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TRUST REGION PROBLEMS AND
NONSYMMETRIC EIGENVALUE PERTURBATIONS*

RONALD J. STERNt AND HENRY WOLKOWICZt
Abstract. A characterization is given for the spectrum of a symmetric matrix to remain real

after a nonsymmetric sign-restricted border perturbation, including the case where the perturbation
is skew-symmetric. The characterization is in terms of the stationary points of a quadratic function
on the unit sphere. This yields interlacing relationships between the eigenvalues of the original
matrix and those of the perturbed matrix. As a result of the linkage between the perturbation and
stationarity problems, new theoretical insights are gained for each. Applications of the main results
include a characterization of those matrices that are exponentially nonnegative with respect to the
n-dimensional ice-cream cone, which in turn leads to a decomposition theorem for such matrices. In
addition, results are obtained for nonsymmetric matrices regarding interlacing and majorization.

Key words, trust region problems, nonsymmetric perturbation, secular function, secular an-

tiderivative, eigenvalues, interlacing, exponential nonnegativity, majorization, inverse eigenvalue
problems
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1. Introduction. Suppose that B is a real symmetric (n- 1) (n- 1) matrix.
Then the classical Rayleigh Principle and Courant-Fischer Minimax Theorem relate
the eigenvalues of B to the stationary points of the quadratic function

(x) xBx

with respect to the constraint set

Sn-1 {X E Rn-1 xtx

In particular, if we introduce the Lagrangian function

(1.1) L(x, )) ,(x) )(xtx 1),

then the Lagrange equation

(1.2) OxL(x,)) =0

becomes

(1.3) Bx )x O.

If x and satisfy the Lagrange equation and x Sn-1, then we shall say that A and
x are a Lagrange multiplier and an associated stationary point of (.) with respect to
Sn-1, respectively. Thus there is a one-to-one correspondence between the eigenvalues
of B and the Lagrange multipliers. Furthermore, the stationary points, including the
maximum and minimum points, can be found by determining the unit eigenvectors of
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B. The lack of convexity in the constraint does not cause difficulties in locating the
constrained maxima and minima, since such points correspond to the maximum and
minimum eigenvalues, respectively.

The eigenvalues of symmetric border perturbations of B have well-known prop-
erties. In particular, the eigenvalues 5 >_ 52"." >_ 6, of the n n matrix

(1.4) A=
r t

interlace the eigenvalues of B, which we denote "1 >_ 2 -- -- "n--1. That is,

(See, e.g., pp. 94-97 in Wilkinson [24].)
Nonsymmetric border perturbations of B are not as well understood. For exam-

ple, the n n matrix

(1.6) A at t

which is a skew-symmetric perturbation for t 0, may possess either a complex or
real spectrum, and may be either diagonalizable or derogatory.

On the other hand, the important problem of finding the Lagrange multipliers
and stationary points of the general quadratic function

(1.7) #(x) x Bx 2rl x

on Sn-1 has been extensively studied in the literature. In particular, we shall consider
the "trust region" problems

Pnin min{#(x) x E Sn-}

and

Pmax max{#(x) x e Sn-1}.

Such problems arise during the calculation of the step between iterates in an important
class of minimization algorithms called "trust region methods." (The step in trust
region algorithms is actually calculated with a constraint of the form II Gy <- 0, for
some nonsingular matrix G and > 0. However, complementary slackness and the
change of variables x (1/)Gy lead to the form of our trust region problems.) The
theory has been discussed in Forsythe and Golub [5], Golub [9], Gander [6], Sorensen
[21], Fletcher [4] and Gander, Golub, and von Matt [7]. Furthermore, numerical
techniques for solving trust region problems are given in [21], Mo% and Sorensen [18],
[4], Coleman and Hempel [3], [7], and Golub and von Matt [10].

In the present work, we establish new connections between spectral properties
of a nonsymmetrically perturbed symmetric matrix and the stationarity properties
of a specific trust region problem. We provide explicit criteria for the spectrum of
the perturbed matrix to remain real, as well as eigenvalue interlacing properties. We
shall consider certain sign-restricted nonsymmetric border perturbations, including
the case (1.6). Our approach, in essence, is to regard the perturbation of a matrix as

a linear perturbation of a purely quadratic form. As a result of the interplay between
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the trust region and perturbation problems, new theoretical insights are gained for
each.

In the next section we summarize required known facts concerning trust region
problems, some of which involve the so-called secular function associated with #(.).
In addition, we shall make use of the secular antiderivative function associated with
#(.). This is a key tool which we employ to relate results on trust region problems
to perturbation theory. The main results are then given in 3, including interlacing
relationships for a nonsymmetrically perturbed matrix.

