�R = maxW;Sb;So;u0;w0 minX; x0 trace �AXBX t+ u0(kXek2 + kX tek2)+W (X �X)t + w0x20 + SbXX t+ SoX tX ]�tracex0(2C +W )X t � 2x0u0et(X +X t)e�w0 � traceSb � traceSo + 2nu0: (3.2.23)We have grouped the quadratic, linear, and constant terms together. We nowde�ne x := vec (X), yt := (x0; xt) and w := vec (W ) and get�R = maxW miny yt [LQ +Arrow (w)w0E00 + B0Diag (Sb) + O0Diag (So) + u0D] y�w0 � traceSb � traceSo; (3.2.24)where we de�ne the (n2 + 1) � (n2 + 1) matrixLQ := 264 0 �vec (C)t�vec (C) B 
A 375 ; (3.2.25)and the linear operatorsArrow (w) := 264 0 �12wt�12w Diag (w) 375 ; (3.2.26)B0Diag (S) := 264 0 00 I 
 Sb 375 ; (3.2.27)



31and O0Diag (S) := 264 0 00 So 
 I 375 ; (3.2.28)and D := 264 n �et 
 et�e
 e I 
 E 375+ 264 n �et 
 et�e
 e E 
 I 375 :Note that we will refer to the additional row and column generated by thehomogenization of the problem as the 0-th row and column. By using the hiddensemide�nite constraint, i.e., the pure quadratic function is bounded below only ifthe Hessian LQ +Arrow (w)w0E00 + B0Diag (Sb) + O0Diag (So) + u0Dis positive semide�nite, we see that (3.2.24) is equivalent to(D1) max �w0 � traceSb � traceSos.t. LQ +Arrow (w)w0E00 + B0Diag (Sb) + O0Diag (So) + u0D � 0:We introduce the (n2+1)�(n2+1) dual matrix variable Y � 0 and derive the dualof the SDP problem D1 . Then, we obtain our desired SDP relaxation of QAP1 asfollows. (P1) min traceLQYs.t. b0diag (Y ) = I o0diag (Y ) = Iarrow (Y ) = 0 traceDY = 0Y00 = 1 Y � 0;where the arrow operator, b0diag and o0diag are the the adjoint operators toArrow (�), B0Diag and O0Diag , respectively; (They are de�ned in Chapter 1.2and Section 1 of this chapter) the arrow operator represents the 0-1 constraintsby guaranteeing that the diagonal and 0th column are identical; the b0diag and



32o0diag represent the orthogonality constraints; and, �nally, the norm constraintis represented by the constraint traceDY = 0. Now we can show that there isexactly one redundancy among the constraints given by the operator b0diag andthe operator o0diag .Theorem 3.1 Among the constraints given by the operator b0diag and the oper-ator o0diag there is exactly one redundant constraint. More precisely, letB := 0B@ b0diago0diag 1CA :Then dim(N (B�)) = 1;i.e. the null space of the operator B� is of dimension one.Proof. Let S; T 2 Sn be the dual variables corresponding to b0diag and o0diag ,respectively. We �rst choose S = �T = I . Then B�(S; T ) = 0. Hence, the nullspace of B� is not empty.Now let T11 = 0. We need only prove the following.B�(S; T ) = B0Diag (S) + O0Diag (T ) = 0 implies S = 0; T = 0:Since T11 = 0 andB0Diag (S) + O0Diag (T ) = 264 0 00 I 
 S 375+ 264 0 00 T 
 I 375 = 0;we have 1
 S = �T11
 I = 0;



33thus, S = 0. This implies that T = 0 as well. 2Remark: an alternative proof can be done based on the fact that if the assign-ment polytope fX : Xe = X te = e;X � 0g is expressed asfX : AX = e;X � 0g;then the linear operator A� has the property dim(N (B�)) = 1.3.3 Geometry of the Feasible SetIn this section we study the geometrical structure of the feasible set of the SDP re-laxation (P1 ). We have expressed the orthogonality constraints with both XX t = Iand X tX = I . It is interesting to note that this redundancy adds extra constraintsinto the relaxation which are not redundant. These constraints reduce the size ofthe feasible set of the relaxation and so tighten the resulting bounds. We denotethe feasible set of the SDP relaxation (P1) by F1 . Note that D 6= 0 is positivesemide�nite, therefore, to satisfy traceDY = 0, Y has to be singular, which meansthat the feasible set of the primal problem P1 is not strictly feasible. From thiswe can see that the relaxation of the redundant constraints Xe = X te = e canactually help us see the geometric structure of the feasible set. It is not di�cultto �nd an interior point for the feasible set of the dual (D1 ), which means thatSlater constraint quali�cation (strict feasibility) holds for (D1 ). Therefore (P1 ) isattained and there is no duality gap in theory for this primal-dual pair. However,since Slater constraint quali�cation for the primal fails, this is not truly a properdual pair. This is because we cannot stay exactly feasible, � 0; in the absence ofSlater condition. (See [RTW95].) Moreover, because the supremum of (D1 ) may



34never be attained, numerical instability is likely to occur. In order to overcome thisdi�culty, we need to explore the geometrical structure of F1 .It is clear that the matricesYX := 0B@ 1vec (X) 1CA (1 vec (X)t) for X 2 �are feasible points of F1 . Moreover, since these points are rank-one matrices, wesee that they are contained in the set of extreme points of F1 , see e.g. Pataki[PAT94a]. We need only to consider faces of P which contain all of these extremepoints YX for X 2 �. We want to �nd the minimal face, which is the intersectionof all these faces. The following theorem characterizes the minimal face by �ndinga point in its relative interior, namely the barycenter. This point has a very simpleand elegant structure.Theorem 3.2 Let x = vec (X). De�ne the barycenter pointŶ := 1n! XX2�n 264 1 xtx xxt 375 : (3.3.29)Then:1. Ŷ has a 1 in the (1,1) position and n diagonal n � n blocks with diagonalelements 1=n: The �rst row and column equal the diagonal. The rest of thematrix is made up of n � n blocks with all elements equal to 1=(n(n � 1))



35except for the diagonal elements which are zeros:Ŷ = 26666664 1 1n et1n e Diag ( 1n e) 1n(n�1) (E � I) � � � 1n(n�1) (E � I)� � � � � � � � � � � �� � � � � � � � � � � �� � � � � � � � � � � �1n(n�1) (E � I) � � � 1n(n�1) (E � I) Diag ( 1n e) 37777775= 0B@ 11ne 1CA (1; 1net) + 2666664 0 00 1n2(n�1)(nIn � E)
 (nIn � E) 3777775 ;2. rank (Ŷ ) = (n� 1)2 + 1;3. the n2 + 1 eigenvalues of Ŷ are given in the vector�2; 1n� 1e(n�1)2; 0; : : : ; 0�t ;4. N (Ŷ ) = nu : u 2 R(T t)o ;where the assignment constraint matrix T isT := 26666666666664 �1 et 0 � � � � � � 0�1 0 et 0 � � � 0� � � � � � � � � � � � � � � � � ��1 0 � � � � � � 0 et�e I I � � � � � � I 37777777777775 ;



365. the range of Ŷ can be expressed by the columns of the (n2+1)� ((n�1)2+1)matrix V̂ = 264 1 0e=n V 
 V 375 ; (3.3.30)where the matrix V V := 264 In�etn 375 :Furthermore, T V̂ = 0.Proof. Fix X 2 �n and letY = YX = 0B@ 1vec (X) 1CA (1 vec (X)t):Consider the entries of the 0th row of Y . Since Y0;(i�1)n+j = 1 means i is assignedto j and there are (n � 1)! such permutations, the components of the 0th row ofŶ are given by Ŷ0;(i�1)n+j = 1n! (n� 1)! = 1n:Now consider the entries of Y in the other rows, Y(p�1)n+q;(i�1)n+j .i) if p = i and q = j , then Y(p�1)n+q;(i�1)n+j = 1 means that i is assigned to jand there are (n�1)! such permutations, therefore the diagonal elements areŶ(p�1)n+q;(i�1)n+j = 1n! (n� 1)! = 1n:ii) Now suppose that p 6= i and q 6= j , i.e., the element is an o�-diagonal elementin an o�-diagonal block. then Y(p�1)n+q;(i�1)n+j = 1 means that i is assignedto j and p is assigned to q and since there are (n � 2)! such permutations,therefore Ŷ(p�1)n+q;(i�1)n+j = 1n! (n� 2)! = 1n(n � 1) :



37iii) Otherwise, suppose that p = i or q = j but not both, i.e., we consider theo�-diagonal elements of the diagonal block and the diagonal elements of theo�-diagonal blocks. By the property of permutation matrices, these elementsare all 0.This proves the representation of Ŷ in 1.Let us �nd the rank and eigenvalues of Ŷ . We partitionŶ = 264 1 1net1ne W 375 ;thus de�ning the block W . We have264 1 0� 1ne I 375 Ŷ 264 1 � 1net0 I 375 = 264 1 00 S 375 ; (3.3.31)where S = X � 1n2E . As a result, we haverank (Ŷ ) = 1 + rank (S):Direct veri�cation shows thatS = 1n2(n� 1)(nIn � E)
 (nIn �E):The eigenvalues of nIn � E are n, with multiplicity n � 1, and 0. Note thatthe eigenvalues of a Kronecker product are given by the Kronecker product ofeigenvalues. Therefore, we have that the eigenvalues of S are 1=(n � 1), withmultiplicity (n� 1)2 , and 0, with multiplicity 2n � 1. Therefore, we haverank (Ŷ ) = 1 + rank (S) = (n� 1)2 + 1:This proves 2.



38By (3.3.31), we can easily see that 1=(n � 1), with multiplicity (n � 1)2 , arealso eigenvalues of Ŷ . Also, 2 is an eigenvalue of Ŷ . Therefore, since rank (Ŷ ) =(n� 1)2 + 1, we have that the eigenvalues of Ŷ are 2, 1=(n � 1) with multiplicity(n � 1)2 , and 0 with multiplicity 2n � 1. This proves 3.Note that rank (T ) = 2n � 1 and T Ŷ = 0. Therefore, we haveN (Ŷ ) = nu : u 2 R(T t)o :This proves 4.Since rank (V̂ ) = (n � 1)2 + 1 and T V̂ = 0, the columns of V̂ span the rangespace of Ŷ . 2Remark: The structure of the assignment polytope has been well studied. Analternative proof for part 1 and part 2 can be done based on the well known factthat the dimension of the assignment polytope is (n� 1)2 .The above characterization of the barycenter enables us to �nd the minimalface of F1 that contains the feasible set of the SDP relaxation. Note that the rangespace of the barycenter Ŷ spanned by the columns of V̂ is the null space of theassignment matrix T . However, we would like to point out that this property ofQAP is not true for a general feasible set with an assignment structure. Here is acounter example.Consider the problem x1 = 1x1 +x2 +x3 +x4 = 1x1; x2; x3; x4 � 0:As we can see its only solution is (1; 0; 0; 0)t , hence, its barycenter is a rank-onematrix. However, the null space of the above system is of dimension 3.



