
Low Rank Matrix Completion
through Semi-definite Programming

with Facial Reduction

by

Xinghang Ye

A report
presented to the University of Waterloo

in fulfilment of the
project requirement for the degree of

Master of Mathematics
in

Computational Mathematics

Waterloo, Ontario, Canada,

c© Xinghang Ye

I hereby declare that I am the sole author of this report. This is a true copy of the report,
including any required final revisions, as accepted by my examiners.

I understand that my report may be made electronically available to the public.

ii

Abstract

The matrix completion problem is a hot problem in data science. In recent years, many
theories and practices on efficiently recovering the partially observed matrix have been
introduced. A good example is the Netflix Challenge [15], where the provided data set is
a partially observed matrix with each row represents a user and each column represents a
film. The winning team of this competition applied matrix completion algorithm to this
challenge, and improved the success rate of rating system by 10%. In this report, We
will show how to convert the original low rank matrix completion problem which is non-
convex to convex problem. Furthermore we will convert the convex optimization problem
to a semi-definite programming problem. For the semi-definite programming problem,
although Slater’s condition holds, the facial reduction method can still be applied to obtain
a proper face containing the optimal set and so can dramatically shrink the size of original
problem while guaranteeing a low-rank solution. We include numerical tests for both the
case without noise and the case with noise. In all cases the target rank is pre-defined.

iii

Acknowledgements

I would like to thanks my supervisor Prof. Henry Wolkowicz and my second reader
Prof. Wayne Oldford for their guidance on this report.

iv

Dedication

This is dedicated to my parents, my brother, my sister, and my grand parents.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Background . 1

1.2 Original problem . 2

1.3 Convex Surrogates of Original Problems 3

1.4 Semi-definite formulation . 4

2 Facial Reduction and Exposing Vectors 6

2.1 Basic elements of convex geometry . 6

2.2 Facial Reduction on Semi-definite matrices 7

2.3 Facial Reduction on the face containing optimal Y 8

3 Facial Reduction for Low-rank Matrix Completion 10

3.1 Special Structure at Optimum . 10

3.2 Graph Representation of the Problem . 11

3.3 Finding Exposing Vectors . 13

3.4 Weights of Exposing Vectors . 19

3.5 Final Exposing Matrix . 21

3.6 Algorithm for Finding large exposing vector 22

vi

4 Dimension Reduction and Local Refinement 23

4.1 Dimension Reduction . 23

4.2 Noiseless Case . 23

4.3 Noisy Case . 26

5 Numerical Results 30

5.1 Data Generation . 30

5.2 Test Results . 31

6 Conclusion 34

References 35

Index . 35

vii

List of Tables

5.1 no noise: r = 2; m× n size; density p. 32

5.2 noisy: r = 2; m× n size ↑; density p ↓; noise ↑. 32

5.3 no noise: r = 3; m× n size; density p. 32

5.4 noisy: r = 3; m× n size ↑; density p ↓; noise ↑. 33

viii

List of Figures

4.1 Pareto illustration . 27

ix

Chapter 1

Introduction

1.1 Background

In this project, the low-rank matrix completion problem is considered, which can be
expressed as follows:

Problem 1. We are given a partially observed matrix Z ∈ Rm×n. Our goal is to find
all the missing entries so that the completion has a low rank.

This problem is strongly related to some real world applications, such as the well-known
Netflix problem[15], sensor network localization [2], and system identification [14]. This
problem can be relaxed using the nuclear norm, and further converted to a Semi-definite
Programming(SDP)problem. Although for the SDP formulation of this problem, Slater’s
condition holds, we still find that its special structure at optimum can be utilized by Facial
Reduction Method[3] through the exposing vector approach. Moreover, the result of
Facial Reduction is a significant reduction in the numeber of the variables and a decrease
in the rank of the solution. In the noiseless case, Facial Reduction always ends up with
redundant constraints, which can be removed from the system through the QR approach,
while if the observed entries of the matrix Z contain noise, Facial Reduction will end
up with an overdetermined system. In order to handle the overdetermined system, we
applied the sketch matrix method [16] to reduce the size of the overdetermined system.
Further more, in order to simply the computation of this problem, we flip the problem by
exchanging its objective function and constraint, using the Pareto approach as suggested
by [1] [20].

1

1.2 Original problem

First, the following notation is introduced:

Ê = {{i, j} : Zi,j is observed} represents the set containing indices of observed entries

of the matrix Z. PÊ(·) is the projection onto the corresponding entries in Ê; b = PÊ(Z) is
the vector containing all the observed entries from the matrix Z; and δ > 0 measures the
perturbation allowed in the observed entries of the recovered matrix. Ẑ is the recovered
matrix.

In the noiseless case, the original low rank matrix completion problem (1) can be
formulated as follows:

min
Ẑ

rank(Ẑ)

s.t. PÊ(Ẑ) = b
(1.1)

The constraints in the above problem require that Ẑij = Zij,∀ij observed in Z

In contrast, in the noisy case, we need to introduce δ to set up the tolerance of pertur-
bation in observed entries of the matrix Ẑ we recovered to get the following:

min
Ẑ

rank(Ẑ)

s.t. ‖PÊ(Ẑ)− b‖ ≤ δ
(1.2)

The constraint in (1.2) suggests that some perturbation is allowed but should be re-
stricted by the pre-defined δ.

Although the above two optimization problems are easy to understand, they are very
hard to compute, because the objective function for both problems is rank(·), which is
neither convex nor continuous. Therefore, neither optimization problems (1.1) or (1.2) is a
convex optimization problem. Thus, it is helpful to introduce a convex function to replace
the function rank(·), so that the original problems can be converted to convex optimization
problems. In next two sections, we will introduce how to convert the original problems to
their convex surrogates and further to semi-definite programming problems which we are
actually working on.

2

1.3 Convex Surrogates of Original Problems

In order to introduce the convex surrogates of the original problem, the following definitions
and theorems are provided for convenience.

Definition 1. Let C be a given convex set. The convex envelope of a (possibly non-
convex) function f : C → R is defined as the largest convex function g(·) such that g(x) ≤
f(x),∀x ∈ C.

Thus, in the set C, among all the convex functions, g(·) is the best point-wise approx-
imation of the function f(·). In particular, if g(·) can be conveniently described, it can
serve as an approximation of f(·) that can be minimized efficiently.

Following the definition of convex envelop function, we provide the definition of nuclear
norm and operator norm, which will be used to construct the convex surrogates for original
problems.

Definition 2. The nuclear norm of matrix X is ‖X‖∗ =
∑

i σi(X), where σi(X) represents
the ith largest singular value of X.

Definition 3. The operator norm of matrix X is ‖X‖ = σ1(X), where σ1(X) represents
the largest singular value of X.

From the above definition of these two norms. It is easy to note the following inequality
for any matrix X with rank(X) = r:

‖X‖∗ ≤ r‖X‖ (1.3)

Because for matrix X with rank r, there are r number of singular values. And because
σi ≤ σ1,∀i ∈ {1 · · · r}. Therefore, ‖X‖∗ =

∑r
i=1 σi ≤

∑r
i=1 σ1 = r‖X‖. Thus we could

conclude that ‖X‖∗ ≤ r‖X‖.
Finally, we present the theorem which gives the convex envelop function of function

rank(·) in the set {X ∈ Rm×n : ‖X‖ ≤ 1}. And we will use this theorem to show why the
nuclear norm is the best convex surrogates to the function rank(·).

Theorem 1. ([4] Theorem 2.2) The convex envelope of rank(X) on the set {X ∈ Rm×n :
‖X‖ ≤ 1} is the nuclear norm ‖X‖∗.