Section 4 contains applications of our main results. These include a characteriza-
tion of matrices which are exponentially nonnegative with respect to the n-dimensional
ice-cream cone, which leads to a decomposition theorem for such matrices. In addition,
results are given for nonsymmetric matrices regarding interlacing and majorization.

2. Trust region problems.

2.1. Some known results. For the real symmetric (n- 1) (n- 1) matrix B
and the real (n- 1)-vector , consider the quadratic function #(.) given by (1.7) on

Sn-1. Then the Lagrangian function is

(2.1) L(x, ) xtBx- 2rffx- )(xtx- 1).

In all that follows, our terminology regarding Lagrange multipliers and stationary
points is as in 1, with the appropriate Lagrange equation replacing (1.3). Presently,
the Lagrange equation is

(2.2) (B AI)x rl O,

The set of Lagrange multipliers of #(.) with respect to Sn-1 will be denoted by A,
and for E A, the associated set of stationary points will be denoted by Su(A).

Useful properties concerning trust region problems are summarized in the follow-
ing theorem.

THEOREM 2.1. Part 1. The vector x Rn-l, with xtx 1, is a minimum

(maximum) point of #(.) over Sn-1 if and only if there exists a scalar ) such that
x and ) together satisfy the Lagrange equation (2.2), with the matrix B- )I being
positive (negative) semidefinite.

Part 2. The set A of Lagrange multipliers of #(.) with respect to Sn-1 is finite.
Let A be given by

A1 > A2 > > Ak,

and let x S )i i=1,2,...,k. Then

> >... >

In particular, the minimum (maximum) of#(.) over Sn-1 is attained at any stationary
point associated with k (1).

Part 1 of the above theorem is due to Sorensen [21]; see also pages 101-102 in
Fletcher [4]. Part 2 is due to Forsythe and Golub [5]; also see the discussion of Case
b below.

Again denoting the spectrum of B by ’),1 >_ 3’2 >_ >_ %-1, let P be an orthog-
onal matrix such that

(2.3) PtBP D diag(3’l,,),’2,..., 3’n--l),
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the diagonal matrix with diagonal elements 71,72,..., 7n-1. Then the Lagrange equa-
tion (2.2) becomes

(2.4) (D- AI)& .
where

ptx, pt.

The set of Lagrange multipliers A is not changed by this transformation of the La-
grange equation, and for every x E Rn-l, we have

t(&) := &tDc- 2t& #(x).

We now introduce the condition

(2.6) i #0 Vi=l,2,...,n-1,

or equivalently.

(2.7) no column of P is orthogonal to 7.

There are two cases to consider.
Case a. Condition (2.6) holds. Then (2.4) implies that if A E A, it must be the

case that D- AI and B- AI are invertible. Also, the sets S(A) and S#(A) are then
the singletons

(2.8) x’ (B- A/)-lr/

and

(2.9) &x (D AI) l ptx

respectively. Furthermore, in the present case, A is the set of solutions to the implicit
secular equation

1 rlt(B ,I)-2] O,

which has the same solution set as the explicit secular equation

(2.11) f.() I 0.

Continuing to utilize the terminology of [71, we shall call f(.) the secular function
associated with #(.).

In Case a, unique solutions to "Pmin and Pmx are given by xx and xx, re-
spectively, from formula (2.8). Furthermore, in view of Part 1 of Theorem 2.1, the
invertibility of B- AkI implies

(2.12) Ak < 7n--1,

while the invertibility of B- ,kl I implies

(2.13)
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Case b. Condition (2.6) does not hold. In [5] it was proven that in this case,
A . t_J F, with/ being the solution set of the explicit secular equation, and where

r > 0},

where we adopt the convention 0/0 0 in defining ft,(’)" For each A e , B- AI is
invertible and S,(A) is the singleton x given by formula (2.8). For each 7 e F, the
set S(7) is an (m, 1)-dimensional manifold, where m, is the multiplicity of the
eigenvalue

In Cse b, it is possible that 7 A, implying that A occurs strictly to the right
of the mximl root of fz(.). Note that this can happen only if

7=A 0.

Furthermore, then fz (A) > 0, implying that S, (An_), the set of solutions to the
trust region problem P" is notmax

implying that Ak occurs strictly to the left of the minimal root of f(.). This is

possible only if

A =0.

It may then happen that f(A) > 0, implying that S(Ak), the set of solutions to
the trust region problem Pmin, is not a singleton.