39This fact again tells us that a success in �nding a barycenter is the key in exploitingthe geometrical structure of a given problem with an assignment structure.Finally, let t(n) := n(n+1)2 . We have the following corollary.Corollary 3.1 The dimension of the minimal face is t((n � 1)2 + 1). Moreover,the minimal face can be expressed as V̂ S(n�1)2+1V̂ t .From Theorem 3.2 we conclude that Y � 0 is in the minimal face if and onlyif Y = V̂ RV̂ t for some R � 0. We can now replace the matrix Y by V̂ RV̂ t in theSDP relaxation (P1). As a result we get the following projected SDP relaxation.(Relax1) min trace (V̂ tLQV̂ )Rs.t. b0diag (V̂ RV̂ t) = Io0diag (V̂ RV̂ t) = Iarrow (V̂ RV̂ t) = 0(V̂ RV̂ t)00 = 1R � 0:By construction, this program satis�es the generalized Slater constraint quali�ca-tion for both the primal and the dual. Therefore there will be no duality gap andthe optimal solutions are attained for both primal and dual. The projected SDPrelaxation (Relax1) has been solved by a primal-dual interior-point method. (Seee.g. [KAR95]).



403.4 Gangster Operator andFinal SDP RelaxationIt is very interesting to study the structure of Ŷ . Because of the symmetry, weonly consider the upper triangular part. We denote the zero entries of Ŷ by thefollowing setJ := 8><>:(i; j) : i = (p� 1)n + q j = (p � 1)n+ r for q < r ori = (p� 1)n + q j = (r � 1)n+ q for p < r 9>=>; :With the set J we de�ne the gangster operator(GJ(Y ))ij := 8><>: Yij if (i; j) or (j; i) 2 J0 otherwise:As a result, we have GJ(Ŷ ) = 0: (3.4.32)For any permutation matrix X 2 �, YX has all its entries either 0 or 1, andŶ is just a convex combination of all these matrices YX for X 2 �. Hence, from(3.4.32), we have GJ(YX) = 0 8X 2 �:Therefore, we can even further tighten the feasible set of the projected SDP re-laxation problem (Relax1) by adding the natural constraints GJ(Y ) = 0. Notethat the gangster operator constraints GJ(Y ) = 0 can be directly derived from theexpression of the QAP feasible set, E \ H .The following useful properties can be derived from the fact that T V̂ = 0.



41Lemma 3.2 Let R be arbitrary (n� 1)2+1� (n� 1)2+1 symmetric matrix withR = 2666666664 R00 R01 : : : R0(n�1)R10 R11 : : : R1(n�1)... ... . . . ...R(n�1)0 R(n�1)1 : : : R(n�1)(n�1) 3777777775 ;where R00 is a scalar, Ri0 , for i = 1; : : : ; n � 1, are (n � 1) � 1 vectors and Rij ,for i; j = 1; : : : ; n � 1, are (n � 1) � (n � 1) blocks of R . Let Y = V̂ RV̂ t andpartition Y as Y = 2666666664 Y00 Y01 : : : Y0nY10 Y11 : : : Y1n... ... . . . ...Yn0 Yn1 : : : Ynn 3777777775 ;where Y00 is a scalar, Yi0 , for i = 1; : : : ; n, are n � 1 vectors and Yij , for i; j =1; : : : ; n, are n� n blocks of Y . Thena) Y00 = R00;Y0ie = R00; for i = 1; : : : ; n;and nXi=1 Y0i = R00et:b) Y0j = etYij; for i; j = 1; : : : ; n:c) nXi=1 Yij = eX0j; for; j = 1; : : : ; n:



42In particular nXi=1 diag (Yij) = R0j; for; j = 1; : : : ; n:Proof. We can easily check that Y00 = R00 . Since T V̂ = 0, we haveTY = T V̂ RV̂ t = 0:The remaining results follows from direct veri�cation. 2Now, we add the gangster operator to the projected SDP relaxation problem(Relax1). From Lemma 3.2, we haveY0j = etYjj for j = 1; : : : ; n:Note that the o�-diagonal entries for each Yjj are zeros. Therefore it follows thatthe arrow operator is redundant. Furthermore, by part a) of Lemma 3.2, we can seethat the principal-block-diag operator is redundant. Similarly, the o�-block-diagoperator is redundant.We now de�ne a subset Ĵ of J ,Ĵ := 8>>>>><>>>>>:(i; j) : i = (p � 1)n + q j = (p � 1)n+ r for q < r ori = (p � 1)n + q j = (r � 1)n+ q for p < r r 6= n(p; r) 6= (n� 2; n � 1) 9>>>>>=>>>>>; :With the new index set Ĵ we have the following lemma.Lemma 3.3 For any matrix Y 2 SĴ ,V̂ tY V̂ = 0 =) Y = 0:



43Proof. The matrix Y can be written asY = 2666666664 0 0 : : : 00 Y11 : : : Y1n... ... . . . ...0 Yn1 : : : Ynn 3777777775 :We let Z = (V 
 V )t 2666664 Y11 : : : Y1n... . . . ...Yn1 : : : Ynn 3777775 (V 
 V ):Then from V̂ tY V̂ = 0, we have Z = 0. Note thatV 
 V = 2666666664 V : : : 0... . . . ...0 : : : V�V : : : �V 3777777775 :Therefore if we write the above matrix Z as2666664 Z11 : : : Z1n�1... . . . ...Zn�11 : : : Zn�1n�1 3777775 ;then we have, for i; j 2 f1; : : : ; n� 1g,Zij = V t(Yij � Ynj � Yin + Ynn)V = 0: (3.4.33)Note that Yni = Yin = 0, for i = 1; : : : n� 1, andYn�2n�1 = Yn�1n�2 = 0. We have V tYnnV = 0 and henceZij = V t(Yij)V = 0;



44for i; j 2 f1; : : : ; n� 1g.Since Yij can be either a diagonal matrix or a matrix with diagonal equal tozeros, we have the following two cases.Case 1: Yij is a diagonal matrix.Let Yij = 2666664 a1 : : : 0... . . . ...0 : : : an 3777775 :Then Zij = 2666664 a1 : : : 0... . . . ...0 : : : an�1 3777775+ anE = 0;which implies that Yij = 0.Case 2: Yij is a matrix with diagonal equal to zeros.Let Yij = 264 A bbt 0 375 ;where A is a n � 1 by n� 1 matrix with diagonal equal to zeros. Thus, we haveZij = A� ebt � bet = 0;which implies that b = 0 and A = 0, i.e. Yij = 0. Therefore, we have Ynn = 0 andYij = 0;for i; j 2 f1; : : : ; n� 1g, i.e., Y = 0:



452We can get rid of all of the redundant constraints from the gangster operatorGJ based on the following theorem.Theorem 3.3 Let Y = V̂ RV̂ t with formY = 2666666664 Y00 Y01 : : : Y0nY10 Y11 : : : Y1n... ... . . . ...Yn0 Yn1 : : : Ynn 3777777775 :Then1. GĴ(Y ) = 0 implies that diag (Y1n) = 0; : : : ;diag (Y1n�1) = 0 anddiag (Yn�2n�1) = 0.2. Let �J = Ĵ [ (0; 0), then the mapping G �J(Y ) is onto.Proof. Let GĴ(Y ) = 0. Then from Lemma 3.2, we have, for each i = 1; : : : ; n,nXj=1 diag (Yij) = Yi0and diag (Yii) = Yi0;which implies that diag (Yin) = 0; for i = 1; : : : n� 3, and therefore8>>>>><>>>>>: diag (Yn�2n�1) + diag (Yn�2n) = 0diag (Yn�2n�1) + diag (Yn�1n) = 0diag (Yn�2n) + diag (Yn�1n) = 0;



46which implies that 8>>>>><>>>>>: diag (Yn�2n�1) = 0diag (Yn�2n) = 0diag (Yn�1n) = 0:This completes the proof for 1.Since Ŷ00 = 1 and GĴ (Ŷ ) = 0, we know that Y00 is linearly independent on GĴ .The rest of the proof for 2 follows immediately from Lemma 3.3. 2Therefore, by eliminating the redundant constraints we now can get a verysimple �nal SDP relaxation.(Relax2) min trace (V̂ tLQV̂ )Xs.t. G �J(V̂ XV̂ t) = E00X � 0;where X 2 P(n�1)2�1 . (Note: in the rest of the chapter, X is not for a permutationmatrix but the primal matrix variable for the SDP relaxation.) Its dual problem is(D2) max �W00s.t. V̂ t(LQ +W )V̂ � 0W 2 S �J :Note that the gangster operator is self adjoint and G �J(S) = S �J . The followingtheorem gives a very interesting property of a feasible solution of the �nal SDPrelaxation.Theorem 3.4 Let X be a feasible solution of (Relax2). Then, the n � n matrixMat ((diag (V̂ XV̂ t))1:n2) is a doubly stochastic matrix, i.e.Mat ((diag (V̂ XV̂ t))1:n2) 2 E:



47Proof. Let Y = V̂ XV̂ t . Then from Lemma 3.2 and G �J(Y ) = E00 , we haveY:0 = diag (Y ) and Y00 = 1. The rest of the proof follows immediately from thepart a) of Lemma 3.2. 2From the above theorem, we can see that the �nal SDP relaxation can not onlygive a lower bound for the QAP, but also yields a doubly stochastic matrix, whichmay be used to derive a good feasible solution for the QAP.Before we solve the �nal SDP relaxation, we would like to give interior pointsfor both the primal feasible set and the dual feasible set.Theorem 3.5 The ((n� 1)2 + 1)� ((n� 1)2 + 1) matrixX̂ = 2666664 1 00 1n2(n�1)(nIn�1 � En�1)
 (nIn�1 � En�1) 3777775is an strictly interior point of the feasible set for (Relax2).Proof. Note that X̂ is positive de�nite since nIn�1 � En�1 is positive de�nite.The rest of the proof follows from showing thatV̂ X̂ V̂ t = Ŷ ;



48where Ŷ is the barycenter.V̂ X̂V̂ t = 264 1 01nen 
 en V 
 V 375 X̂ 264 1 1netn 
 etn0 V t 
 V t 375= 0B@ 11nen 
 en 1CA�1; 1netn 
 etn�+264 0 00 1n2(n�1)V (nIn�1 �En�1)V t 
 V (nIn�1 �En�1)V t 375= 0B@ 11nen 
 en 1CA�1; 1netn 
 etn�+264 0 00 1n2(n�1)(nIn � En)
 (nIn �En) 375= Ŷ 2Theorem 3.6 Let �W = M 264 n 00 In 
 (In � En) 375 :Then for a su�ciently large scalar M , �W is a strictly interior point of feasible set(D2).Proof. It is obvious that we only need to show the matrixV̂ t 264 n 00 In 
 (In � En) 375 V̂