Theorem 1 provides the following interpretation for the rank minimization problem.
Suppose A(·) : Rm×n → Rk is a linear mapping, z ∈ Rk, and X$ is the minimum rank

3

solution of A(X) = z. The convex envelope of the function rank(·) on the set C =
{X ∈ Rm×n : ‖X‖ ≤ ‖X$‖} is ‖X‖∗/‖X$‖. The reason is simple that ∀X ∈ C we have
‖X‖ ≤ ‖X$‖. Let X∗ be the minimum nuclear norm solution of A(X) = z. Then we have:

‖X∗‖∗/‖X$‖ ≤ rank(X$) ≤ rank(X∗)

providing an upper and lower bound on the optimal rank if the minimum rank solution
X$ is known. Furthermore, the nuclear norm is the tightest lower bound among all convex
lower bounds on the set C. This suggests that, in order to convert the original optimization
problems to convex problems, we can approximate the objective function rank(·) with ‖ · ‖∗
[5] [6]

Proof. For the left inequality, recall the inequality provided in (1.3). Here for our problem,
we have ‖X$‖∗ ≤ rank(X$) × ‖X$‖, which is equivalent to ‖X$‖∗/‖X$‖ ≤ rank(X$).
Because X∗ is the minimum nuclear norm solution, meaning ‖X∗‖∗ ≤ ‖X$‖∗. Thus we
have ‖X∗‖∗/‖X$‖ ≤ rank(X$), which is the left inequality. The right inequality is base on
the fact that X$ is the minimum rank solution. Thus we have proved both the left and
right inequalities.

Therefore, by approximating rank(·) with ‖·‖∗, the noiseless case (1.1) can be expressed
as:

min
Ẑ
‖Ẑ‖∗

s.t. PÊ(Ẑ) = b
(1.4)

Similarly, the noisy case (1.2) can be expressed as follows:

min
Ẑ
‖Ẑ‖∗

s.t. ‖PÊ(Ẑ)− b‖ ≤ δ
(1.5)

1.4 Semi-definite formulation

In this section, we consider how to convert the nuclear norm minimization problems in
previous section to semi-definite programming problems. First we introduce some defini-
tions and theorems that can be used in constructing equivalent semi-definite programming
problems.

4

Theorem 2. ([8] Lemma 1) For any X ∈ Rm×n and t ∈ R, ‖X‖∗ ≤ t ⇐⇒ there exists A ∈
Rm×m and B ∈ Rn×nsuch that

Y =

[
A X
XT B

]
� 0

and
trace(A) + trace(B) ≤ 2t

Theorem 2 suggests that introducing the matrix Y =

[
A X
XT B

]
and minimizing the

trace(·) of Y is equivalent to minimizing the nuclear norm ‖ · ‖∗ of matrix X, which is
embedded in the top-right block matrix of Y .

In the noiseless situation, in order to complete this matrix Ẑ, we can apply theorem 2
to formulate the following SDP problem [8] [18].

minẐ trace(A) + trace(B) = trace(Y)
s.t.

Y =

[
A Ẑ

ẐT B

]
� 0

PÊ(Ẑ) = b

(1.6)

Similarly, in the noisy case, the problem can be formulated as follows:

minẐ trace(A) + trace(B) = trace(Y)
s.t.

Y =

[
A Ẑ

ẐT B

]
� 0

‖PÊ(Ẑ)− b‖ ≤ δ

(1.7)

These two optimization problems are surrogates for the nuclear norm minimization

problems where the semi-definite constraint Y =

[
A Ẑ

ẐT B

]
� 0 is introduced. The semi-

definite matrix Y has a special structure at optimum. Once we apply the facial reduction
method through exposing vectors (will be discussed later), both optimization problems
above can be simplified further.

5

Chapter 2

Facial Reduction and Exposing
Vectors

2.1 Basic elements of convex geometry

In our semi-definite programming formulation of original problem (1.6) or (1.7), because the
optimal Y is a positive semi-definite matrix, therefore it resides on a positive semi-definite
cone.

For the facial reduction method, what it really do is to locate a specific face of the
original convex cone of optimization problem, and shrink the size of problem from the
whole convex cone to that specific face. We provide followings to define a face of a convex
cone.

Definition 4. The relative interior of a set contains all points which are not on the
edge of the set, relative to the smallest subspace in which this set lies.

Definition 5. For a convex cone C, the convex subset F ⊆ C is a face of C, denoted as
F E C, if F contains all convex combinations in C whose relative interior intersects F .

Definition 6. For a convex cone C, the minimum face containing a set S ⊆ C, denoted
as face(S,C), is the intersection of all the faces of C containing S.

For our case, we need to apply facial reduction to locate a face by finding the vectors
which expose this face. Therefore, here we first provide the definition of non-negative
polar cone where exposing vectors reside and then provide the definition of exposed face
and exposing vector.

6

Definition 7. For the cone C of a vector space V , the non-negative polar cone
associated with cone C is the set {y ∈ V : 〈y, x〉 ≥ 0, ∀x ∈ C}, which we denote as C∗.

Definition 8. A face F of C is an exposed face when there exists a vector v ∈ C∗

satisfying F = C ∩ v⊥. In this case we say that v exposes F , and v is called the exposing
vector of F . The cone C is facially exposed when all faces of C are exposed.

Note that for a convex cone, all of its faces are exposed.

2.2 Facial Reduction on Semi-definite matrices

The facial reduction method was first introduced by J.Borwein and H.Wolkowicz [3]. For
our problem, this method works to find exposing vectors that expose the face containing
the optimal Y in our semi-definite programming formulation in (1.6) or (1.7), and through
the exposing vectors to locate that face. In this section, we will discuss how to apply facial
reduction method in positive semi-definite matrices.

Here we denote the set of n-by-n real symmetric matrices as Sn. The inner prod-
uct between two n-by-n real symmetric matrices M1 and M2 is defined as: 〈M1,M2〉 =
trace(M1M2). The symbols Sn+ and Sn++ stand for sets of the positive semi-definite and
positive definite matrices in Sn, respectively.

For a positive semi-definite matrix M ∈ Sn+ with rank r, its eigenvalue decomposition
is:

M = [U, V]

(
Λ 0
0 0

)
[U, V]T

The columns of U ∈ Rn×r, V ∈ Rn×(n−r) are eigenvectors. Thus the minimal face
containing matrix M , F = face(M,Sn+) could be expressed as:

FU,V = {[U, V]

(
A 0
0 0

)
[U, V]T : A ∈ Sr++} (2.1)

From the above definition of the exposed face, we can easily find the exposing vectors
associated with that face F which are in the following set:

EF = {[U, V]

(
0 0
0 B

)
[U, V]T : B ∈ S(n−r)

++ } (2.2)

7

Through the above expression of the exposing vectors to the face FU,V , we can easily find
an exposing vector associated with the face F , which is the following:

F∆ = [U, V]

(
0 0
0 I

)
[U, V]T (2.3)

Where In−r is an identity matrix.
For ∀MA ∈ FU,V , we can get:

MA = [U, V]

(
A 0
0 0

)
[U, V]T where A ∈ Sr++ (2.4)

Note that the inner product between MA and F∆ is:

〈MA, F
∆〉 = trace(MAF

∆)

= trace([U, V]

(
A 0
0 0

)
[U, V]T [U, V]

(
0 0
0 I

)
[U, V]T)

= trace([U, V]

(
A 0
0 0

)(
0 0
0 I

)
[U, V]T)

= trace([U, V]

(
0 0
0 0

)
[U, V]T)

= trace(

(
0 0
0 0

)
)

= 0

(2.5)

Thus, we have shown that F∆ is indeed an exposing vector to the face FU,V .