2.2. The secular antiderivative. For the general quadratic function (.) given
by (1.7), consider the function

=
with the convention 0/0 0. Then the singularities of gz(.) are the same as those of
the secular function fz (.), and what is more,

(2.15)

at every nonsingularity A. We shll cM1 gz(.) the secular antiderivative function
associated with p(.).

The following lemma will be used in the next section to establish connections
between trust region problems and perturbation theory. The lemm sserts that
in Case a, the secular antiderivative’s values on the Lagrange multiplier set A re

precisely the values of (.) on the corresponding set of stationary points, as given by
(2.8). A variant of this result may be found in 2 of Forsythe and Golub [5], where it

is used in proving Part 2 of Theorem 2.1 above.
LEMMA 2.1. Assume that condition (2.7) holds (i.e., Case a), and let A.

Then

where x (B AI)- .
Pro@ Using the fct that (2)t2 1, we obtain
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At this point it will be useful to discuss the graph of the function g (.) in Case a.
Clearly g(.) possesses a singularity at each eigenvalue ’i, i 1, 2,..., n- 1. Also,
g(A) --. oc as A $ /i, while g(A) -oc as T ’, for each 1,2,..., n- 1. Let
i be such that +1 < . Then there is at least one root of g(.) in (+1, /i). It is
readily checked that g () < 0, and consequently is monotone decreasing in this
interval. It follows that g(.) has at most one point of inflection on (’i+, ’), which is
possibly also a critical point. Should there be a point of inflection in (/i+, /i), then
on that interval g(.) is strictly convex to the left of this point, and strictly concave
to the right of it. Hence g(.) has either zero, one, or two critical points on (,i+,
with the possibility of only one critical point being accounted for by the existence of
an inflection which is also critical. By again considering g(.), we find that g(.) is
strictly convex on the semi-infinite interval (,, x), while we have strict concavity on
the other semi-infinite interval, namely (-oc, n-1). Now, since g(A) --.
and as A --, c, we conclude that g(.) has a unique critical point, namely, A on

(1, c). Similarly, since g() -- -c as " "n- and as -- -x), we see that g(.)
has a unique critical point, namely, Ak on (-oc,fn_). (Note that this agrees with

(2.12) and (2.13).)
In Case a, it is clear that the set of critical points of the secular antiderivative

function g(.) is A. Furthermore, in view of our previous discussion, we then have

(2.17) #1-- g()l) > t2-----g,(2) >"" > #k- g(k),

where we have adopted the notation

# #(x), i 1,2,...,k

for the stationary values of #(.) on Sn-.
The preceeding discussion is summarized in Fig. 1, which illustrates the graph of

a typical secular antiderivative function when (2.7) holds and the are distinct.

3. Main results. In what follows, we will be considering the border perturbation
of the real symmetric (n- 1) x (n- 1) matrix B given by

(3.1) A t

where c and are real (n- 1)-vectors and t R. Letting P be an orthogonal matrix
which diagonalizes B as in (2.3), we define

Then
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FIG. 1.

where

& pta, pt.

Let us assume that

(3.4) &i/3i>0 Vi=l,2, ,n-1.

Since a permutation can be built into P, we can without loss of generality assume
that

(3.5)

where

D diag(’,’2,...,
D diag(9, 92,..., 9),

&i3i=O Vi=l,2,...,,

&3>O Vi=l,2,...,fi,

and

t+=n-1.

Furthermore, we can assume the ordering

9 >- 9 >"" >- %.
Remark 3.1. (i) Note that condition (3.4) holds if a =/3; that is, when A is given

by (1.6).
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(ii) It is possible, of course, that either or may be zero. It is readily shown
that

(3.6) 0 = no eigenvector of B is orthogonal to c or

Consider the submatrix of given by

We associate with A the quadratic function

The secular antiderivative function associated with #(.) is then

(3.9)

From the structure of i,, we see that the characteristic polynomial of A is

(3.10) p(A) p(A) H( A),
i=1

where

(3.11) /(/) det(-

In view of (3.10), it is clear that each of the diagonal entries of/) is an eigenvalue
of A. Therefore to completely determine the spectrum of A, it is necessary only to
determine the spectrum of A. The following key lemma describes this spectrum in
terms of the secular antiderivative function associated with #(.), and is the basis of
our linkage between trust region problems and perturbation theory.

LEMMA 3.1. The real eigenvalues of A that differ from the values are the
solutions of

(3.12) g#(/k) t.