49is positive de�nite. Notice that etV = 0, we haveV̂ t �WV̂ = 264 1 et=n0 V t 
 V t 375264 n 00 In 
 (In �En) 375264 1 0e=n V 
 V 375= 264 n+ (etIne)(et(In �En)e)=n2 (etV )
 (et(In � En)V )(V te)
 (V t(In � En)e) (V tV )
 (V t(In �En)V ) 375= 264 1 00 (V tV )
 (V t(In � 1nEn)V ) 375= 264 1 00 V tV 
 V tV 375= 264 1 00 (In�1 + En�1)
 (In�1 + En�1) 375 :Since the matrix In�1 + En�1 is positive de�nite, we have that264 1 00 (In�1 + En�1)
 (In�1 + En�1) 375is positive de�nite. 23.5 A Truncated Primal-infeasible Dual-feasibleInterior-Point MethodHelmberg et al. [HEL94, HRVW96] proposed a primal-dual interior-point methodfor solving general semide�nite programming problem. We described the methodin Chapter 2. With this method they successfully solved max-cut problems. Basedon this method, we develop a so called truncated primal-infeasible dual-feasibleinterior-point method to solve the �nal SDP relaxation (Relax2). This method



50aims to generate a lower bound e�ciently for large scale QAP. We describe thismethod in the rest of the section.3.5.1 Why this Method?We rewrite the dual problem (D2) by introducing a slack matrix Z .max �W00s.t. V̂ t(LQ +W )V̂ � Z = 0Z � 0Y 2 S �J : (3.5.34)The Karush-Kuhn-Tucker conditions of the dual log-barrier problem areFP := G �J (V̂ XV̂ t)� E00 = 0FD := V̂ t(LQ +W )V̂ � Z = 0FZX := ZX � �I = 0; (3.5.35)where X � 0; Z � 0 and W 2 S �J . The �rst equation is primal feasibilityconditions, while the second is the dual feasibility conditions and the third takes careof complementary slackness for X and Z . We solve this system of equations withthe variant of Newton's method discussed in Chapter 2, i.e. we always symmetrize�X after we obtain a solution (�X; �W; �Z) by solving the following system ofequations G �J(V̂ �XV̂ t) = �FPV̂ t�WV̂ � �Z = �FD�ZX + Z�X = �FZX: (3.5.36)From the second equation, we have�Z = V̂ t�WV̂ + FD: (3.5.37)



51Substituting it into the third equation, we have�X = �Z�1V̂ t�WV̂ X � Z�1FDX � Z�1FZX: (3.5.38)Substituting this to the �rst equation, we obtain the following normal equationG �J(V̂ Z�1V̂ t�WV̂ XV̂ t) = FP � G �J(V̂ (Z�1FDX + Z�1FZX)V̂ t): (3.5.39)Since in our following algorithm, we can always maintain dual feasibility, we canlet FD = 0. We denote the linear operator G �J(V̂ Z�1V̂ t�WV̂ XV̂ t) by A and theright hand side by b. A(�) := G �J(V̂ Z�1V̂ t(�)V̂ XV̂ t) (3.5.40)and b := FP � G �J(V̂ Z�1FZX)V̂ t); (3.5.41)where we use the dot � to represent a variable for the operator. Then the normalequation becomes A(�W ) = b: (3.5.42)The size of the above problem is m = n3 � 2n2 + 1. For n = 20 and n =30, m = 7201 and m = 25201, respectively. Therefore, to solve such a huge(and most likely dense) system of equations, a direct solver such as the directCholesky factorization is not likely to be e�cient or most probably can not even beimplemented due to memory limitations. It is worthwhile to note that even if theabove system of equations can be solved directly, it is very time consuming to createthe explicit matrix form for the system. An alternative approach to solving thenormal equations is to use an iterative solver such as the preconditioned conjugategradient algorithm. The algorithm is shown below:



52The Preconditioned Conjugate Gradient AlgorithmGiven: initial solution y , a left-hand operator A, right-hand-side vector b andpreconditioner Q.Initialization: r = b�A(y). Repeat until stopping criteria are satis�ed:1. Solve Qv = r .2. � = rtv .3. If �rst iteration, q = v ;else q = v + (�=��)q .4. t = A(q).5. ! = �=qtt.6. y y + !q .7. r r + !t.8. ��  � .The conjugate gradient method has been proven to be a very powerful tool invarious interior-point methods to solve the Newton equation for large problems. Inparticular, for large sparse problems, the conjugate gradient method performs verywell due to the fact that preconditioners of high quality can be derived e�ciently byexploiting the sparity structure (see e.g. [CHI95]). In the conjugate gradient algo-rithm, the most expensive part is the evaluation of the vector A(q), the complexityof which for the normal equation (3.5.42) is O(n5). Therefore, to make the interiorpoint method e�cient, for each interior point update, it is necessary to stop the



53conjugate gradient algorithm as soon as possible. One way to do so is to solve thenormal equation approximately i.e., truncating or stopping the conjugate gradientalgorithm early. As we expect, this may result in primal infeasibility. However,the strict feasibility of the dual can still be maintained. As a lower bound is givenby the dual objective value, it is not necessary to solve the problem (Relax2) tooptimality to generate a good lower bound. In other words, by not aiming to solvethe problem (Relax2) to optimality, we can make this interior-point method moree�cient. The essence of this method is the so called inexact Newton method (see e.g[DES82]). One successful application of a similar method can be found in Portugal,Resende et al. [PRVJ94]. See e.g. [VB95] for a similar approach for solving SDPproblems derived from the control applications.3.5.2 The Preconditioned (Truncated) Conjugate GradientMethodStopping criteria for the Conjugate Gradient MethodFor the conjugate gradient algorithm, a limit on the number of iterations is set updepending on the compromise between accuracy and e�ciency. In our numericaltest, the limit is less than the square root of the size of the above system.The angle � between A(�W ) and b can be computed bycos � = jbtA(�W )jkbk � kA(�W )k;where r is the residual. We choose a small number � ( in our test � = 0:001). Thestopping criterion for the conjugate gradient method is the following:1 � cos � � �; or the number of iteration reaches the limit. (3.5.43)



54When (3.5.43) is satis�ed, we terminate the conjugate gradient algorithm. See e.g.[PRVJ94] for reference for the stopping criterion.PreconditionerIt is well known that a good and cheap preconditioner is the key factor to thesuccess of a conjugate gradient method. A preconditioner is usually constructedfrom the information contained in the matrix or linear operator. Some popularpreconditioners, constructed by various techniques such as minimum spanning treeand incomplete Cholesky, can be obtained very e�ciently from an explicit matrixrepresentation of the constraints. Unlike a linear system with explicit matrix form,it can be very expensive to construct such preconditioners for a general linear oper-ator system. Fortunately, we will see from the following that the special structureof the gangster operator makes it cheap to construct a preconditioner.Let K be the explicit m�m matrix form for the linear operator system (3.5.39)and let X̂ = V̂ XV̂ t and Ẑ = V̂ Z�1V̂ t . Then the linear operator system (3.5.39)becomes G �J(Ẑ�WX̂) = b:For 1 � k; l � m, let us try to calculate Kkl , the (k; l) entry of K . Note that wecan always order the index set �J . Let (ki; kj) and (li; lj) be the index pairs from�J corresponding to k and l , respectively. The lth column of K is� G �J(Ẑ(0:5elietlj + 0:5eljetli)X̂) � :Therefore, Kkl = (ẐkiljX̂likj + ẐkiliX̂ljkj + Ẑkj liX̂ljki + Ẑkj ljX̂liki)=2:



55The above formula can be used to construct a preconditioner in an e�cient waythat exploits sparsity. In our numerical test, we took the diagonal of K as thepreconditioner.3.5.3 ImplementationIn our truncated primal-infeasible dual-feasible interior-point algorithm for QAP,we use a stopping criterion that di�er from the standard primal-dual interior-pointmethod for general semide�nite programming problems. We describe the stoppingcriterion as follows.Stopping Criterion for the Interior-Point MethodBecause of the primal infeasibility, instead of using the duality gap, we use theincreasing rate of the dual objective value, which is de�ned as�W k00 := W k+100 �W k00W k+100 ;where W k00 is the dual objective value at the iteration k . At each iteration the dualobjective value gives a lower bound and the lower bound increases as k increases.We choose a small number � such that when�W k00 < �; (3.5.44)we terminate the algorithm. In other words, when the gain for increasing the lowerbound is not worth the computation expense, we stop the algorithm. Since ourgoal is to �nd a lower bound, this stopping criterion is quite reasonable. In ournumerical tests, we took � = 0:001.



56Flow Chart of the Primal-infeasible Primal-dual Interior-Point Algo-rithmstep 0: initial primal and dual interior-points. They are given by Theorem 3.5 andTheorem 3.6.X := X̂ , W := �W , Z = V̂ t(LQ + �W )V̂� := trace (ZX)=(2n);step 1. if stopping criterion (3.5.44) is not satis�ed, then compute Fp; FZX (see(3.5.35)) and b (see (3.5.41)). Solve (3.5.42) by the preconditioned (trun-cated) conjugate gradient method with the stopping criteria (3.5.43); (seeSubsection 3.5.1)step 2. compute �X , �Z by (3.5.38) and (3.5.37) and by symmetrization. Use theline search algorithm described in Chapter 2.2 to �nd �p and �d such thatX + �p�X � 0; Z + �d�Z � 0and both �p and �d are as close to one as possible.step 3 update X;W and Z byX  X + �p�X; W  W + �d�W; Z  Z + �d�Z� trace (ZX)=(2n). Goto step 1.3.6 Numerical Tests and CommentsWe coded the truncated primal-infeasible and dual-feasible interior-point algorithmin both C and Matlab. We tested our code by using some test problems from



57QAPLIB, see e.g. [BKR91]. We present the results of our numerical testing in thissection.3.6.1 Goal of the Numerical TestsThe numerical tests serve two purposes� compare the lower bounds given by the SDP relaxation with the existingbounds,� understand the performance of the truncated primal-infeasible dual-feasibleinterior-point approach to see how truncation a�ects both the lower boundand the CPU time.3.6.2 Measures of PerformanceThe comparison of the SDP bound with the existing bounds is summarized in Table3.6.0. The lower bounds given by the existing bounding techniques in the literaturefor the testing problems are included for comparison. The table reads as follows.The �rst column indicates the problem instance looked at and its size, nugxx refersto the Nugent example of size xx. For references of the problem instances we referto QAPLIB. The second to the seventh columns give the optimal solution OPT, theGilmore-Lawler bound GLB [GIL62, LAW63], the projection or elimination boundELI of [HRW92a], the bound RRD obtained by [RRD94], EVB3 from [RW92], andbound GAN given by the SDP relaxation with gangster operator, respectively. Thelast column shows the semide�nite bound given by Karisch [KAR95]. An `n.a.'means that the value of the bound is not available.