2.3 Facial Reduction on the face containing optimal

Y

Recall that for the semi-definite programming formulation of the original problems, the
optimal Y is a positive semi-definite matrix. If we want Y to be minimum rank, we could
find an E such that 〈E, Y 〉 = 0 where by definition E is an exposing vector to the face
containing Y . The eigenvalue decomposition of E is:

E = [Û , V̂]

(
Ed 0
0 0

)
[Û , V̂]T (2.6)

8

Here, Ed is a diagonal matrix with positive eigenvalues of E on the main diagonal of it,
and Û and V̂ are eigenvectors.

Then through the definition of exposing vector, we know that the optimal Y should
now be in the face expressed as: V̂ RV̂ T where R ∈ Sm+n−rE

++ . Consequently, the original
problem can be converted to an equivalent problem with smaller dimensions (from m+ n
to m + n− rE). From the above explanation, it is easy to notice that the larger the rank
of exposing vector E, the smaller the dimension of R.

Therefore, in order to sufficiently simplify the original problem, we need to construct the
exposing vector E with a high rank. In later chapters, details about this special structure
and how to construct such exposing vector E will be discussed.

9

Chapter 3

Facial Reduction for Low-rank
Matrix Completion

3.1 Special Structure at Optimum

Consider problems (1.6) or (1.7). Because there is no constraint on the main diagonal of
matrix Y , we can make the main diagonal of Y to be arbitrarily large. In this situation,
we have Y � 0, which means we could find positive definite matrices in the feasible region
of the problems (1.6) and (1.7). Thus, Slater’s condition holds, which means that there is
no duality gap between the primal problem and the dual problem. This suggests that we
now can only work on the primal problem without considering the dual problem, because
the optimal value of primal problem equals to the optimal value of the dual problem.

Theorem 3. ([11] Corollary 3.1) Suppose Ẑ∗ is the optimal solution corresponding to Ẑ

for the primal problem (1.6) (1.7) with rank(Ẑ∗) = rZ. Through the spectral decomposition
of the corresponding Y , we have:

0 � Y =

[
A Ẑ∗

Ẑ∗T B

]
=

[
U
V

]
D

[
U
V

]T
, D ∈ SrY++, rank(Y) = rY = rZ

Further more, we get:

A = UDUT , B = V DV T , Ẑ∗ = UDV T , ‖Ẑ∗‖∗ =
1

2
trace(Y) =

1

2
trace(D) (3.1)

10

Proof. Suppose the optimal solution we get from (1.6) or (1.7) is Ẑ∗ . Applying a singular

value decomposition on Ẑ∗, gives Ẑ∗ = UẐ∗ΣẐ∗VẐ∗ . Set
D = 2ΣẐ∗

U = 1√
2
UẐ∗

V = 1√
2
VẐ∗

Consequently, we can get

Y =

[
U
V

]
D

[
U
V

]T
Suppose [UẐ∗]i, [VẐ∗]i and

[
Ui
Vi

]
represent the ith column of UẐ∗ , VẐ∗ and

[
U
V

]
,respectively.

Since each column of UẐ∗ and VẐ∗ is orthonormal, each column of

[
U
V

]
is orthonormal.

Thus we have trace(Y) = 2 × trace(ΣẐ∗) = 2× ‖ Ẑ∗ ‖∗ and rY = rZ = rank(D). Since
we get optimal Y from the primal problem, and Slater’s condition holds, there must exist
an optimal z for the dual problem.

3.2 Graph Representation of the Problem

In this section, we will introduce how to view the original optimization problem as a graph.
This new formulation will help us to fully utilize the partially observed information of the
matrix Z which could be used to construct exposing vectors.

Here, we can associate the partially observed matrix Z ∈ Rm×n with a weighted
undirected graph G = (V,E,W), having nodes set V = {1, ...,m,m+ 1, ...,m+n} and
edge set E, defined as:

E = {ij ∈ V ×V : i < j ≤ m}∪{ij ∈ V ×V : m+1 ≤ i < j ≤ n}∪{ij : Zi,j−m ∈ Ê} (3.2)

and weights for all ij ∈ E

Wij =

{
Zi(j−m), ∀ij ∈ Ē
0, ∀ij ∈ E\Ē.

where Ē is defined to be:
Ē = E \ ({ij ∈ V × V : i ≤ j ≤ m} ∪ {ij ∈ V × V : m+ 1 ≤ i ≤ j ≤ m+ n})

11

Note that every ij ∈ Ē corresponds to i(j −m) ∈ Ê, representing the position of an
observed entry in the large matrix Y and in the partially observed matrix Z.

We can now construct the adjacency matrix Ad = [Adij] for the graph G:

Adij =

{
1, if ij ∈ E
0, if ij /∈ E.

Based on the adjacency matrix, we can apply the clique-finding algorithm in [13] to find
cliques.

For this graph, the cliques C = {i1, ..., ik} ⊂ {1, ...,m} and C = {j1, ..., jk} ⊂ {m +
1, ...,m+n} are not of interest. But what we are interested in is the cliques (possibly after
row and column permutations) that correspond to a full (specified) sub-matrix X in Z.

|C ∩ {1, ...,m}| = p > 0 , |C ∩ {m+ 1, ...,m+ n}| = q > 0

Consequently we can find a specified sub-matrix X in Z:

X = {Zi,(j−m) : ij ∈ Ē,X ∈ Rp×q}

Example 1. Suppose the partially observed matrix Z is:

Z =

1 2 3 4 5 6

1 ? ? 1 2 3 ?
2 ? ? ? ? ? ?
3 ? ? 4 5 6 ?
4 ? ? ? ? ? ?
5 ? ? 7 8 9 ?

The entries with numbers represent the observed entries in Z, while the entries with ques-
tion marks represent the unobserved entries. For this case, number of rows m = 5 and
number of columns n = 6. Based on this we can construct the (m+n)× (m+n) adjacency

12

matrix Ad associated with Z as follows :

Ad =

1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 0 0 1 1 1 0
2 1 1 1 1 1 0 0 0 0 0 0
3 1 1 1 1 1 0 0 1 1 1 0
4 1 1 1 1 1 0 0 0 0 0 0
5 1 1 1 1 1 0 0 1 1 1 0
6 0 0 0 0 0 1 1 1 1 1 1
7 0 0 0 0 0 1 1 1 1 1 1
8 1 0 1 0 1 1 1 1 1 1 1
9 1 0 1 0 1 1 1 1 1 1 1
10 1 0 1 0 1 1 1 1 1 1 1
11 0 0 0 0 0 1 1 1 1 1 1

This adjacency matrix has the same dimension as matrix Y , and its top left block

is where the information of Z is embedded. Consequently, we can find one node set
{1,3,5,8,9,10} where all the nodes in this set are pairwise connected. Furthermore, |{1, 3, 5, 8, 9, 10}∩
{1, . . . , 5}| = |{1, 3, 5}| = 3 > 0 and |{1, 3, 5, 8, 9, 10} ∩ {5 + 1, . . . , 5 + 6}| = |{8, 9, 10}| =
3 > 0, meaning this clique is a clique that we are interested in. Based on this clique, we
can find a 3-by-3 specified sub-matrix of Z, which resides on the intersections of rows 1,3,5

and columns 3,4,5 of matrix Z which is:

1 2 3
4 5 6
7 8 9

.

3.3 Finding Exposing Vectors

Through the graph representation G introduced in previous section, every time we find a
clique on the graph G, we consequently find a specified sub-matrix in the matrix Z. Now
suppose a specified sub-matrix X is found, X ∈ Rp×q with rank rX . Although the entries
of specified sub-matrix X might scatter around the matrix Z, we can apply row and column
permutations to move to the bottom-left of Z:

Z =

[
Z11 Z12

X Z22

]
. The following lemma shows that we can find the X with rank rX = rZ = r.