Proof. Let/ E R where A : i for all 1, 2,..., . From the Schur complement
formula (see [12], p. 22), we then obtain

(3.13) det(fi. M) det(D M)[t- ) + t(D -/kI)-l(],

from which it follows that the real eigenvalues of A differing from the
are the solutions of

(a.14) t- ,X + ’ o.
=1

In view of (a.9), this is equivalent to (3.12).
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Let us denote the set of Lagrange multipliers of #(.) with respect to Sn by A, and
let this set be given by

Since condition (2.6) holds for #(.), we are presently in Case a. Therefore the set of
critical points of g#(.) is A, and moreover, in view of (2.17), we have

(3.15) /51 g#(A1) >/22 g#(A2) >"" >/2m g#(Am),

where the stationary values of #(.) on Sa are denoted

1,2,...,m.

Here

1,2,...,m,

with /being the -vector whose ith component is (&i/) 1/2.
The next theorem provides a qualitative description of the eigenstructure of the

matrix A given by (3.1), when condition (3.4) holds. Realness of the spectrum of
A is characterized in terms of the graph of gp(.), and in particular, in terms of the
stationary values of the quadratic function #(.). Should the spectrum be real, the
interlacing relationships between the eigenvalues of A and B are described. Prior to
stating the result, we require some further terminology and notation.

Let E . We shall say that is a type-1 critical point of gp(.) if it is a critical
point that is also an inflection. Otherwise, we call A a type-2 critical point of g#(.).
From the discussion of the secular antiderivative function given in 2.2, it is clear that
the number of type-2 critical points is even, since these points occur pairwise upon
the particular bounded intervals (i+1,) where they exist, and in addition, there is a
single type-2 critical point in each of the semi-infinite intervals (-c, e) and
these are An and A1, respectively. Let us denote the sets of type-1 and type-2 critical
points of g#(-) by/’ and/", respectively. Then

We shall write the set A’ as .. > .$ >... > .’

while the set ." will be written as

Here

w + 2v + 2 m,

with w or v possibly being zero. We denote the set of stationary values corresponding
to A’ as {#}o=1, while the set of stationary values corresponding to A" is written as
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It will be convenient to define the following closed intervals:

It is important to note that, in view of (3.15), the intervals defined above are mutually
disjoint.

THEOREM 3.1. Let B be an (n- 1) (n- 1) real symmetric matrix, and let A
be the perturbation of B given by (3.1). Assume that condition (3.4) holds, and that
ft is of the form (3.5). Let fit(.) be given by (3.8). Then the following hold:

1. There exist n- 2 real eigenvalues {.5i}_2 of A, including all the eigenvalues
of [9 and- 1 eigenvalues of fit, which interlace the n- 1 ordered eigenvalues {9’i}i=in-1
of B; that is,

2. The remaining two eigenvalues of A (which are eigenvalues of A), say 5a and
5b, are real if and only if

(3.17) te {’} u {-} u {-,} u { 0 ’}.=
3. Furthermore, 5 and 55 are real and distinct if and only if t is in the interior

of one of the v + 2 intervals in (3.17). In this case, the + 1 eigenvalues of A are
real and distinct.

4. If (3.17) holds, we have the following relations involving and b, where we
assume a <_ b:

() t > # # < 5 < < 5 < t.
(b) t 1 1 a 1 5b t.
(c) t pg_, < & g_ &.
(d) t e (p’, pg_) g < & < X_ < & or < ’ < & < ’_.

(f) t p . p &.
(g) t #. t _< 5. . 5 < %.

Furthermore, in each of the statements (c)-(f), all values on the right-hand side

of are contained in a single interval of the form (z/j+l, /j).
Proof. Consider the graph of g#(.), a typical example of which is given in Fig. 2.

We see that if ’i+1 < 9, then (3.12) has at least one solution 5 in (9+i, 9), which,
in view of Lemma 3.1, is an eigenvalue of A. Furthermore, since the characteristic
equation of A is given by

det(-AI)= (,i-A) t-A+ .a/ _0,
i=1 i=1 i :]

it follows that if 9i has multiplicity k as an eigenvalue of D, then 9i is an eigenvalue
of A with multiplicity k 1. Hence

(3.18) ql > 5-i > 9 >"" > %-i >_ $-i >_ %,
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FIG. 2.

where the - 1 numbers 6i, are eigenvalues of A. Part 1 of the theorem now follows
readily. Parts 2 and 3 are consequences of part 4, which follows directly from consid-
eration of the graph of g# (.), as in Fig. 2. There the relevant values of t are indicated,
with the subscripts on t corresponding to (a)-(h) above. (Note that there are two
possibilities for (d).) That {5b t in (a) and (b) follows from the graph and the fact
that the trace of is the sum of the eigenvalues of fi,, as does the inequality t _< a
occurring in (g)and (h). El

Remark 3.2. In Theorem 3.1, we can replace #(.) with any quadratic function of
the form.

where i =El, since this change does not alter the Lagrange multipliers or critical
values of #(.) with respect to Se.