58OPT GLB ELI RRD EVB3 GAN B0nug05 50 50 47 50 50 50 49nug06 86 84 69 86 70 86 74nug07 148 137 125 148 130 144 132nug08 214 186 167 204 174 204 179nug12 578 493 472 523 498 534 487nug15 1150 963 973 1041 1002 1074 1009nug20 2570 2057 2196 2182 2286 2385 2281nug30 6124 4539 5266 4805 5450 5648 5424Had12 1652 1536 1573 n.a. 1589 1640 1198Had14 2724 2492 2609 n.a. 2630 2709 2651Had16 3720 3358 3560 n.a. 3594 3678 3612Had18 5358 4776 5104 n.a. 5150 5286 5174Had20 6922 6166 6625 n.a. 6678 6847 6713car10ga 4954 3586 4079 n.a. 4541 4847 4436car10gb 8082 6139 7211 n.a. 7617 7941 7603car10gc 8649 7030 7837 n.a. 8233 8546 8208car10gd 8843 6840 8006 n.a. 8364 8658 8319car10ge 9571 7627 8672 n.a. 8987 9327 8912Table 3.6.0: comparison of lower bounds



59OPT FEAS IFEAS CPU(sec) CPU(sec)FEAS IFEASnug05 50 50 50 1.817 0.416nug06 86 86 86 11.08 1.733nug07 148 144 144 41.02 8.3nug08 214 204 204 120.5 15.23nug12 578 534 534 4589 343nug15 1150 1076 1074 29520 2776car10ga 4954 4853 4847 920.4 99.75car10gb 8082 7960 7941 1019 111.7car10gc 8649 8561 8546 1061 106.4car10gd 8843 8666 8658 959.1 93.37car10ge 9571 9349 9327 1030 102.5Table 3.6.1: Feasible solution vs. infeasible solutionThe above numerical results show that both relaxation 2 and relaxation 3 givevery good bounds, especially for problems with linear terms. Therefore, semide�niterelaxation approach for QAP is very promising. In Table 3.6.1, we study howtruncation a�ects the quality of lower bound and CPU times. The column underOPT is for optimal objective value. The columns under FEAS and IFEAS are forthe lower bounds obtained by both feasible interior-point method and infeasibleinterior-point method, respectively. The last two columns are for the CPU timesfor both feasible and infeasible interior-point methods, respectively.From Table 3.6.1, we can see that by truncating the conjugate gradient iter-ations, the infeasible interior-point approach can still give almost as good lower



60bound as the feasible interior-point method but with much less CPU time. Also,we observed that the truncation happened mostly during the �nal iterations of theinterior-point algorithm (where the increasing rate for the objective is already quitesmall), which indicates that truncation is necessary.3.7 Future WorkOur future work will be to make our approach more e�cient for large scale problems.In addition to optimizing our code and using some fast matrix computation packagessuch as LAPACK, we would like to apply Paulina Chin's approach (see e.g. [CHI95])to solve the Newton's equation, i.e. instead of solving the small but dense normalequation, we will try to solve a larger but sparse system of equations. In this way, wecan fully take advantage of the sparsity and, possibly, �nd a better preconditioner.



Chapter 4Graph Partitioning Problem4.1 IntroductionThe graph partitioning problem, GP, can be described as follows:Given: an undirected graph G = (V; E) having node V and edge E anda weight, aij � 0 for the edge between node i and node j . We considerthe problem of partitioning V into k disjoint subsets V1; : : : ;Vk of givensizes m1; : : : ;mk in such a way that the sum of weights of edges thatconnect nodes in di�erent subsets is minimal.We let aij = 0 if there is no edge between node i and node j . Then thesymmetric matrix A = (aij) is the weighted adjacency matrix of the graph G. Thematrix A can be written in the following.A := 2666664 a11 : : : a1n... . . . ...an1 : : : ann 3777775 :61



62We assume that the graph has no loops, hence the diagonal elements of A are allzeros. The graph G is an unweighted graph if aij for each edge is either 0 or 1.Otherwise, the graph G is weighted graph. For a given partition of the graph intok subsets, let X = (xij) be the n � k matrix (n = Pimi is the cardinality of V )de�ned by xij := 8><>: 1 if node i is in the jth subset0 if node i is not in the jth subset:Thus the j th column X:j is the indicator set for the j th subset. Such a matrix Xcan represent the partition. Let � be the set of such matrices. An edge betweennodes i and j is called an uncut edge if both i and j are in the same subset. Thenfor each partition X 2 �,12traceX tAX = 12traceAXX t = 12 nXi;j=1 kXl=1 aijxilxjlgives the total weight for the uncut edges. As a result, the total weight for the cutedges is w(Ecut) := 12(etAe� trace (X tAX)):Note that for any partition matrix X 2 �, we havetraceX tDiag (Ae)X = etAe:Therefore, the minimal weights w�(Ecut) is obtained by solving the graph parti-tioning problem in the trace formulation(GPI) w�(Ecut) = min 12traceX tLXsubject to X 2 �;where the matrix L := Diag (Ae)�A



63is called the Laplacian matrix of a graph.The graph partitioning problem is well known to be NP-hard and therefore �nd-ing an optimal solution is likely very di�cult. Yet this problem has many applica-tions in various areas. One important application is VLSI design; see e.g. [LEN90]for a survey of Integrated Circuit Layout. See also [HMV92] for its application tonetlist partition.One popular and very successful heuristic for �nding \good" partitions was pro-posed by Kernighan and Lin [KL70] in 1970. In the early 70's Donath and Ho�man[DH73] provided an eigenvalue-based bound. Several new eigenvalue-based boundtechniques were presented by Rendl and Wolkowicz in [RW95a] and a computationalstudy showed these bounds are very good, see e.g [FRW94]. An SDP relaxationtechnique for equal-partitioning problem, i.e., the sizes of the subsets are all equal,has been successfully developed in [KR94]. In this chapter, we are going to developan SDP relaxation for the general graph partitioning problem as described above.4.2 An SDP RelaxationIn order to have an SDP relaxation for (GPI), we will reformulate (GPI) as aquadratically constrained quadratic programming problem. Since the matrix X isrestricted to 0-1 components, we have Xij = X2ij , i.e.,X = X �X:Also, since Xek = en , we have X:i �X:j = 0;



64for any i 6= j 2 f1; : : : ; kg. Therefore we can reformulate (GPI) as the followingproblem min 12traceX tLXsubject to X �X = XXek = enX ten = �mX:i �X:j = 0 8i 6= j;where we let �m = (m1; : : : ;mk)t . Several of these constraints are clearly redundant.Redundant constraints can still be nonredundant in the SDP relaxation as we haveseen in Chapter 3. An equivalent quadratic constrained quadratic programmingproblem is min 12traceX tLXsubject to X �X = XkXek � enk2 = 0kX ten � �mk2 = 0X:i �X:j = 0 8i 6= j:By following the same procedure as for the quadratic assignment problem, we havethe following SDP relaxation for GP.(RGP ) min traceLAYs.t. arrow (Y ) = 0traceD1Y = 0traceD2Y = 0GJ(Y ) = 0Y00 = 1Y � 0;



65where: LA := 264 0 00 12I 
 L 375 ; (4.2.45)J := 8><>:(i; j) : i = (p � 1)n+ q j = (r � 1)n+ q for p < r; p; r 2 f1; : : : ; kgq 2 f1; : : : ; ng 9>=>; ;the gangster operator constraint represents the (Hadamard) orthogonality of thecolumns, X:i �X:j = 0;8i 6= j ; and, �nally, the norm constraints are representedby the constraints with The (kn+ 1) � (kn+ 1) matricesD1 := 264 n �etk 
 etn�ek 
 en (eketk)
 In 375and D2 := 264 �mt �m � �mt 
 etn� �m
 en Ik 
 (enetn) 375 :Since both D1 and D2 are positive semide�nite, the feasible set of the problem(RGP) is not strictly feasible. Hence we can not apply an interior-point methodright away. However, one �nd a very simple structured matrix in the relative interiorof the feasible set, which we do in the next section.4.3 Geometry of the Feasible SetIn this section we study the geometrical structure of the feasible set, denoted F ,and of the convex cone P of the SDP relaxation (RGP). As F is not strictlyfeasible, we need to �nd the minimal face of the feasible set F as in the case ofquadratic assignment problem. It is clear that the matricesYX := 0B@ 1vec (X) 1CA (1 vec (X)t); for X 2 �;



66are in F . Moreover, since these points are rank-one matrices, we see that they arecontained in the set of extreme points of F . We need only to consider the minimalface, the intersection of faces of P which contain all of these extreme points YX ,for X 2 �. The following theorem characterizes the minimal face by �nding apoint in its relative interior, namely the barycenter. This point has a very simpleand elegant structure.Theorem 4.1 Let x = vec (X). De�ne the barycenter pointŶ := m1! : : :mk!n! XX2�264 1 xtx xxt 375 : (4.3.45)Then:1. Ŷ = 2666666664 1 m1n etn : : : mkn etnm1n en (m1n I + m1(m1�1)n(n�1) (E � I)) : : : ( m1mkn(n�1) )(E � I)... ... . . . ...mkn en ( m1mkn(n�1))(E � I) : : : (mkn I + mk(mk�1)n(n�1) (E � I)) 3777777775= 0B@ 11n �m
 en 1CA�1; 1n �mt 
 etn�+ 2666664 0 00 1n2(n�1)(nDiag ( �m)� �m �mt)
 (nIn �En) 3777775 ;2. the rank of the barycenterrank (Ŷ ) = (k � 1)(n � 1) + 1;



673. the rows of the matrixT := 26666666666664 �m1 etn 0 � � � � � � 0�m2 0 etn 0 � � � 0� � � � � � � � � � � � � � � � � ��mk 0 � � � � � � 0 etn�en In In � � � � � � In 37777777777775form a basis for the null space of Ŷ ;4. the columns of the matrix̂V := 264 1 01n �m
 en Vk 
 Vn 375form a basis for the range space of Ŷ , whereVs := 264 Is�1�ets�1 375 = 26666666666664 1 0 : : : : : : 00 1 : : : : : : 00 0 1 : : : 0: : : : : : : : : : : : 1�1 : : : : : : 0 �1 37777777777775s�(s�1) :Proof. There are n! ways to permute the nodes and there are mj! ways topermute the members of each set. Therefore, there are n!m1!:::mk! possible partitionmatrices.Consider the (n(j � 1) + i)th column of YX is0B@ 1x 1CA xn(j�1)+i:



68The column is zero unless xn(j�1)+i = 1. The element xn(j�1)+i corresponds to thei; j element of the partition matrix X , i.e., this element is 1 if node i is in set j .There are (n�1)!mj(m1!:::mk !) partition matrices, X, to (GPI) with xn(j�1)+i = 1. Thereforethe components of the 0th row of Ŷ are given byŶ0;n(j�1)+i) = (m1! : : :mk!)n! Xxn(j�1)+i=1 1 = (m1! : : :mk!)n! (n � 1)!mj(m1! : : :mk!) = mjn :Now look at the (q�1)n+p element of 0B@ 1x 1CA xn(i�1)+j . We distinguish four cases:1. Assume that j = q and i = p. There are again (n�1)!mj(m1!:::mk!) partitions to (GPI)with x(p�1)n+q = 1, i.e.r, this con�rms the fact that the diagonal elements areequal to the elements of the 0th row.2. Assume that the node indices i = p while the set indices j 6= q . Sincethe same node cannot be in two di�erent sets, this implies that the diagonalelements of the o�-diagonal blocks of the matrices YX are all 0.3. Assume that the node indices i 6= p while the set indices j = q . these are theo�-diagonal elements of the diagonal blocks. Then there are (n�2)!mj(mj�1)(m1 !:::mk!)possible partitions.4. If both the node indices i 6= p and the set indices j 6= q , then these are theo�-diagonal elements of the o�-diagonal blocks. There are (n�2)!mjmqm1!:::mk ! possiblepartitions.Dividing these expressions in the four cases by n!m1!:::mk ! we get the representationof Ŷ in 1.