13

Lemma 1. ([11] Lemma 3.2) Suppose Z ∈ Rm×n is a random matrix with entries generated
from a continuous random distribution, and rank(Z) = r and we can always find specified
sub-matrices X ∈ Rp×q in Z with min{p, q} ≥ r then rank(X) = r with probability 1
(generically).

Proof. Note that, because X is a specified sub-matrix of matrix Z, with rank(Z) = r,
therefore, it is intuitive that the rank of matrix X which is rank(X) is less than or equal to
r. Otherwise we can find contradictions on how many linearly independent rows or columns
are there in the matrix Z. Thus we know rank(X) ≤ r. And from above definition, we
have min{p, q} ≥ r, thus we could select r columns from X which is [x1, x2, · · · , xr] with
xi ∈ Rp×1, i ∈ {1, · · · , r}. If rank(X) < r, it means that we can find linearly dependent
relations on this r columns. This means that there exists ai, i ∈ {1, · · · , r}, such that
y =

∑r
i=1 aix

i = 0. Since y = 0, we know that the first element of vector y which is y1 = 0 =∑r
i=1 aix

i
1. Because all the xi1 are generated from continuous random distribution, then so is

y1. Thus we know that the possibility that rank(X) < r is equivalent to the possibility that
y1 = 0. The equivalence is generated from the fact that if rank(X) < r, then we could find
linear combination to make y = 0. And y1 is a linear combination of xi1, i ∈ {1, · · · , r}, so
y1 also follows a continuous random distribution. Because the possibility that the random
variable generated from a continuous random distribution equals to a certain value equals
to zero. Thus we can conclude that P(rank(X) < r) = P(y1 = 0) = 0. Thus from previous
two steps, we conclude that rank(X) = r with probability 1.

Now we can rewrite the structure of the optimal Y in Theorem 3 as:

0 � Y =

U1

P
Q
V1

D

U1

P
Q
V1

T

=

U1DU

T
1 U1DP

T U1DQ
T U1DV

T
1

PDUT
1 PDP T PDQT PDV T

1

QDUT
1 QDP T QDQT QDV T

1

V1DU
T
1 V1DP

T V1DQ
T V1DV

T
1

 . (3.3)

It is easy to see that the corresponding Z =

[
U1DQ

T U1DV
T

PDQT PDV T
1

]
, X = PDQT and

XT = QDP T . Let P̄ = PD
1
2 and Q̄ = QD

1
2 . Note that P̄ and Q̄ have the same range

with X and XT , respectively.

R(X) = R(P) = R(P̄) and R(XT) = R(Q) = R(Q̄) (3.4)

14

Note that (3.4) is of significant importance to our problem, because we can construct
the exposing vectors generated from the specified matrix X for our problem by using this
fact.

Through exploiting the structure in (3.3), we have PDP T = P̄ P̄ T ∈ Sp+ and QDQT =
Q̄Q̄T ∈ Sq+ with rank(P̄ P̄ T) = r and rank(Q̄Q̄T) = r. To check whether exposing vectors
associated with P̄ P̄ T and Q̄Q̄T exist, we simply need to check the size of X. If the number
of rows of X is greater than the target rank (p > r), we know that exposing vectors
associated with the p-by-p matrix P̄ P̄ T exist. And if the number of columns of X is
greater than the target rank (q > r), we know that exposing vectors associated with the
q-by-q matrix Q̄Q̄T exist.

For the specified sub-matrix M̄P = P̄ P̄ T , which is a positive semi-definite matrix, with
p > r, it is easy to see that after eigenvalue decomposition as in (2.1), we can get:

M̄P = [Up, VP]

(
AP 0
0 0

)
[UP , VP]T : AP ∈ Sr++ (3.5)

Where each column of UP and VP is an eigenvector obtained from eigenvalue decomposition.
From (2.3) we can easily find a specified exposing vector M̄∆

P = VPV
T
P associated with M̄P .

For the specified sub-matrix M̄Q = Q̄Q̄T , which is also a positive semi-definite matrix,
with q > r, it is easy to see that after eigenvalue decomposition as in (2.1), we can get

M̄Q = [UQ, VQ]

(
AQ 0
0 0

)
[UQ, VQ]T : AQ ∈ Sr++ (3.6)

Where each column of UQ and VQ is an eigenvector obtained from eigenvalue decomposition.
From (2.3) we can easily find a specified exposing vector M̄∆

Q = VQV
T
Q associated with M̄Q.

We now can construct M∆
P and M∆

Q , which are exposing vectors to the face containing
the optimal Y in (1.6) (1.7) by putting M̄∆

P and M̄∆
Q on the corresponding positions in M∆

P

and M∆
Q and filling out other entries with 0’s to make M∆

P and M∆
Q of the same size of Y .

For example, if the clique we found from the graph representation is {i1, · · · , ik, j1, · · · , jl}
where 1 ≤ i1 < · · · < ik ≤ m and m + 1 ≤ j1 < · · · < jl ≤ m + n. Then M̄∆

P will be
placed on the intersections of rows i1, · · · , ik and columns i1, · · · , ik of M∆

P . At the same
time, M̄∆

Q will be placed on the intersections of rows j1, · · · , jl and columns j1, · · · , jl of
M∆

Q . Other entries of M∆
P and M∆

Q will be set to 0.

To better illustrate how to construct the exposing vectors M∆
P and M∆

Q , we present
following example.

15

Example 2. Suppose the partially observed matrix Z with rank = 2 is:

Z =

1 2 3 4 5 6

1 ? ? 1 2 3 ?
2 ? ? ? ? ? ?
3 ? ? 1 2 3 ?
4 ? ? ? ? ? ?
5 ? ? 4 5 6 ?

The adjacency matrix we construct from Z is:

Ad =

1 2 3 4 5 6 7 8 9 10 11

1 1 1 1 1 1 0 0 1 1 1 0
2 1 1 1 1 1 0 0 0 0 0 0
3 1 1 1 1 1 0 0 1 1 1 0
4 1 1 1 1 1 0 0 0 0 0 0
5 1 1 1 1 1 0 0 1 1 1 0
6 0 0 0 0 0 1 1 1 1 1 1
7 0 0 0 0 0 1 1 1 1 1 1
8 1 0 1 0 1 1 1 1 1 1 1
9 1 0 1 0 1 1 1 1 1 1 1
10 1 0 1 0 1 1 1 1 1 1 1
11 0 0 0 0 0 1 1 1 1 1 1

Following the procedure in the 1st example, we can get a clique {1, 3, 5, 8, 9, 10}, and

further get a specified matrix X =

1 2 3
1 2 3
4 5 6

 which lies on the intersections of rows 1,3,5

and columns 3,4,5 of matrix Z. After applying the singular value decomposition on this
specified sub-matrix X, we get the following:

X =

−0.3619 −0.6075 −0.7071
−0.3619 −0.6075 0.7071
−0.8591 0.5118 0.0000

10.1961 0 0
0 1.0192 0
0 0 0

−0.4080 0.8166 −0.4082
−0.5633 0.1268 0.8165
−0.7185 −0.5631 −0.4082

(3.7)

16

Then we get:

P̄ =

−0.3619 −0.6075 −0.7071
−0.3619 −0.6075 0.7071
−0.8591 0.5118 0.0000

10.1961 0 0
0 1.0192 0
0 0 0

 1
2

=

−1.1556 −0.6133 0
−1.1556 −0.6133 0
−2.7432 0.5167 0

(3.8)

Q̄ =

−0.4080 0.8166 −0.4082
−0.5633 0.1268 0.8165
−0.7185 −0.5631 −0.4082

10.1961 0 0
0 1.0192 0
0 0 0

 1
2

=

−1.3029 0.8244 0
−1.7986 0.1280 0
−2.2943 −0.5685 0

(3.9)

Through simple matrix multiplication, we get:

M̄P = P̄ P̄ T =

−1.1556 −0.6133 0
−1.1556 −0.6133 0
−2.7432 0.5167 0

−1.1556 −0.6133 0
−1.1556 −0.6133 0
−2.7432 0.5167 0

T =

1.7116 1.7116 2.8532
1.7116 1.7116 2.8532
2.8532 2.8532 7.7922

(3.10)

M̄Q = Q̄Q̄T =

−1.3029 0.8244 0
−1.7986 0.1280 0
−2.2943 −0.5685 0

−1.3029 0.8244 0
−1.7986 0.1280 0
−2.2943 −0.5685 0

T =

2.3771 2.4488 2.5205
2.4488 3.2513 4.0537
2.5205 4.0537 5.5870

(3.11)

After applying an eigenvalue decomposition, we get:

M̄P =

 0.7071 0.6075 0.3619
−0.7071 0.6075 0.3619

0 −0.5118 0.8591

0 0 0
0 1.0192 0
0 0 10.1961

 0.7071 0.6075 0.3619
−0.7071 0.6075 0.3619

0 −0.5118 0.8591

T
(3.12)

M̄Q =

−0.4082 −0.8166 0.4080
0.8165 −0.1268 0.5633
−0.4082 0.5631 0.7185

0 0 0
0 1.0192 0
0 0 10.1961

−0.4082 −0.8166 0.4080
0.8165 −0.1268 0.5633
−0.4082 0.5631 0.7185

T
(3.13)

17

Then we get the specified exposing vectors M̄∆
P and M̄∆

Q associated with M̄P and M̄Q,
respectively:

M̄∆
P =

 0.7071
−0.7071

0

 0.7071
−0.7071

0

T =

 0.5 −0.5 0
−0.5 0.5 0

0 0 0

 (3.14)

M̄∆
Q =

−0.4082
0.8165
−0.4082

−0.4082
0.8165
−0.4082

T =

 0.1667 −0.3333 0.1667
−0.3333 0.6667 −0.3333
0.1667 −0.3333 0.1667

 (3.15)

To construct the exposing vectors generated from the clique we found:

Step 1: Initialize two zero matrices M∆
P and M∆

Q having the same dimension of matrix
Y .

Step 2: Put M̄∆
P on the intersections of rows 1,3,5 and columns 1,3,5 of matrix M∆

P .

M∆
P =

1 2 3 4 5 6 7 8 9 10 11

1 0.5 0 −0.5 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 −0.5 0 0.5 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 0 0

Step 3: Put M̄∆

Q on the intersections of rows 8,9,10 and columns 8,9,10 of matrix M∆
Q

18

M∆
Q =

1 2 3 4 5 6 7 8 9 10 11

1 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0.1667 −0.3333 0.1667 0
9 0 0 0 0 0 0 0 −0.3333 0.6667 −0.3333 0
10 0 0 0 0 0 0 0 0.1667 −0.3333 0.1667 0
11 0 0 0 0 0 0 0 0 0 0 0

After these steps, we have successfully found two exposing vectors, namely M∆

P and
M∆

Q . And M∆
P and M∆

Q are exposing vectors with the same size of Y that are associated
with the two specified sub-matrix M̄P and M̄Q of the optimal Y .

From the definition of exposing vectors on positive semi-definite matrices, we know
that the sum of exposing vectors is still an exposing vector. Therefore, we can find enough
exposing vectors that are associated with specified sub-matrices of the optimal Y , and then
we just need to add them up to construct a large exposing vector to efficiently expose the
face containing the optimal solution. To do so, we can collect all the exposing vectors we
found through the approach discussed above, and then add them up. Details of summing
up all the exposing vectors are given in next section

3.4 Weights of Exposing Vectors

After finding the exposing vectors from the previous step, weights must be assigned to
each exposing vector to construct the final exposing vector to expose the face containing
the optimal Y . At this stage, if noise is included in the original matrix, we cannot weight
each exposing vector equally, because we know that the noise is not uniformly distributed,
and it may not be possible to reconstruct each sub-matrix with the same accuracy.[7]

Suppose that all the cliques we found are in the set Θ. Now, we consider a specified
matrix Xα ∈ Rpα×qα generated from a clique α in the set Θ. Through what has been
discussed, using singular value decomposition, we can get Xα = P̄αQ̄

T
α . Then it is easy to

get M̄P
α = P̄αP̄

T
α ∈ Rpα×pα and M̄Q

α = Q̄αQ̄
T
α ∈ Rqα×qα .

19

In the noiseless case, if the target rank of the partially observed matrix Z is r, and
pα ≥ r or qα ≥ r, we will always get rank(M̄P

α) = r or rank(M̄Q
α) = r, respectively.

But in noisy case, because we know that for sub-matrices of a large matrix, the rank
of the sub-matrices must be bounded up by the rank of the large matrix otherwise we can
find contradiction on how many linear independent rows/columns are there in the large
matrix. For our case, because we know the target rank is r, thus if rank(M̄P

α) > r or
rank(M̄Q

α) > r, it is intuitive that this is the effect of noise.

In order to measure how noisy a corresponding exposing vector is, we introduce the
Eckart-Young distance of matrix M which defines the distance between matrix M and
the closest matrix with rank r and the same dimension on the semi-definite cone. If there
is no noise, then (3.16) and (3.17) would result in 0. Through (3.18) and (3.19) we know
that all the exposing vectors will have the same weight 1. However, if there is noise in
M̄P

α and M̄Q
α , the larger the noise, the larger the results of (3.16) and (3.17), therefore the

weights associated of the corresponding exposing vectors (3.18) (3.19) will be smaller.

For M̄P
α the clique weight v(M̄P

α) is calculated as follows:

v(M̄P
α) =

∑pα−r
j=1 λ2

j(MαP) +
∑pα

j=pα−r+1(min(0, λj(M̄
P
α)))2

0.5pα(pα − 1)
(3.16)

For M̄P
α the clique weight v(M̄Q

α) is determined by:

v(M̄Q
α) =

∑qα−r
j=1 λ2

j(M̄
Q
α) +

∑qα
j=qα−r+1(min(0, λj(M̄

Q
α)))2

0.5qα(qα − 1)
(3.17)

Here, λj(M̄
P
α) and λj(M̄

Q
α) refer to the j’th smallest eigenvalue of the matrices M̄P

α and
M̄Q

α , respectively. pα and qα represent the dimension of M̄P
α and M̄Q

α , respectively. The
value of v(M̄P

α) and v(M̄Q
α) measure how noisy M̄P

α and M̄Q
α are. In the case without noise,

we will always have v(M̄P
α) = v(M̄Q

α) = 0.

For the exposing vector (M̄P
α)∆, the weight associated ω is determined by:

ω((M̄P
α)∆) = 1− v(M̄P

α)

sum of all existing clique weights
(3.18)

For the exposing vector (M̄Q
α)∆, the weight associated ω is determined by:

ω((M̄Q
α)∆) = 1− v(M̄Q

α)

sum of all existing clique weights
(3.19)

20

3.5 Final Exposing Matrix

Now, we have collected all the exposing vectors and the weights associated with them.
Then, simply adding up all the weighted exposing vectors, gives the final exposing vector
Efinal:

Efinal =
∑
α∈Θ

ω((M̄P
α)∆)(MP

α)∆ + ω((M̄Q
α)∆)(MQ

α)∆ (3.20)

Recall that (MP
α)∆ and (MQ

α)∆ are the exposing vectors generated from (M̄P
α)∆ and

(M̄Q
α)∆ by filling out 0’s in non-corresponding entries of (M̄P

α)∆ and (M̄Q
α)∆.

21

3.6 Algorithm for Finding large exposing vector

In this section, we conclude how the actual algorithm is applied to construct the final
exposing vector Efinal.