Theorem 3.1 gives a detailed description of the eigenstructure of the perturbation
A under assumption (3.4), and in particular, a complete characterization of when
the spectrum of A is real. However, to apply the result, one requires an orthogonM
diagonalization of B, and this may not be readily available. In the following corollary,
sufficient conditions for realness of the spectrum of A are given, without reliance on
an orthogonal diagonalization, in case A is given by (1.6); that is, when

COROLLARY 3.1. Let B be an (n- 1) (n- 1) real symmetric matrix, and
consider the perturbation of B given by

(3.19) A at t

where ee is a real (n- 1)-vector. Define

it(x) x Bx 2oetx.

Let

(3.21) #l=max{#(x) xtx=l}
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and

(3.22) #k min{#(x) xtx 1}.

Then either of the conditions

(3.23) t _> #1

or

(3.24) t _< #k

are sufficient for the spectrum of A to be real.
Proof. As was noted in Remark 3.1, condition (3.4) holds for the present pertur-

bation. Now observe that #(.) and #(.) have the same secular function and secular
antiderivative, where #(.) is given by (3.8) with (i i for i= 1, 2,..., . Since the
roots of the secular function fg(.) are the critical points of the secular antiderivative
gg (.), the discussion of Cases a and b in 2.1 tells us that

A1 AI

From Part 2 of Theorem 2.1, we then have

(The last two inequalities can also be deduced directly from the definitions of the
functions #(.) and #(.).) The result now follows from Theorem 3.1, and in particular,
from part 4, (a), (b), (g), and (h). [3

The values #1 and #k in Corollary 3.1, which are the optimal objective function
values of the trust region problems Pmax and Pmin, respectively, may be efficiently
determined numerically by the method of Mor6 and Sorensen [18].

In Corollary 3.2, we give a Gersgorin-like sufficient condition for realness of the
spectrum of A given by (3.19). We use the notation I1" I1 for both the euclidean norm
of an (n- 1)-vector and the spectral norm of an (n- 1) x (n- 1) matrix.

COROLLARY 3.2. Let B and A be as in Corollary 3.1. Then a sufficient condition

for the spectrum of A to be real is

(3.25)

Proof. This follows from the fact that (3.25) implies that either (3.23) or (3.24)
hold, and Corollary 3.1.

We conclude this section with another result regarding the perturbation (3.19).
This elementary result is independent of Theorem 3.1, and yields further connections
between trust region problems and nonsymmetric perturbations.
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THEOREM 3.2. Let B, A, and I(’) be as in Corollary 3.1. Then ) E A (that is,
is a Lagrange multiplier of #(.) with respect to Sn-1) with x S,(A), if and only if

) is an eigenvalue of A with associated eigenvector

in which case lx[I 1 and t= #(x).
Proof. Upon premultiplying the Lagrange equation

(3.26) Bx Ax 0

by x and using the fact that xtx 1, we obtain

(3.27) #(x) + ctx A 0,

i.e., the following eigenvalue-eigenvector equation holds

Conversely, suppose that the above eigenvalue-eigenvector equation holds, with t
#(x). Then the Lagrange equation (3.26) and (3.27) clearly hold. Premultiplying by
x again and substituting for A yields xtBx-atx (#(x) +atx)xtx 0, which implies
that x

4. Applications.

4.1. Exponential nonnegativity. In this subsection it will be seen that the
main results of 3 can be applied to characterize those matrices that are exponen-
tially nonnegative with respect to the n-dimensional ice-cream cone and to provide a
decomposition theorem for such matrices.

Let us denote the n-dimensional ice-cream cone by

Kn {y Rn <- y2n’ Yn >- O}
Equivalently,

Kn {y Rn ytQny < O, Yn >-- 0},

where Qn diag(1, 1,..., 1,-1). We shall denote the matrix exponential by

etA E(tA)J/j!,
:/=0

and the boundary of Kn by OK,. The following further notation and terminology
will be utilized:

H(Kn) {A: AK, c K,}.
e(Kn) {A: e’A C H(Kn) Vt _> 0}.

e(OKn) {A: etA(OKn) C OKVt >_ 0}.
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These sets will be referred to as the Kn-nonnegative matrices, exponentially Kn-non-
negative matrices, and exponentially OKn-invariant matrices, respectively. It is readily
verified that both H(Kn) and e(OKn) are subsets of e(Kn). Although our discussion
will be essentially self-contained, the reader is referred to Berman and Plemmons
[2] and nerman, Neumann, and Stern [1] for general facts concerning these sets of
matrices.