69Now let us �nd a basis for the range space of Ŷ : We partitionŶ = 264 1 ztz W 375 ;where z = 1n �m
 en , thus de�ning the block W . Then264 1 0� 1n �m
 en I 375 Ŷ 264 1 � 1n �mt 
 etn0 I 375 = 264 1 00 S 375 ; (4.3.45)where S = W � 1n2 �m �mt 
En . As a result, we haverank (Ŷ ) = 1 + rank (S):Direct veri�cation shows thatS = 1n2(n � 1)(nDiag ( �m)� �m �mt)
 (nIn � En):The null space of the matrix (nDiag ( �m)� �m �mt) and the null space of the matrix(nIn � En) are spanned by ek and en , respectively. Therefore, their range spacesare spanned by the columns of Vk and Vn , respectively. Hence, the range space ofS is spanned by the columns of Vk
Vn . This implies that rank (S) = (k�1)(n�1)This proves 2. Moreover, we have that the null space of Ŷ is of dimension k+n�1.Since rank (T ) = k + n� 1;and T Ŷ = 0; T V̂ = 0:This implies that the rows of T span the null space of Ŷ and the columns of V̂span the range space of Ŷ . 2Remark: The structure of the polytope of partitions has been well studied.The feasible set F is a relaxation of the polytope obtained by lifting the partition



70matrices into the higher dimensional matrix space. Therefore the dimension of theminimal face and the structure of the null space can be studied from the knownresults of the polytope of partitions.4.4 Final SDP RelaxationFrom Theorem 3.2 we conclude that Y � 0 is in the minimal face if and onlyY = V̂ RV̂ t , for some R � 0. We can now substitute V̂ RV̂ t for Y in the SDPrelaxation (RGP). we get the following projected SDP relaxation.min trace V̂ tLAV̂ Rs.t. arrow (V̂ RV̂ t) = 0GJ (V̂ RV̂ t) = 0(V̂ RV̂ t)00 = 1R � 0:The following useful properties can be derived from the fact that T V̂ = 0.Lemma 4.1 Let R be an arbitrary (n�1)(k�1)+1�(n�1)(k�1)+1 symmetricmatrix with R = 2666666664 R00 R01 : : : R0(k�1)R10 R11 : : : R1(k�1)... ... . . . ...R(k�1)0 R(k�1)1 : : : R(k�1)(k�1) 3777777775 ;where R00 is a scalar, Ri0 , for i = 1; : : : ; k � 1, are (n� 1) � 1 vectors and Rij ,for i; j = 1; : : : ; n � 1, are (n � 1) � (n � 1) blocks of R . Let Y = V̂ RV̂ t and



71partition Y as Y = 2666666664 Y00 Y01 : : : Y0kY10 Y11 : : : Y1k... ... . . . ...Yk0 Yk1 : : : Ykk 3777777775 ;where Y00 is a scalar, Yi0 , for i = 1; : : : ; k , are n � 1 vectors and Yij , for i; j =1; : : : ; k , are n� n blocks of Y . Thena) Y00 = R00;Y0ien = miR00; for i = 1; : : : ; kand kXi=1 Y0i = R00etn:b) miY0j = etnYij ; for i; j = 1; : : : ; k:c) kXi=1 Yij = enR0j; for j = 1; : : : ; k:In particular kXi=1 diag (Yij) = R0j; for j = 1; : : : ; k:Proof. From the equation between Y and R , we see that Y00 = R00 . In addition,since T V̂ = 0, we have TY = T V̂ RV̂ t = 0:



72The remaining results follow from direct veri�cation. 2From Lemma 4.1, we conclude that the arrow operator is redundant given thegangster constraint hold and (V̂ RV̂ t)00 = 1. Now we will show that there are noredundant constraints left. We do this by showing that the null space of the adjointoperator is 0.Theorem 4.2 Suppose that W 2 SJ . ThenV̂ tGJ(W )V̂ = 0 =) GJ(W ) = 0:Proof. Let Y = GJ(W ). Y can be written asY = 2666666664 0 0 : : : 00 Y11 : : : Y1k... ... . . . ...0 Yk1 : : : Ykk 3777777775 :where Yij , for i; j 2 f1; : : : ; kg, are n� n matrices. We letZ = (Vk 
 Vn)t 2666664 Y11 : : : Y1k... . . . ...Yk1 : : : Ykk 3777775 (Vk 
 Vn):Then Z = 0. Note that Vk 
 Vn = 2666666664 Vn : : : 0... . . . ...0 : : : Vn�Vn : : : �Vn 3777777775 :Therefore if we write the above matrix Z as2666664 Z11 : : : Z1k�1... . . . ...Zk�11 : : : Zk�1k�1 3777775 ;



73then we have, for i; j 2 f1; : : : ; n� 1g,Zij = V tn (Yij � Ykj � Yik + Ykk)Vn = 0: (4.4.46)Note that Ykk = Yii = 0 for i = 1; : : : k�1. We have V tnYikVn = 0 for i = 1; : : : k�1.Therefore, Zij = V t(Yij)V = 0;for i; j 2 f1; : : : ; k�1g. Since Yij can be either a diagonal matrix or a zero matrix,we can write Yij = 2666664 a1 : : : 0... . . . ...0 : : : an 3777775 :Then Zij = 2666664 a1 : : : 0... . . . ...0 : : : an�1 3777775+ anEn�1 = 0:Thus we have Yij = 0 for i; j 2 f1; : : : ; k � 1g. Therefore,Y = 0: 2Therefore, by eliminating the redundant constraints we can get a very simpleprojected SDP relaxation. We let �J = J [ (0; 0).(RELAXP ) min trace (V̂ tLAV̂ )Rs.t. G �J (V̂ RV̂ t) = E00R � 0;where R 2 P(k�1)(n�1)�1 .



74Its dual problem is(RELAXD) max �W00s.t. V̂ t(LA +W )V̂ � 0W 2 S �J :Note that the gangster operator is self adjoint and G �J(S) = S �J . The followingtheorem gives a very interesting property of a feasible solution of the projectedSDP relaxation.Theorem 4.3 Let R be a feasible solution of (RELAXP ). Then the n�k matrixMat ((diag (V̂ RV̂ t))1:nk) satis�esMat ((diag (V̂ RV̂ t))1:nk)ek = enand Mat ((diag (V̂ RV̂ t))1:nk)ten = �m:Proof. Let Y = V̂ RV̂ t . Then from Lemma 4.1 and G �J(Y ) = E00 , we haveY:0 = diag (Y ) and Y00 = 1. The rest of the proof follows immediately from parta) of Lemma 4.1. 2From the above theorem, we can see that the �nal SDP relaxation can not onlygive a lower bound for the GP, but it also yields a n�k matrix which may be usedto derive a good feasible solution for the GP.Before we solve the �nal SDP relaxation, we would like to give interior pointsfor both the primal feasible set and the dual feasible set.Theorem 4.4 The ((k � 1)(n� 1) + 1) � ((k � 1)(n� 1) + 1) matrixR̂ = 2666664 1 00 1n2(n�1)(nDiag ( �mk�1)� �mk�1 �mtk�1)
 (nIn�1 � En�1) 3777775



75is a strictly feasible point of the feasible set for (RELAXP ), where�mtk�1 = (m1; : : : ;mk�1):Proof. Note that R̂ is positive de�nite since both nDiag ( �mk�1) � �mk�1 �mtk�1and nIn�1 � En�1 are positive de�nite.The rest of the proof follows from showing thatV̂ R̂V̂ t = Ŷ ;where Ŷ is the barycenter. We see thatV̂ R̂V̂ t = 264 1 01n �m
 en Vk 
 Vn 375 R̂264 1 1n �mt 
 etn0 V tk 
 V tn 375= 0B@ 11n �m
 en 1CA�1; 1n �mt 
 etn�+24 0 00 1n2(n�1)(Vk(nDiag ( �mk�1) � �mk�1 �mtk�1)V tk )
 (Vn(nIn�1 �En�1)V tn) 35= 0B@ 11n �m
 en 1CA�1; 1n �mt 
 etn�+264 0 00 1n2(n�1)(nDiag ( �m)� �m �mt)
 (nIn �En) 375= Ŷ ;where it is straightforward to check thatVk(nDiag ( �mk�1)� �mk�1 �mtk�1)V tk = nDiag ( �m)� �m �mt;and in particular Vn(nIn�1 � En�1)V tn = nIn � En: 2



76Theorem 4.5 The matrix �W = 264 M 00 (Ik �Ek)
 In 375is a strictly feasible point for the dual problem (RELAXD), if M is a su�cientlylarge scalar.Proof. We can write V̂ t(LA + �W )V̂ as the following summation of two parts.V̂ t 264 0 00 I 
 L 375 V̂ + V̂ t 264 M 00 (Ik � Ek)
 In 375 V̂ :Note that Le = (Diag (Ae)�A)e = Ae�Ae = 0:We have for the �rst partV̂ t 264 0 00 I 
 L 375 V̂ = 264 1 �mt 
 et=n0 V tk 
 V tn 375264 0 00 I 
 L 375264 1 0�m
 e=n Vk 
 Vn 375= 264 0 + ( �mt �m)
 (etLe)=n2 ( �mtVk)
 (etLVn)=n(V tk �m)
 (V tnLe)=n (V tkVk)
 (V tnLVn) 375= 264 0 00 (Ik�1 + Ek�1)
 (V tnLVn) 375 :Since the matrix Ik�1 + Ek�1 is positive de�nite and matrix V tnLVn is positivesemide�nite, their Kronecker product (Ik�1+Ek�1)
 (V tnLVn) is positive semidef-inite, i.e., matrix V̂ tLAV̂ is positive semide�nite. Now for the second part, note



77that etV = 0 and we haveV̂ t �WV̂ = 264 1 �mt 
 et=n0 V tk 
 V tn 375264 M 00 ((Ik � Ek)
 In 375264 1 0�m
 e=n Vk 
 Vn 375= 264 M + �mt(Ik � Ek) �m=n ( �mt(Ik � Ek)Vk)
 (etVn)=n(V tk (Ik � Ek) �m)
 (V tne)=n (V tk (Ik �Ek)Vk)
 (V tnVn) 375= 264 M + �mt(Ik � Ek) �m=n 00 (Ik�1 + Ek�1)
 (In�1 + En�1) 375 :Since both matrix Ik�1+Ek�1 and matrix In�1+En�1 are positive de�nite, we cansee that when M is large enough matrix V̂ t �WV̂ is positive de�nite. This completesthe proof. 24.5 Numerical TestsSince the �nal SDP relaxation is similar to the QAP, we use the same techniquesas in the chapter for QAP to solve it. After solving the �nal SDP relaxation, weobtain not only a lower bound for the graph partitioning problem but a solution Rfor the SDP relaxation. By reshaping the diagonal of V̂ RV̂ t , we can get a n � kmatrix X which satis�es all the feasible constraints except the 0-1 constraint for theoriginal graph partitioning problem. By solving a network subproblem with X as itsadjacent matrix, we can �nd a feasible solution for the graph partitioning problem,which gives an upper bound. With this feasible solution as an initial solution,we use Adaptive Simulated Annealing technique (or VFSR) (See e.g [ING89]) togenerate a better upper bound. To measure how close our upper bound is to theoptimal objective value, we use the measurerelative gap := upperbound � lowerboundlowerbound :