Data: a partially observed matrix Z ∈ Rm×n, target rank: rtarget, max clique
size:size

Result: A final exposing vector Efinal that exposes a face containing the optimal
solution of Y ∈ Sm+n

+

1. form the corresponding adjacency matrix A
2. find a set Θ from A contains all the cliques of proper size in the range
{rtarget × (rtarget + 1), size }

for each clique α ∈ Θ do
Get the corresponding specified sub-matrix Xα;
[pα, qα] ← size(Xα);
[P̄ , Q̄] ← fullrankdecomposition(Xα);
if pα > rtarget then

M̄P
α = P̄ P̄ T

calculate v(M̄P
α) through (3.16)

end
if qα > rtarget then

M̄Q
α = Q̄Q̄T

calculate v(M̄P
α) through (3.17)

end

end
calculate all the exposing vectors (MP

α)∆ and (MQ
α)∆.

calculate all the exposing vector weights ω((M̄P
α)∆) and ω((M̄Q

α)∆) for every α ∈ Θ
as described in (3.18) and (3.19)

sum over all existing weights using exposing vectors (MP
α)∆ and (MQ

α)∆associated
with α ∈ Θ
Efinal ←

∑
α∈Θ ω((M̄P

α)∆)(MP
α)∆ + ω((M̄Q

α)∆)(MQ
α)∆

return Efinal;
Algorithm 1: Finding final exposing vector Efinal

22

Chapter 4

Dimension Reduction and Local
Refinement

4.1 Dimension Reduction

After constructing the final exposing vector Efinal, we can apply eigenvalue decomposition
on it to get:

Efinal =
[
Û V̂

] [R0 0
0 0

] [
Û V̂

]
(4.1)

Where R0 is a diagonal matrix with the positive eigenvalues of Efinal on the main diagonal

of it. Û and V̂ are the eigenvectors. Based on the number of non-zero eigenvalues found,
through (2.2) we can easily find the optimal Yfinal for our semi-definite programming
formulation in (1.6) or (1.7) resides on the null space of Efinal which can be expressed as

Yfinal = V̂ RV̂ T , where rR0 +rR = m+n . Because rR0 > 0, therefore R is a positive definite
matrix with smaller dimensions compared to the matrix Yfinal. Thus, we have successfully
reduced the original problem to a smaller face of the original semi-definite cone. Also note
that, since the column vectors in V̂ are orthonormal, we have trace(Yfinal) = trace(R).

4.2 Noiseless Case

Based on smaller dimension matrix R, the optimization problem in the noiseless case can
be expressed as:

23

minR trace(R)

s.t. PĒ(V̂ RV̂ T) = b
R � 0,

(4.2)

The constraints in (4.2) are exactly low rank constraints of the following type:

eTi V̂ RV̂
T ej = bij, ∀ij ∈ Ē (4.3)

where Ē ⊂ E is an index set containing the linearly independent constraints. These
constraints can be further written as rank two constraints though the cyclic permutation
property of trace(·):

bij = eTi V̂ RV̂
T ej

= trace(eTi V̂ RV̂
T ej)

= 1
2

trace((V̂ T
j,: V̂i,: + V̂ T

i,: V̂j,:)R)

= 1
2
〈(V̂ T

j,: V̂i,: + V̂ T
i,: V̂j,:), R〉

(4.4)

Definition 9. (e.g see [17]) A matrix M ∈ Sn can be identified linear isometrically as a

vector in R
n×(n+1)

2 through the following vectorization operator:
svec(M) = [M11,

√
2M12,M22, · · · ,

√
2M1n, · · · ,

√
2Mn−1,n,Mnn]T

Example 3. Suppose we have two symmetric matrices. The first one is L1 =

1 2 2
2 1 2
2 2 1

.

The second one is L2 =

2 1 1
1 2 1
1 1 2

. Thus through above definition, svec(L1) =

1

2
√

2
1

2
√

2

2
√

2
1

and svec(L2) =

2√
2

2√
2√
2

2

. Thus it is easy to see that svec(L1)T svec(L2) = 〈L1, L2〉 = 18.

24

Note that, if Ms and Ns are both symmetric matrices, then through the definition
above, it is easy to see that 〈Ms, Ns〉 = svec(Ms)

T svec(Ns). For our case, we know Tij =
1
2
(V̂ T

j,: V̂i,: + V̂ T
i,: V̂j,:) and R are both symmetric matrices; therefore, based on the property of

the inner product and equation (4.4), we can convert both Tij = 1
2
(V̂ T

j,: V̂i,: + V̂ T
i,: V̂j,:) and R

to long vectors svec(Tij) and svec(R), respectively. The positive semi-definite constraint
in (4.4) may now be rewritten as:

svec(Tij)
T svec(R) = bij (4.5)

By constructing a large matrix M̂ whose rows are sevc(Tij),∀ij ∈ Ē we have converted
the original problem with its semi-definite constraints into a new problem with linear
constraints:

minR trace(R)

s.t. M̂svec(R) = b
R � 0

(4.6)

Note that the number of columns of M̂ equals the length of vector svec(R). The reason is

that, each row of matrix M̂ is actually a svec(Tij)∀(i, j) ∈ Ē. The dimension of Tij equals
to the dimension of R, thus the length of svec(Tij) equals to the length of svec(R).

It is worth mentioning that the matrix M̂ will have linearly dependent constraints. To
obtain a set of linearly independent constraints, we need to apply QR factorization to drop
those dependent constraints. This approach takes longer time than the noisy case. After
dropping out redundant rows of M̂ and b, we will get M̃ and b̃. Thus for the noiseless case,
the final optimization problem we are going to solve is:

minR trace(R)

s.t. M̃svec(R) = b̃
R � 0

(4.7)

For the final formulation of noiseless problem (4.7), we have successfully reduced the
number of constraints of the original problem. And with fewer constraints, we can directly
solve (4.7) using standard semi-definite programming packages like CVX[10].

25

4.3 Noisy Case

For the noisy case, we investigate the performance of the Pareto Search Strategy as sug-
gested by [7]. This strategy was originated in portfolio optimization, where the constraints
are far more complicated than the objective function[1] [20]. The idea is simple: we only
need to exchange the objective function and the difficult constraint, and then use this
easier flipped problem to solve the origin.

First, we present the resulting optimization problem associated with the noisy case
after dimension reduction:

minR trace(R)

s.t. ||PĒ(V̂ RV̂ T)− b|| ≤ δ
R � 0

(4.8)

The objective function trace(R) is easy to compute by summing up all the main diagonal

elements. However, computing the constraint ||PĒ(V̂ RV̂ T) − b|| ≤ δ is much harder.
Therefore, it is intuitive to apply Pareto search strategy to flip the problem and get the
following problem with easier constraint:

ϕ(τ) := minR ‖PĒ
(
V̂ RV̂ T

)
− b‖

s.t. trace(R) = τ
R � 0.

(4.9)

Now the objective function is convex and the feasible region is very simple. We simply
need the smallest τ to make the objective function ϕ(τ) ≤ δ.

For our problem, we can even make the flipped problem simpler. Firstly, we solve the
following problem:

ϕ(τ0) := minR ‖PĒ
(
V̂ RV̂ T

)
− b‖

s.t. R � 0.
(4.10)

Using the solution of (4.10), we get τ0 and δ0. where δ0 is the minimum residual of
the optimization, and τ0 is the trace associated with it. Therefore, we know that it is
impossible to get a smaller residual than δ0 in the optimization problem (4.9), because we
cannot get a solution with constraint on the trace better than the problem without such a
constraint.

26

We can then solve (4.9) iteratively, that is, in each iteration of the algorithm we keep

reducing the τ0 value we get from the first step, until we get a Ẑ with the target rank or
meet the exit criteria. We then exit from the loop, and can use the Ẑ from last iteration
as the recovered matrix.