Notice that A E e(Kn) if and only if for any initial point yo Kn, the solution
y(t) etAyo of the initial value problem

d
-y(t) Ay(t);

satisfies y(t) Kn for all at >_ O. Similarly, A e(OKn) means that y(t) OKn for
all Yo y(O) OKn.

We require the following lemma of Stern and Wolkowicz [22], in which e(Kn) and
e(OK) are characterized in terms of tangency-like properties of the vector field {Ay}
relative to the surface

OK {y e Rn ytQny O, Yn >-- O}.

LEMMA 4.1. Let A be a real n n matrix.
necessary and su]ficient condition for A e(Kn) is

Then the following hold: 1. A

(4.1) ytQnAy <_ 0 Vy e OKn.

2. A necessary and suJficient condition for A e(OKn) is

(4.2) ytQnAy- 0 Vy OKn,

which is in turn equivalent to A being of the form

(4.3) A=lG+algt gla
for some real (n- 1)-vector g and real number a, where the (n- 1) (n- 1) matrix

G is skew-symmetric.
We next use Corollary 3.1 to characterize e(Kn) in terms of the maximal critical

value of a specific trust region problem, as well as in terms of the realness of the
spectrum of a certain matrix.

Suppose that A e(Kn), or equivalently, that (4.1) holds. Let us partition A as

A1 c )(4.4) d ann

Then condition (4.1) becomes

(4.5) xtAlx + (c dt)x ann <_ 0 Vx e Sn--1.

Let us define

(4.6) B A1 /A
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From (4.5) it follows that (4.1) is equivalent to

where

#(x) "= xtBx- 2atx <_ ann

d-c
(4.8) c ---.
Defining

#=max{#(x) xtx=l}

(4.9) #1 <_ ann.

Now, in view of Corollary 3.1, (4.9) implies that the spectrum of the matrix

U (c- d)/2 )(4.10) Ar (dt ct)/2 ann

is real. We shall call Ar the regularization of A.
The preceding discussion is summarized in the following result.
THEOREM 4.1. Let A be a real n n matrix. Then the following hold: 1. A is

exponentially Kn-nonnegative if and only if (4.9) holds.
2. A necessary condition for A to be exponentially Kn-nonnegative is that the

spectrum ofA be real.
Example 4.1. In this example,

-1 1 1
4 2 3
0 1 aa3

Therefore

(4.11)

We wish to determine those values of a33 for which A E e(Kn). The regularization of
A becomes

AT 2 -1

1/2 1 a33

(X) --X -- 2X22 -- 5XlX2 Xl 2X2.

At this point, one could employ the algorithm of Mor(! and Sorensen [18] to compute
#1. Alternatively, one can find an orthogonal diagonalization of B with MATLAB,
and then generate the graph of gu(’)" The eigenvalues of B are thusly found to be
A1 3.4155 and A2 -2.4155, while an orthogonal matrix that diagonalizes B is

.8702 .4927
-.4927 .8702

Then

-.0576
1.1166 )"

as in (3.21), we see that (4.7) becomes
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It follows that

.05762 1.11662
(-2.4155- ) (3.4155- )"

Note that the present example is Case a (since no component of pto is zero). We
used MATLAB to graphically determine #1 5.67.

Hence

A E e(Kn) ==v a33 >_ 5.67.

Furthermore, if a33 satisfies this inequality, then the spectrum of Ar is guaranteed to
be real.

Our main objective in the remainder of this subsection is to prove that every
exponentially Kn-nonnegative matrix may be (nonuniquely) represented as the sum
of a Kn-nonnegative matrix and an exponentially OKn-invariant matrix. Formally,
this decomposition result is stated as follows.

THEOREM 4.2. One has

(4.13)

In proving this theorem, we make use of Theorem 4.1. We also require the fol-
lowing result, which provides characterizations of II(K,) and e(Kn) in terms of def-
initeness conditions. (For a real symmetric matrix C, the notation C _< 0 indicates
that C is negative semidefinite.)

THEOREM 4.3. Let A be a real n n matrix. 1. Assume that rank(A) > 1. Then
a necessary and su]ficient condition for

A e n(K ) {-YI(Kn)}

is the existence of # >_ 0 such that

(4.14) AtQnA- ttQn

_
O.

2. A necessary and suJficient condition .for A e(K,) is the existence of’ R
such that

(4.15) QuA + A Q ,’/Q <_ o.

Part 1 of Theorem 4.3 is due to Loewy and Schneider [14], while part 2 is due to
Stern and Wolkowicz [22].