78Our numerical results are based on random unweighted and weighted graphs.We include two instances for each case. First, eight unweighted graphs were ran-domly generated. Each edge was generated independent of other edges with prob-ability 0:5. These graphs have vertices of 36; 60; 84 and 108, respectively. Thenumber of subset K are 2; 3 and 4. The size for each partition is randomly gen-erated. Next, another eight weighted graphs were randomly generated. Each edgewas generated independent of the other edges. The weights are integer numbersbetween 0 and 10. Again these graphs have vertices of 36; 60; 84 and 108, respec-tively. The number of subsets k are 2; 3 and 4. The size for each partition israndomly generated. In the tables, the column under LB is the lower bound, thecolumn under INIT is the initial upper bound and the column under BEST is theupper bound generated by the VFSR. The last column under GAP is for the gap.From the table for weighted graphs, we observe that the gaps are less than 0:05.However, for unweighted graph the gaps are mostly between 0:05 and 0:10. Theinitial upper bounds derived from the SDP solution are very good as we can seethat the upper bound can hardly be improved by VFSR. The results signi�cantlyimprove those in [FRW94] and are comparable to the results in [KAR95, KR94]which are restricted to the equipartition case.4.6 ConclusionIn this chapter, using the same approach as in the QAP chapter, we derive an SDPrelaxation for the general graph partitioning problem. This relaxation is almostthe same as the one for QAP. Numerical tests show that this relaxation can give agood lower bound, in particular for weighted graphs. Therefore, this SDP relaxationapproach for the general graph partition problem is very promising. As we can see,



79BEST INIT LB GAPa36 114 116 106 0.076b36 71 72 66 0.076a60 217 229 203 0.069b60 352 370 336 0.048a84 423 427 406 0.042b84 420 428 401 0.047a108 747 767 708 0.055b108 753 769 713 0.056Table 4.5.2: Bisection for Unweighted GraphsBEST INIT LB GAPa36 122 122 111 0.099b36 103 108 97 0.062a60 321 332 297 0.081b60 475 499 431 0.102a84 647 654 609 0.062b84 646 646 606 0.066a108 1120 1120 1030 0.087b108 1113 1113 1038 0.072Table 4.5.3: 3-partition for Unweighted Graphs



80BEST INIT LB GAPa36 176 192 162 0.086b36 157 162 143 0.098a60 492 522 451 0.091b60 480 517 432 0.111a84 1017 1032 912 0.115b84 1051 1051 916 0.147a108 1703 1703 1537 0.108b108 1680 1680 1548 0.085Table 4.5.4: 4-partition for Unweighted GraphsBEST INIT LB GAPwa36 919 938 897 0.025wb36 815 815 785 0.038wa60 4095 4095 4027 0.017wb60 2250 2254 2196 0.025wa84 4755 4773 4642 0.024wb84 1604 1619 1573 0.020wa108 8259 8329 8125 0.017wb108 7430 7448 7264 0.023Table 4.5.5: bi-partition for weighted Graphs



81BEST INIT LB GAPwa36 1336 1336 1302 0.026wb36 521 521 506 0.030wa60 4243 4246 4178 0.016wb60 4366 4391 4293 0.017wa84 11012 11012 10561 0.043wb84 6445 6445 6261 0.029wa108 12013 12013 11755 0.022wb108 10786 10786 10511 0.026Table 4.5.6: 3-partition for weighted GraphsBEST INIT LB GAPwa36 1912 1931 1853 0.032wb36 1708 1750 1650 0.035wa60 5423 5427 5200 0.043wb60 4922 4945 4751 0.036wa84 10643 10643 10195 0.044wb84 9632 9632 9246 0.042wa108 17820 17820 17299 0.030wb108 15946 15946 15461 0.031Table 4.5.7: 4-partition for weighted Graphs



82the dual problem of our SDP relaxation is very sparse. Our future work will befocused on solving the large sparse problems. We have successfully extended toGP the theoretical results and algorithm for the QAP as the SDP relaxations forboth QAP and GP are similar. We expect any large scale implementation of ouralgorithm to apply equally well to both problems.



Chapter 5Set Partitioning Problems5.1 IntroductionThe set partitioning problem, SP, can be described as follows.Suppose we are given a set M with m elements; and letM = fMj : j 2 N := f1 : : : ; nggbe a given collection of subsets of M such that the union contains Mi.e., [j2NMj = M . For each Mj , there is an associated cost cj . Wewant to �nd a subset F of the index set N such that:1. the union still contains M , [j2FMj = M ;2. the sets are pairwise disjoint, Mk \Mj = �, for k 6= j 2 F ;3. and the sum of the costs Pi2F cj is minimized.83



84Let A = (aij) be the m� n matrix withaij = 8><>: 1 if element i 2Mj0 otherwise:The matrix A is called the incidence matrix of the collection M; each column of Ais the indicator vector for the set Mj . Each subset F � N , for which the collectionof sets fMj; j 2 Fg satis�es 1 and 2, is called a set partition of the set M . For agiven set partition, we let x 2 f0; 1gn de�ned byxj = 8><>: 1 if j 2 F0 otherwise:Such an x can represent the set partition.The set partitioning problem can now be formulated as the following 0-1 integerprogramming problem(SPT ) �� := min ctxsubject to Ax = ex 2 f0; 1gn:Without loss generality, we assume that A has full row rank. For each i 2f1; 2; : : : ;mg, we let ai := (ai1; ai2; : : : ; ain):The ith row of the constraints, aix = 1, guarantees that the ith element is inexactly one set.The set partitioning problem has been extensively investigated because of itsspecial structure and its numerous practical applications. The best known applica-tion is airline crew scheduling, see e.g. the recent reference [HP93]. Other applica-tions include: truck scheduling; bus scheduling; facility location; circuit design and



85capital investment. (See e.g Gar�nkel and Nemhauser [GN69], Marsten [MAR74],Balas and Padberg [BP76], Balas [BAL77], Nemhauser and Weber [NW79], Fisherand Kedia [FK90] Chan and Yano [CY92] and Ho�man and Padberg [HP92].)Since the set partitioning problem is well-known to be NP-hard, many currentapproaches focus on �nding a \near optimal" solution using various heuristic tech-niques. A natural candidate for generating a lower bound is the linear programmingrelaxation. The linear programming relaxation is as follows(SPLP ) ��LP := min ctxsubject to Ax = ex � 0:To improve the approximate solution for (SPT), one can use cutting planes and/orbranch-and-bound techniques in conjunction with various bound improvement tech-niques. (See chu and Beasley [CB95] for a literature survey on exact and heuristicalgorithms for SP.) We include the following related papers in the bibliography[AFST69, BF81, BH90, GER89, HT94, RF88].In this chapter, we develop an SDP relaxation for the set partitioning problem.In our approach, in addition to taking care of all the linear programming relaxationconstraints, we employ the \gangster operator" to e�ciently model the special 0-1structure of (SPT). By this SDP approach we can generate a better lower boundfor the set partitioning problem. In addition, we combine the SDP relaxation withthe standard LP relaxation and take advantage of block structures in the data.5.2 An SDP RelaxationTo derive an SDP relaxation for SP, we reformulate the 0-1 integer programmingmodel (SPT ) as a quadratically constrained quadratic programming problem.



86Since the variables xi are restricted to 0-1, we have xi = x2i , i.e.x = x � x:In addition, since aix = 1 for each i 2 f1; : : : ;mg, we havefk 6= j; aik = 1; aij = 1g ) xkxj = 0: (5.2.47)Therefore (SPT ) is equivalent to the following.(SPQP ) �� = min ct(x � x)subject to A(x � x) = e(aix� 1)2 = 0; for i 2 f1; 2; : : : ;mg(x � x)� x = 0xkxj = 0; if k 6= j; aik = 1; aij = 1 for some i:By adding a scalar x0 , we can eliminate the linear terms (homogenize) in theexisting constraints of the above problem.(SPQPH) �� = min ct(x � x)subject to A(x � x) = e(�1; ai)(x0; xt)t(x0; xt)(�1; ai)t = 0for i 2 f1; 2; : : : ;mg(x � x)� x0x = 0xkxj = 0; if k 6= j; aik = 1; aij = 1 for some ix20 = 1:We now replace the quadratic terms with a matrix, i.e., we replace the rank onematrix (x0; xt)t(x0; xt) by the positive semide�nite matrix Y � 0 with Y 2 Sn+1 .



87We get the following SDP relaxation.(PSDP ) min traceCYsubject to trace (Diag (0; ai)Y ) = 1; i = 1; : : : ;m(�1; ai)Y (�1; ai)t = 0; i = 1; : : : ;marrow (Y ) = 0GJ(Y ) = 0Y00 = 1Y � 0;where C = Diag (0; ct) and the operator GJ is a gangster operator withJ := f(k; j) : if aik = aij = 1 k < j for some ig;the arrow constraint represents the 0-1 constraints by guaranteeing that the di-agonal and 0th column (or row) are identical; the gangster operator constraintrepresents constraints in (5.2.47); and, �nally, the assignment constraints Ax = eare represented by the �rst two set of constraints in (PSDP).De�ne the m� (n + 1) assignment constraint matrixT := [�e;A]:Each feasible Y satis�es Y � 0 and(�1; ai)Y (�1; ai)t = 0; i = 1; : : : ;m:Therefore the range space and null space satisfyR(T t) � N (Y ) or alternatively R(Y ) � N (T ):Now let the null space of T be spanned by the columns of a (n+ 1)� (n�m+ 1)matrix V , i.e., let N (T ) = R(V ):



88This implies that Y = V XV t for some X = X t � 0, i.e., we are able to express eachfeasible Y as V XV t . In order to solve large scale problems, a sparse representationof the null space of T is useful. We use a simple technique, called Wolfe's variable-reduction technique [WOL62]. (For a \sparsest" representation, see e.g. [CP86].)Without loss generality, we assume thatT = [TB; TN ];where TB is a m�m matrix with full rank and TN is a m� (n�m+ 1) matrix.Then, the matrix V = 264 �T�1B TNIn�m+1 375satis�es N (T ) = R(V ).We now take a look at the following interesting properties of the matrix V XV t .Lemma 5.1 For any arbitrary (n�m+ 1)� (n�m+ 1) symmetric matrixX = 2666666664 X00 X01 : : : X0(n�m)X10 X11 : : : X1(n�m)... ... . . . ...X(n�m)0 X(n�m)1 : : : X(n�m)(n�m) 3777777775 ;let Y = V XV t and write Y asY = 2666666664 Y00 Y01 : : : Y0nY10 Y11 : : : Y1n... ... . . . ...Yn0 Yn1 : : : Ynn 3777777775 :Then