In order to illustrate the idea, we present the Figure (4.1). On this image, point P
represents the solution from the problem (4.10). Note that the x-axis represents the trace
value, therefore if we keep reducing the τ0, the solution from each iteration will keep moving
left, until we get to the point Q that we is the solution with a pre-defined target rank or
we meet the exit criteria.

Figure 4.1: Pareto illustration

Both optimization problems presented in this chapter can be easily solved by CVX
[10][9] with the embedded SDPT3 package [12][17].

For the PĒ(V̂ RV̂ T) part in the objective function, we can construct a large matrix

M̂ following what is done in the noiseless case (4.6). Consequently, all the semi-definite

constraints can be formed as rows of a large matrix M̂ , and the matrix R is converted
into the long vector svec(R). In addition, we add a regularization term, similar to a ridge
regression type problem e.g. see [19]. The reason for applying regularization is simply that

there appear to be some correlated columns in the big matrix M̂ . If we do not apply the
regularization to impose constraints on the size of the parameters, the resulting svec(R)
of the optimization problem will have high variance and be poorly determined. A large
positive coefficient can be cancelled by a large negative coefficient. And with regularization,
the problem is alleviated. The optimization problems we work on with regularizations are
the following:

27

ϕ(τ0) := minR ‖M̂svec(R)− b‖+ γ ‖ R ‖F
s.t. R � 0.

(4.11)

and
ϕ(τ) := minR ‖M̂svec(R)− b‖+ γ ‖ R ‖F

s.t. trace(R) = τ
R � 0.

(4.12)

where γ > 0 and very small

Moreover, the number of rows of M̂ equals the number of the observed entries in Z (|Ê|),
and the number of columns equals the length of vector svec(R). For a matrix N ∈ Ss×s,
the length of svec(N) equals t(s) = s(s+1)

2
, which is the number of upper triangular entries

and diagonal entries of matrix N . For our case, We know that, after finding enough cliques
and applying dimension reduction, generally we can get R ∈ Ss++ with s very close or
even equal to r, which is the rank of matrix Z. Note that r is a low rank, meaning it is
much smaller than |Ê|. Consequently, the system presented above (4.12) is highly over
determined. In order to alleviate this situation, we introduce the sketch matrix method as
suggested in [16]. A sketch matrix is a random matrix with proper size. For our case, we

set a sketch matrix M̄ ∈ R2t(s)×|Ê|. we then multiply on the left of both M̂ and b, and get:
M̄M̂ = R2t(s)×t(s) and M̄b ∈ R2t(s)×1. Thus the number of constraints of the above system
can be shrunk significantly from |Ê| to 2t(s).

Thus, the two optimization problems that we actually applied in the noisy case are as
follows:

ϕ(τ0) := minR ‖M̄M̂svec(R)− M̄b‖+ γ ‖ R ‖F
s.t. R � 0.

(4.13)

ϕ(τ) := minR ‖M̄M̂svec(R)− M̄b‖+ γ ‖ R ‖F
s.t. trace(R) = τ

R � 0.

(4.14)

28

Now we present the actual algorithm we used to solve the flipped problem

Data: null space basis vectors: V̂ , target rank: rtarget, limit of iterations: I

Result: rank(Ẑ) = rtarget
solve the problem (4.14) through CVX,and get the initial value of τ0 and δ0

set τ = τ0 and δ = δ0

while rank(Ẑ) > rtarget and k ≤ I do
reduce τ by 5 percent:

τ ← 0.95 ∗ τ
Then solve the problem:(4.14) through CVX, and get δ1 and R1

δ ← δ1

R̄← R1

Increment the iterate:
k ← k + 1

end

return the Ẑ part in V̂ R̄V̂ T

Algorithm 2: Local Refinement Process

29

Chapter 5

Numerical Results

5.1 Data Generation

The Table 5.1 shows the results of matrix recovery with target rank equals 2 without noise.
While Table 5.2 represents the results of the noisy matrix recovery with target rank equals
to 2. The Table 5.3 shows the results of the matrix recovery with target rank equals to 3
without noise. While Table 5.4 shows the results of the matrix recovery with target rank
equals to 3 with noise.

We generate the instance Z = ZLZ
T
R , where ZL ∈ Rm×r and ZR ∈ Rn×r, r is the

target rank for the recovery algorithm. Both ZL and ZR are generated from a standard
normal distribution N(0,1). For the noisy case, we generate noise on the matrix through
the approach below:

Zij ← Zij + σεt ‖ Z ‖∞,∀ij ∈ Ē,

where εt is also generated from a standard normal distribution. We also noted that ‖Z‖∞
is about 5.

The test result is generated from the Relative Residual, which is defined as:

RResidual =
‖ Ẑ − Z ‖F
‖ Z ‖F

,

where Ẑ is the matrix that recovered from out algorithm.

For each row of the following tables, we have run 5 tests and take their average value
to present.

30

5.2 Test Results

Here, we use the Matlab code to generate the numerical results. The main algorithm is
embedded in the file completZ.m. The codes to generate test cases are in the files with
names starting with table and the file run tests.m will generate test results in table
format. In each of the files with names start with table, mm and nn represents the
number of rows and columns of the matrix to be recovered, respectively. NF represents
the noise level, and PP represents the density of the observed entries in the matrix to be
recovered.

All of the tests were run on MATLAB 2015a(32-bit version) running on a DELL Insp-
iron 14 5000 series with Windows10, 16G RAM and Intel(R) Core(TM) i7-4510U CPU @
2.60GHz.

For the following tables, r represents the target rank, m represents the number of rows
of the recovery matrix, and n represents the number of columns of the recovery matrix.
The proportion of entries of matrix Z that are observed are represented by p. For the noisy
case, the σ represents the noise level.

For the noiseless case, we present the results of recovering matrices with rank equal
2 and 3, respectively. It can be seen from the results that we almost perfectly recovered
the matrix Z. However, the running time of this case is much longer because of the QR
approach which is applied to drop off the redundant constraints in original problem.

We also present the results of rank 2 and rank 3 matrices recovery with noise. It can
be seen that even there exists noise, the result is still promising. The initial time refers
to the time spend before local refinement, and refine time stands for the time spent in
the whole process, including the local refinement step. The initial rank stands for the
rank we get before the local refinement, and the refine rank stands for the rank we get
after the local refinement. It can be seen from these tables that in most of the time, we
can get an acceptable result without any local refinement.

It can be seen from the following 4 tables that even though sometimes facial reduction
method might fail to get the target rank value we set beforehand, it can still produce
promising results. As can be seen, for all the test cases, facial reduction method always gives
low rank solutions with very small relative residuals. This suggests that facial reduction
method can be applied to low-rank matrix completion problem and can generate good
results.