We now shall prove the decomposition theorem.
Proof of Theorem 4.2. Let A e(Kn). By part 2 of Theorem 4.1, we know that

the spectrum of Ar is real, and we can choose 5 > 0 such that all eigenvalues of

=A+6I
are positive. Let F be an open disk in the open right-half complex plane, centered at
> O, such that the entire spectrum of lies within F. Inside F, one can express a

branch of the function f(/k) &!/ as

(4.16) f()
i--0
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where the coefficients c are all real. According to the theory of matrix functions (see,
e.g., [8]), A has a real square root given by

(4.17) /2 Eci( I)i.
i--0

Let us write

(4.18) A ft, + C,

where

l l A1-At c+d I(4.19) C
c + d 0

Then C E e(OKn), and, in view of Lemma 4.1, it follows that A and Ar are exponen-
tially Kn-nonnegative.

Since QnAr is symmetric, so is Q. Then part 2 of Theorem 4.3 implies the
existence of - such that

(4.20) QnI 7Qn

_
O.

From the fact that the spectrum of 1/2 is real and positive, it follows that

(4.21) (tl/2).t[Q ZQn]l/2
_

O.

Now, (4.17) implies that the matrix Qnft1/2 is symmetric, and therefore (4.21) yields

(4.22) Qn-i2 /QnfI <_ O.

Again using the symmetry of QnA, it follows that

(4.23) ttQn /Qn <_ O.

We can assume without loss of generality that >_ 0, since 5 can be increased, if
necessary. Then upon combining (4.20) and (4.23), we arrive at

(4.24) fltQnfl 2Qn
_

O.

Since rank(A) n, part 1 of Theorem 4.3 implies

(4.25) E H(Kn) U {-n(Kn)}.

Then (4.25) yields

e-.n e gn U {-Kn},

where en (0, 0,..., O, 1)t. We can assume that 5 has been chosen suiFficiently large
to ensure that

(4.26) tnn ann -I-5

_
O.

Hence (4.25) and (4.26) imply that Aen Kn. We conclude that

(4.27) A- C E H(Kn).
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Since C E e(OKn), it follows that

(4.28) A H(Kn) + e(OKn).

This completes the proof.
Example 4.2. Let

-1 0 0 /0 -2 2
0 0 0

Here

(Ay, Q3y} -(y2-1)2_<0 VyK3,

and therefore A is exponentially K3-nonnegative. Then

-1 0 0 /Ar 0 -2 1
0 -1 0

and following the proof of Theorem 4.2, Ar + 5I H(K3) provided that 5 is
chosen sufficiently large. Indeed, if we take 5 2, then

1 0 0 /0 0 1
0 -1 2

It is readily checked that (fly, Q3fty) -2(y2-1)2 <_ 0 and (y)3 >_ 0 for all y K3.
Hence H(K3), and therefore A E H(K3)+ e(OK3).

Remark 4.1. Given an n n exponentially Kn-nonnegative matrix in the regu-
larized form At, define

5" min{5 e R’Ar + 5I e n(Kn)}.

Let us denote the eigenvalues of Ar by A1 _< A2 _< _< ,n It is conjectured that

This is precisely the minimal value of 5 that will ensure that the spectral radius of
the matrix A / 5I is in its spectrum. Therefore this conjecture relates to the result
of Vandergraft in [23], which asserts that a matrix leaves a proper cone invariant only
if its spectral radius is an eigenvalue. (The cone K is said to be proper provided
that it is closed, convex, possesses nonempty interior, and K N {-K} {0}.) Note
that 5" is generally less than the "sufficiently large" value of 5 used in the proof of
Theorem 4.2 to ensure various properties, including the existence of a real square root
ft/2 (A + 5I) /2. As an illustration, consider the matrix Ar in Example 4.2. The
spectrum of A is {-1,-1,-1}, and therefore 5" 1. Then

0 0 0 /Ar+5*I= 0 -1 1 H(K3),
0 -1 1
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but this matrix does not possess a real square root.
Remark 4.2. An interesting open problem is to determine whether the decompo-

sition (4.13) holds for any proper cone K C Rn; that is

(4.29) e(K) n(K) + e(OK).

It is not difficult to verify (4.29) for the class of ellipsoidal cones; these are the linear
homeomorphisms of Kn. Also, results in Schneider and Vidyasagar [19] may be ap-
plied to verify (4.29) for the class of polyhedral proper cones, and to show that for a
general proper cone K, we have

(4.30) e(K) 1](K) + e(OK),

where the bar denotes closure. Hence (4.30) implies that conjecture (4.29) is equivalent
to closedness of H(K)+e(OK). The sets H(K) and e(OK) can be shown to be a proper
cone and a subspace, respectively, in the space of n n matrices. Such a sum is not
necessarily closed, and the conjecture therefore remains unsettled.