89a) aiY1:n;0 = Y00; for i = 1; : : : ;m;b) Y0j = aiY1:n;j; for i = 1; : : : ;m; j = 1; : : : ; n:Proof. Since TY = TVXV t = 0;we have, (�1; ai)Y = 0, for each 1 � i � m. 2This shows that the �rst two sets of constraints in (PSDP) are redundant. Beforewe write our �nal SDP relaxation, we present another lemma which helps get ridof more redundant constraints.Lemma 5.2 Let Y = V XV t . ThenGJ(Y ) = 0 =) arrow (Y ) = 0:Proof. Suppose Y = V XV t and GJ(Y ) = 0. Let j 2 f1; 2; : : : ; ng, then thereexists i 2 f1; 2; : : : ;mg such that aij = 1:By Lemma 5.1, we have (ai1; : : : ; ain)Y1:n;j = Y0j :This implies that Yjj + Xkk 6=j; aik=1Ykj = Y0j:



90From the de�nition of the gangster operator, we haveXk 6=j; aik=1Ykj = 0:Therefore Yjj = Y0j: 2Now replacing Y by V XV t in (PSDP) and getting rid of the redundant con-straints, we have the following �nal SDP relaxation for SP. Let �J = J [ (0; 0).(PSDPF ) ��SDP := min traceV tCV Xsubject to G �J(V XV t) = E00X � 0;where X 2 Pn�m+1 , C = Diag (0; ct). The dual is(DSDPF ) max W00subject to V tWV � V tCVW 2 S �J :Note that the gangster operator is self adjoint and G �J(S) = S �J .From Lemma 5.1 and Lemma 5.2, we can immediately derive the following.Theorem 5.1 Let X be any feasible solution of (PSDPF). Then (diag (V XV t))1:n(the last n diagonal element of the matrix V XV t), is a feasible solution of the linearprogramming relaxation (SPLP).Proof. Let X be a feasible solution of (PSDPF) and Y = V XV t . ThenG �J (Y ) = E00 and Yjj � 0; for i 2 f1; : : : ; ng:



91From Lemma 5.1 and Lemma 5.2, we have Y:0 = diag (Y ) and Y00 = 1, and thusfor each i 2 f1; : : : ;mg,ai(Y11; : : : ; Ynn)t = aiY t0j = Y00 = 1: 2Based on the theorem above and the fact that the objective value of the SDPrelaxation is (0; ct)diag (V XV t), the following corollary follows.Corollary 5.1 The lower bound given by the SDP relaxation (PSDPF ) is greaterthan or equal to the one given by the LP relaxation, i.e. ��SDP � ��LP .In addition, we now see that there is no duality gap between (PSDPF) and (DS-DPF).Theorem 5.2 Problem (DSDPF) is strictly feasible.Proof. From Lemma 5.2, we have, for any X ,GJ(V XV t) = 0 =) arrow (V XV t) = 0:Therefore N (GJ(V � V t)) � N (arrow (V � V t)):(where the dot � represents the variables for the operators.) In other word, theiradjoint operators satisfyR(V tArrow (�)V )) � R(V tGJ (�)V ) = R(V t � V ):Therefore, for y = �e 2 <n , there exists W 2 SJ such thatV tArrow (y)V = V tWV



92and, by using Schur complements, we see thatV t(�ME00 +W )V = V t(�ME00 �Arrow (en))V � 0;for M big enough. Therefore �(�ME00 +W ) is strictly feasible for large enough� . 2From Theorem 5.2, we know that the dual problem satis�es the Slater condi-tion. Therefore, there is no duality gap between the primal problem (PSDPF) andthe dual problem (DSDPF) and, moreover, the primal optimal value is attained.However, the primal problem (PSDPF) may not be strictly feasible. Consider thesame example problem as in Chapter 3.3x1 = 1x1 +x2 +x3 +x4 = 1x1; x2; x3; x4 � 0:Observe that the feasible set is a singleton (1; 0; 0; 0)t . Note that for this problemn = 4 and m = 2, so V is a 5 � 3 matrix. Thus, for any feasible solution of its�nal SDP relaxation X 2 P3 , the diagonal of V XV t is (1; 1; 0; 0; 0)t . This meansthat rank (V XV t) � 2, which implies that rank (X) � 2. Therefore, the �nal SDPrelaxation is not strictly feasible.5.3 Numerical Testing for Small ProblemsSince the �nal SDP relaxation is exactly the same as the one for QAP, we use thesame technique as in the chapter for QAP to solve it, i.e., we use the same infeasibleprimal-dual interior-point algorithm as for QAP. As we have seen from the geomet-rical discussion above, the algorithm may have to deal with those problems whose



93primal SDP relaxation are not strictly feasible and whose dual SDP relaxation cannot attain their optimal value. As the main purpose of our algorithm is to �nd alower bound, we expect that our infeasible primal-dual interior-point algorithm canhandle those problems due to the following reason.� Because the dual problem is strictly feasible and only has inequality con-straints, the line search can easily maintain dual feasibility. Therefore, alower bound can always be obtained from the dual objective value.The purpose of our numerical tests is to illustrate that the lower bound givenby our algorithm for the SDP relaxation is better than the one given by LP relax-ation. In addition, after solving the relaxation, The diagonal of V XV t satis�es theconstraints of the linear programming relaxation.Our numerical tests for small problems are based on real data for bus schedulingproblems. The results are summarized in Table 5.3.8. The columns under nrow,ncol and nzero are for the number of rows, columns and nonzero elements, respec-tively. The last two columns show the lower bounds by LP and SDP relaxations,respectively. A lower bounds marked with a star means that the lower bound isequal to the optimal objective value. As we can see, numerical results show thatour SDP approach is very promising.



94nrow ncol nzero LP SDPsmall01 14 34 108 1864 1864*small02 16 46 139 2259 2259*small03 27 97 234 17327 18324small04 33 192 584 4503 4503*small05 44 277 770 21706 21706*tiny04 6 27 72 1035 1091tiny01 3 6 9 17.5 25.00tiny05 7 35 70 1215 1257Table 5.3.8: Numerical Results5.4 SDP Relaxation for Large Sparse Problemsand Future Work5.4.1 An SDP Relaxation with Block StructureAs we see from the introduction, the set partitioning problems are usually derivedfrom real world problems such as scheduling problems. These problems can be ofvery large size (> 10; 000) and very sparse.Currently, an approximate solution for a large size set partitioning problem canbe obtained by solving a corresponding large sparse linear programming relaxationand the information from the primal and dual optimal solutions are used to decidewhich columns, or sets Mj , should be chosen for the partition. Since the diagonalof an SDP solution is a feasible solution of the LP relaxation, we expect that thissolution can help in making the choices. On the other hand, it is hard to solve



95an SDP problem of size e.g. over 10,000. In order to make SDP relaxation morecompetitive with LP to solve the large sparse problem, we have to �nd a way toexploit the sparsity of the set partitioning problem. In this section, we relax partof the variables of the set partitioning problem by SDP while we treat the otherswith an LP relaxation.Consider a large sparse set partitioning problem(LSP ) �� = min ctxsubject to Ax = ex 2 f0; 1gn:By permuting the rows and columns of A, we can rewrite A as in the followingform A = 26666666666664 F1 0 : : : 0 00 F2 : : : 0 0... ... . . . ... ...0 0 : : : Fk 0G1 G2 : : : Gk H 37777777777775 ; (5.4.48)where for each i 2 f1; : : : ; kg, Fi is a mi � ni matrix and Gi is a mG � ni matrixand H is a mG � nH matrix, andm1 + : : :+mk +mG = m; n1 + : : :+ nk + nH = n:The sparsity pattern of the matrix A is illustrated in Figure 5.1.Corresponding to each submatrix Fi , for i 2 f1; : : : ; kg, we de�nexBi = (x1Bi; : : : ; xniBi)tand xN = (x1N ; : : : ; xnHN )t



96
Figure 5.1: Sparsity Pattern of Matrix Asuch that x = 0BBBBBBBB@ xB1...xBkxN 1CCCCCCCCA :Similarly, we de�ne cBi = (c1Bi; : : : ; cniBi)tand cN = (c1N ; : : : ; cnHN )tsuch that c = 0BBBBBBBB@ cB1...cBkcN 1CCCCCCCCA :For each i 2 f1; : : : ; kg, we writeFi = 2666664 F 1i...Fmii 3777775 = 2666664 F 11i : : : F 1nii... . . . ...Fmi1i : : : Fminii 3777775 :



97Similarly, for each i 2 f1; : : : ; kg, we can writeGi = 2666664 G1i...GmGi 3777775 = 2666664 G11i : : : G1nii... . . . ...GmG1i : : : GmGnii 3777775 ;H = 2666664 H1...HmG 3777775 = 2666664 H11 : : : H1nH... . . . ...HmG1 : : : HmGnH 3777775 :Now for each i 2 f1; : : : ; kg, we de�ne an index set for a gangster operator.Ji := 8><>:(p; q) : p < q for some j F jpi = F jqi = 1 orGjpi = Gjqi = 1 9>=>; :We rewrite (LSP ) as�� = min Pki=1 ctBixBi + ctNxNsubject to FixBi = emi; i 2 f1; : : : ; kgG1xB1 + : : :+GkxBk +HxN = emGxB1; : : : ; xBk; xN 2 f0; 1gn:An equivalent quadratically constrained quadratic programming formulation canthen be expressed as follows�� = min Pki=1 ctBixBi � xBi + ctNxN � xNsubject to FixBi � xBi = emi;(F ji xBi � 1)2 = 0; for j 2 f1; 2; : : : ;mig;xBi � xBi � xBi = 0;xpBixqBi = 0; for any pair (p; q) 2 Ji;for i 2 f1; : : : ; kgG1xB1 � xB1 + : : :+GkxBk � xBk +HxN � xN = e:



98By adding, for each i 2 f1; : : : ; kg, a scalar x0Bi , we homogenize the above problemas follows�� = min Pki=1 ctBixBi � xBi + ctNxN � xNsubject to FixBi � xBi = emi;(�1; F ji )(x0Bi; xtBi)t(x0Bi; xtBi)(�1; F ji )t = 0;for j 2 f1; 2; : : : ;mig;xBi � xBi � x0BixBi = 0;(x0Bi)2 = 1;xpBixqBi = 0; for any pair (p; q) 2 Ji;for i 2 f1; : : : ; kgG1xB1 � xB1 + : : :+GkxBk � xBk +HxN � xN = e:In the above quadratically constrained quadratic programming, we replace the rank-one matrix (x0Bi; xtBi)t(x0Bi; xtBi) by the matrix Yi for each i 2 f1; : : : ; kg, and alsoXNX tN by YN . Then we obtain an SDP relaxation as follows��LSDP := min Pki=1 ctBi(diag (Yi))1:ni + ctNdiag (YN )subject to Fi(diag (Yi))1:ni = emi;(�1; F ji )Yi(�1; F ji )t = 0; for j 2 f1; 2; : : : ;mig;arrow (Yi) = 0;(Yi)00 = 1;GJi(Yi) = 0;for i 2 f1; : : : ; kgPki=1Gi(diag (Yi))1:ni +Hdiag (YN) = e;Y1 � 0; : : : ; Yk � 0; YN � 0;where Yi 2 Pni+1 for i 2 f1; : : : ; kg and YN 2 PnH . Since the coe�cient matricesfor YN are all diagonal, we can always write YN = Diag (x), where x 2 <nH ; x � 0.