31

Table 5.1: no noise: r = 2; m× n size; density p.
Specifications

Time (s) Rank RResidual (%Z)
m n p

700 1000 0.40 34.13 2.00 4.079e-14
1000 1400 0.40 55.27 2.00 3.0711e-13
1400 2000 0.40 70.70 2.00 8.0114e-14

Table 5.2: noisy: r = 2; m× n size ↑; density p ↓; noise ↑.
Specifications Time (s) Rank RResidual (%Z)

m n σ p initial total initial refine initial refine
700 1000 0.0000 0.40 18.38 18.38 2.00 2.00 2.788e-14 2.788e-14
700 1000 0.0010 0.40 18.53 35.49 2.20 2.00 6.127e-01 6.238e-01
700 1000 0.0015 0.40 16.59 24.35 3.20 3.00 7.627e-01 7.737e-01
700 1000 0.0030 0.40 17.47 31.18 3.00 3.00 5.643e-01 5.913e-01
700 1000 0.0040 0.40 22.06 29.99 3.20 3.00 5.881e-01 5.881e-01

Table 5.3: no noise: r = 3; m× n size; density p.
Specifications

Time (s) Rank RResidual (%Z)
m n p

700 1000 0.40 36.93 3.00 4.079e-14
1000 1400 0.40 67.72 3.00 3.3711e-13
1400 2000 0.40 76.70 3.00 7.7184e-14

32

Table 5.4: noisy: r = 3; m× n size ↑; density p ↓; noise ↑.
Specifications Time (s) Rank RResidual (%Z)

m n σ p initial total initial refine initial refine
400 700 0.0000 0.40 8.92 8.92 3.00 3.00 1.010e-14 1.010e-14
700 1000 0.0001 0.40 20.99 20.99 1.00 1.00 9.889e-01 9.889e-01
700 1000 0.0010 0.40 31.29 72.54 4.00 4.00 8.827e-01 9.238e-01
700 1000 0.0015 0.40 37.31 37.31 2.00 2.00 9.709e-01 9.709e-01
700 1000 0.0020 0.40 16.60 16.60 3.00 3.00 9.206e-01 9.206e-01
700 1000 0.0000 0.40 12.90 12.90 3.00 3.00 1.436e-14 1.436e-14
700 1000 0.0001 0.45 37.45 37.45 3.00 3.00 9.373e-01 9.373e-01
700 1000 0.0015 0.50 16.76 48.41 4.00 4.00 9.087e-01 9.316e-01
700 1000 0.0030 0.55 38.04 38.04 2.00 2.00 9.351e-01 9.351e-01
700 1000 0.0045 0.60 45.44 113.57 4.00 4.00 9.108e-01 9.371e-01

33

Chapter 6

Conclusion

In this report, we present how facial reduction with the exposing vectors approach can be
applied to pre-process a low-rank matrix completion problem together with a nuclear norm
heuristic and positive semi-definite programming.

Instead of directly solving large scale problems, such as the matrix with more than a
million entries, we can fully utilize the high degenerate structure of the optimal solution.
By finding enough exposing vectors associated with the ”cliques” and summing them up
to get a large exposing vector that can locate the minimum face containing the optimal
solution, we successively convert the original problem into an equivalent problem with
much smaller dimensions.

Although it is not guaranteed that we can always find the minimal face containing the
optimal solution, even in this situation, we can still reduce the dimension of the original
problem significantly such that the final optimal solution is partially localized. This sug-
gests that by applying the exposing vector approach of facial reduction, large dimension
problems can be efficiently converted to equivalent problems with much smaller dimensions.

Solving large scale low-rank minimization problems consequently becomes much more
efficient.

34

Index

C∗, 6
Efinal, 19
Yfinal, 21
Θ, 18
M̄P , 14
M̄Q, 14
P̄ , 13
Q̄, 13
convex envelope, 3

exposed face, 6
facially exposed, 6
minimum face, 6
non-negative polar cone, 6
range, 6

clique, 10

Eckart-Young distance, 18
edge set, 11
exposing vector, 6
exposing vector approach, 1

face, 6
Facial Reduction, 1
Facial Reduction Method, 1

inner product, 6

low-rank matrix completion problem, 1

nodes set, 11

partially observed matrix, 1

relative interior, 6

SDP, 1
sketch matrix, 1
small exposing vector, 10
specified sub-matrix, 13

weighted undirected graph, 11
weights, 11

35

References

[1] Van Den Berg.E and M.P. Friedlander. Spgl1: A solver for large-scale sparse recon-
struction. http://www.cs.ubc.ca/labs/scl/spgl1, 2007.

[2] P. Biswas, T. Liang, K. Toh, K. Wang, and Y. Ye. Semidefinite programming ap-
proaches for sensor network localization with noisy distance measurement. IEEE
Tran. Autom. Sci. Eng, 3:360–371, 2006.

[3] J.M. Borwein and H. Wolkowicz. Facial reduction for a cone-convex programming
problem. J. Austral. Math. Soc. Ser. A, 30(3):369–380, 1980/81.

[4] B.Recht, M.Fazel, and P.Parrilo. Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM Rev., 52(3):471–501, 2010.

[5] E.J Candes and B. Rechet. Exact matrix completion via convex optimization. Found.
Comput. Math, 9:717–772, 2008.

[6] E.J. Candes and Tao.T. The power of convex relaxation: Near-optimal matrix com-
pletion. IEEE Tran. Inform. Theory, 56:2053–2080, 2010.

[7] D.Drusvyatskiy, N.Krislock, Y.-L.Voronin, and H.Wolkowicz. Noisy euclidean distance
realization:robust facial reduction and the pareto frontier. American Mathematics
Society, 2015.

[8] Maryam Fazel, Haitham Hindi, and Stephen P.Boyd. A rank minimization heuristic
with application to minimum order system approximation. American Contral Con-
ference, 6, 2001.

[9] M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs.
In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning and
Control, Lecture Notes in Control and Information Sciences, pages 95–110. Springer-
Verlag Limited, 2008. http://stanford.edu/~boyd/graph_dcp.html.

36

http://stanford.edu/~boyd/graph_dcp.html

[10] M. Grant, S. Boyd, and Y. Ye. Disciplined convex programming. In Global opti-
mization, volume 84 of Nonconvex Optim. Appl., pages 155–210. Springer, New York,
2006.

[11] Shimeng Huang and Henry Wolkowicz. Low-rank ma-
trix completion using nuclear norm with facial reduction.
http://www.math.uwaterloo.ca/ hwolkowi//henry/reports/facredpsdcompl.pdf, 2016.

[12] M.J. Todd K.C. Toh and R.H. Tutuncu. Sdpt3 — a matlab software package for
semidefinite programming, 1999.

[13] Nathan Krislock and Henry Wolkowicz. Explicit sensor network localization using
semidefinite representations and facial reduction. SIAM J.OPTIM, 20 No.5:2679–
2708.

[14] Z. Liu and L. Vandenberghe. Interior point method for nuclear norm approximation
with application to system identification. SIAM J. Matrix Anal, A, 31:1235–1256,
2009.

[15] Netflix. Netflix problem. http://www.netflixprize.com, 2006.

[16] M. Pilanci and M.J. Wainwright. Randomized sketches of convex programs with sharp
guarantees. IEEE Trans. Info. Theory, 61(9):5096–5115, 2015.

[17] K.C. Toh R.H Tutuncu and M.J. Todd. Solving semidefinite-quadratic-linear programs
using sdpt3. Mathematical Programming Ser. B, 95:189–217, 2003.

[18] N. Srebro and R.R. Salakhutdinov. Collaborative filtering in a non-uniform world:
Learning with the weighted trace norm. Advances in Neural Information Processing
Systems, 2010.

[19] R Tibshirani T Hastie and J Friedman. The Elements of Statistical Learning Learning.
Springer series in Statistics, 2003.

[20] E. Van Den Berg and M.P. Friedlander. Probing the pareto frontier for basis pursuit
solutions. SIAM J.sci.Comput, 31, 2008.

37

	List of Tables
	List of Figures
	Introduction
	Background
	Original problem
	Convex Surrogates of Original Problems
	Semi-definite formulation

	Facial Reduction and Exposing Vectors
	Basic elements of convex geometry
	Facial Reduction on Semi-definite matrices
	Facial Reduction on the face containing optimal Y

	Facial Reduction for Low-rank Matrix Completion
	Special Structure at Optimum
	Graph Representation of the Problem
	Finding Exposing Vectors
	Weights of Exposing Vectors
	Final Exposing Matrix
	Algorithm for Finding large exposing vector

	Dimension Reduction and Local Refinement
	Dimension Reduction
	Noiseless Case
	Noisy Case

	Numerical Results
	Data Generation
	Test Results

	Conclusion
	References
	Index