99For each i 2 f1; : : : ; kg, we de�ne an operator Ai : Pni+1 ! <mG such thatAi(Yi) := Gi(diag (Yi))1:ni:Then we have the following equivalent problem.��LSDP = min Pki=1 ctBi(diag (Yi))1:ni + ctNxsubject to Fi(diag (Yi))1:ni = emi;(�1; F ji )Yi(�1; F ji )t = 0; for j 2 f1; 2; : : : ;mig;arrow (Yi) = 0;(Yi)00 = 1;GJi(Yi) = 0;for i 2 f1; : : : ; kgPki=1Ai(Yi) +Hx = e;YB1 � 0; : : : ; YBk � 0; x � 0:For each i 2 f1; : : : ; kg, we construct a (ni+1)� (ni �mi+1) matrix Vi suchthat the null space of [�emi; Fi] is spanned by the columns of Vi . We follow thesame procedure as that in the above section, i.e., for i 2 f1; : : : ; kg, we replace Yi byViXiV ti and get rid of the redundant constraints. We denote Ci := Diag (0; ctBi).Note that ctBi(diag (Yi))1:ni = trace (Diag (0; ctB)Yi). Then we have the following�nal SDP relaxation.(LPSDPF ) ��LSDP = min Pki=1 traceV ti CiViXi + ctNxsubject to Pki=1Ai(ViXiV ti ) +Hx = emGG �Ji(Xi) = Ei00; for i 2 f1; : : : ; kgX1 � 0; : : : ;Xk � 0; x � 0;where, for i 2 f1; : : : ; kg, Xi 2 Pni�mi+1 and the operator G �Ji is a gangster



100operator with�Ji := 8><>:(p; q) : p < q for some j F jpi = F jqi = 1 orGjpi = Gjqi = 1 9>=>; [ (0; 0):Observe that in the �nal SDP relaxation (LPSDPF ) there are semide�nite matrixvariables and nonnegative vector variables as well. Thus, we call the �nal SDPrelaxation a mixed LP-SDP relaxation.Its dual is(LDSDPF ) max PmGi=1 �i +Pki=1(Wi)00subject to V ti (Diag (0; �tGi) +Wi)Vi � V ti CiVi;Wi 2 S �Ji ;for i 2 f1; : : : ; kgH t� � c;where for i 2 f1; : : : ; kg, Wi and �i are dual variables.For each feasible solution (X1; : : : ;Xk; x) of (LPSDPF ), we construct an n�1vector y = 0BBBBBBBB@ y1...ykx 1CCCCCCCCA ; (5.4.49)where yi = (diag (ViXiV ti ))1:ni , for i = 1; : : : ; k . Applying the Theorem 5.1 to eachblock, we have Fiyi = emi for i = 1; : : : ; k . Also note that Pki=1Giyi +Hx = emG .Therefore, we have the following results.Theorem 5.3 Let (X1; : : : ;Xk; x) be any feasible solution of (LPSDPF ). Then



101the vector 0BBBBBBBB@ (diag (V1X1V t1 ))1:n1...(diag (VkXkV tk ))1:nkx 1CCCCCCCCAis a feasible solution of the linear programming relaxation (SPLP ).Based on the above theorem and the fact that Ci , for i = 1; : : : ; k , are alldiagonal matrices, the following corollary follows.Corollary 5.2 The lower bound given by the SDP relaxation (LPSDPF ) is greatthat or equal to the one given by the LP relaxation (SPLP ), i.e., ��LSDP � ��LP .5.4.2 An Infeasible Primal-Dual Interior-Point MethodWe rewrite the dual (LDSDPF ) by introducing a slack matrix Zi for each i 2f1; : : : ; kg and a slack vector z .(LDSDPZ) max PmGi=1 �i +Pki=1(Wi)00subject to V ti (Diag (0; �tGi) +Wi)Vi + Zi = V ti CiVi;Wi 2 S �Ji ;for i 2 f1; : : : ; kgH t� + z = cZ1 � 0; : : : ; Zk � 0; z � 0:



102The Karush-Kuhn-Tucker conditions of the dual log-barrier problem arePki=1Ai(ViXiV ti ) +Hx� emG = F 0P = 0G �Ji(ViXiV ti )� Ei00 = F iP1 = 0;for i 2 f1; : : : ; kgH t� + z � c = F 0D = 0V ti (Diag (0; �tGi) +Wi � Ci)Vi + Zi = F iD = 0;for i 2 f1; : : : ; kgz � x� �u = F 0ZX = 0ZiXi � �I = F iZX = 0;for i 2 f1; : : : ; kg:The �rst two equations are primal feasibility conditions, while the third and fourthare the dual feasibility conditions and the last two takes cares of complimentaryslackness for Xi and Zi and x and z , respectively. We solve this system of equa-tions with a variant of Newton's method. We apply operators Ai and G �Ji tononsymmetric matrices and then we linearize the above system as follows.Pki=1Ai(Vi�XiV ti ) +H�x = �F 0PG �Ji(Vi�XiV ti ) = �F iP1for i 2 f1; : : : ; kgH t��+ �z = �F 0DV ti (Diag (0; ��tGi) + �Wi))Vi + �Zi = �F iDfor i 2 f1; : : : ; kg�z � x+ z � �x = �F 0ZX�ZiXi + Zi�Xi = �F iZXfor i 2 f1; : : : ; kg: (5.4.50)From the third and fourth equations, we have, for i 2 f1; : : : ; kg,�Zi = �F iD � V ti (Diag (0; ��tGi) + �Wi))Vi (5.4.51)



103and �z = �F 0D �H t��: (5.4.52)Substituting (5.4.51) and (5.4.52) into the last two equations, respectively, we have�Xi = �Z�1i F iZX + Z�1i F iDXi + Z�1i V ti (Diag (0; ��tGi) + �Wi))ViXi (5.4.53)and �x = �z�1 � F 0ZX + z�1 � F 0D � x+ z�1 �H t�� � x: (5.4.54)Substituting (5.4.53) and (5.4.54) into the �rst two equations, we have the following�nal normal equation.Pki=1Ai(ViZ�1i V ti (Diag (0; ��tGi) + �Wi)ViXiV ti )+Hz�1 �H t�� � x = �F 0P + b0G �Ji(ViZ�1i V ti (Diag (0; ��tGi) + �Wi)ViXiV ti ) = �F iP1 + bifor i 2 f1; : : : ; kg; (5.4.55)whereb0 =Pki=1Ai(Vi(Z�1i F iZX � Z�1i F iDXi)V ti ) +H(z�1 � F 0ZX � z�1 � F 0D � x);bi = G �Ji(Vi(Z�1i F iZX � Z�1i F 1DXi)V ti );for i 2 f1; : : : ; kg:Denote the matrix representation of the left hand side of the normal equation byK . The matrix K has a very nice sparsity structure shown in Figure 5.2, where thewidth of the long narrow bar is mG which is much less than the size of the matrix.We solve the normal equation by a preconditioned conjugate gradient method.Let (�W �1 ; : : : ; �W �k ; ���) be the solution for the normal equation. By equations(5.4.51), (5.4.52), (5.4.53) and (5.4.54), we can obtain, for each i 2 f1; : : : ; kg,�Z�i , �z�i ,�X�i and �x�i , respectively. Finally, by symmetrizing �X�i , i.e.,�X�i  �X�i + (�X�i )t2 ;



104
Figure 5.2: Sparsity Patternwe obtain a search direction. We then do a line search and update the currentpoint. Based on the duality gap, we update � by using the following formula� := Pki=1 trace (ZiXi) + ztx2(n �m+mG + k) :5.4.3 Preliminary Numerical Tests and Future WorkIn the previous subsections, we have developed an approach for solving problemswith matrix structure (5.4.48). We did some preliminary numerical tests just tosee how this SDP relaxation works for small problems. In our testing, we usethe diagonal of the matrix representation K as the preconditioner. The infeasibleprimal-dual interior-point algorithm for the mixed LP-SDP relaxation is coded inC and Matlab. The results are summarized in Table 5.4.9. In Table 5.4.9, thecolumns under nrow, ncol and nzero are for the number of rows, columns and



105nrow ncol nzero LP SDP LP-SDPsmall03 27 97 234 17327 18324 18320tiny04 6 27 72 1037 1091 1066tiny01 3 6 9 17.5 25 25tiny05 7 35 70 1215 1257 1248Table 5.4.9: Numerical Resultsnonzero elements, respectively. The columns under LP and SDP show the lowerbounds given by LP relaxation and SDP relaxation for a general dense problem,respectively, while the last column under LP-SDP shows the lower bounds given byour mixed LP-SDP relaxation.For our future work, we would like to use the mixed LP-SDP relaxation to derivean approach to solve general large sparse set partitioning problems. To achieve this,we propose the following:� to have the same matrix sparsity pattern as described for the mixed LP-SDPrelaxation, the matrix for the general problem need to be transformed intoform like (5.4.48). This can be done by treating the 0-1 matrix A as anincidence matrix of a graph or netlist and applying graph partitioning andnetlist partitioning techniques;� because of the nice sparsity structure as shown in Figure 5.1, more sophis-ticated incomplete factorization preconditioners can be used to improve theperformance of primal-dual interior-point solvers, see e.g. [CHI95].We would like to point out another future work. For a more general block



106structure A = 26666666666664 F1 0 : : : 0 H10 F2 : : : 0 H2... ... . . . ... ...0 0 : : : Fk HkG1 G2 : : : Gk H 37777777777775 ;we should be able to develop an SDP relaxation as well. But this might involve atotally di�erent approach since projection may not be easily applied.



Chapter 6Summary and DiscussionIn this thesis, we have developed a uni�ed semide�nite programming relaxationapproach to solve three di�erent applications: quadratic assignment problem, graphpartitioning problem and set partitioning problem. Numerical tests have shownthat the bounds given by our SDP relaxations are of high quality for these threeapplications. This again demonstrates that semide�nite programming is really avery powerful tool for solving hard combinatorial optimization problems.We feel that our contributions are not only in deriving better bounds for theapplications using SDP but more interestingly, the SDP approach itself. Throughthe three di�erent applications, we have illustrated our SDP approach for a generalproblem with a structure of assignment constraints. We summarize the SDP ap-proach for a general problem with the special assignment structure in the following.� derive a gangster operator based on the assignment constraints;� derive some other operators, such as the arrow operator, based on the otherspecial structure of the problem; 107



108� generate a relative interior point for the minimal face containing all rank onefeasible matrix solutions and then derive a projection matrix from the rangespace of this relative interior point;� derive the �nal SDP relaxation by applying the projection matrix and bygetting rid of the redundant constraints.Finally we would like to point out that with the gangster operator, we can representa combinatorial structure by a matrix sparsity structure and therefore be able toapply a lot of sparse matrix techniques to solve a large problem.
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