4.2. Interlacing and majorization. Given two real n-vectors x and y with
component orderings

(4.31) xl >_ x2 >_’" >_ Xn

and

(4.32) Yl >_ y2 >_’" >_ Yn,

we say that x is majorized by y (notationally, x -< y) provided that

xl _<y,
x+x2 <_yl+y2,

x + x2 +’" + Xn- <_ y + Y2 + + Yn-1,

X + x2 + + Xn Yl + Y2 +’’" + Yn.

The following is a classical theorem of Schur [20].
THEOREM 4.4. Let A be a real symmetric n n matrix with diagonal elements

all

_
a22 _>’" >_ ann

and eigenvalues

Then

(4.33) (all, a22,..., ann) -< (51,52,...,5n).

One proof of Schur’s theorem appearing in Mirsky [16], and attributed there to
Schneider, makes use of the interlacing (1.5) obtained upon writing A in the form
(1.4). (See also Theorem 9.B.1 in Marshall and Olkin [15] or Theorem 4.3.26 in Horn
and Johnson [12].) We next give an analogous "near-majorization" result and proof
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for (nonsymmetric) matrices of the form (3.1) satisfying condition (3.4), by applying
the "near-interlacing" provided by Theorem 3.1. We first introduce some further
terminology and notation.

Given real n-vectors x and y satisfying the orderings (4.31) and (4.32), we say
that x is near-majorized by y (notationally, x y) provided that

xe _< y:,

X2 -]- X3 Y2 + Y3,

X2 + X3 "- -}- Xn Y2 -}- Y3 +’’" + Yn,

X -- X2 -" -" Xn Yl + Y2 +’’" + Yn.

Note that x y implies x >_ Yl.
THEOREM 4.5. Assume that the hypotheses of Theorem 3.1 hold, and consider

the matrix fit given by (3.7).
1. Assume that t >_ #. Then the spectrum of A is real, t >_ /1, and

where v denotes the vector of eigenvalues of fit listed in nonincreasing order.
2. Assume that t <_ #m. Then the spectrum of A is real, t <_ /, and

Proof. We only prove part 1 of the theorem. The proof of part 2 is similar and is
left to the reader.

In view of Theorem 3.1 (part 4(a) and 4(b)), the eigenvalues of A are all real and
the ordered spectrum of A is given by

(4.34)

and we have

(4.35)

This yields the system of inequalities

The result now follows from the fact that

In the following corollary to Theorem 4.5, we obtain a near-majorization result
for matrices of the form (1.6).
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COROLLARY 4.1. Let B, A, #(.), #1 and #k be as in Corollary 3.1, where the
diagonal of B is assumed to have the ordering

(4.36) bll >_ b22 >_’" _> b(n-1)(n-1).

In addition, assume that no eigenvector of B is orthogonal to c.
1. If condition (3.23) holds (that is, t >_ #1), then the spectrum of A is real,

t >_ b11, and

(t, bll, b22,..., b(n-1)(n-1)) - v,

where v is vector of eigenvalues of A listed in nonincreasing order.
2. If condition (3.24) holds (that is, t <_ #k), then the spectrum of A is real,

t <_ b(n-1)(n-1), and

-(b11, b22,..., b(n-1)(n-1), t) - v.

Proof. We will only prove part 1, with the proof of part 2 being left to the reader.
Since condition (3.6) holds, we .have , where and are given by (3.5)

and (3.7), respectively. From the proof of Corollary 3.1, we see that the eigenvalues
of A are all real, and that the entire ordered spectrum of A is given by (4.34) with

n- 1. Upon applying Schur’s majorization theorem to B, we obtain

bll + b22 <_ "1 -t-

bll + b22 +"" + b(n-1)(n-1) <_ /1 nt- ’2 +’" -t-

and making use of (4.35) as in the proof of Theorem 4.5, we have that

1 + < 5a + 5,

The result now follows from the facts that t >_ 1 >_ bll and

trace(A) t + bll -- b22 +"" + b(n-1)(n-1)

Notice that the ordering of the diagonal (4.36) can be assumed to hold without
loss of generality in Corollary 4.1, since it can always be attained via a permutational
similarity.

The following inverse eigenvalue theorem is due to Mirsky [17]; see also Theorem
9.3.B in [151.

THEOREM 4.6. Suppose we are given real numbers 9/1, V2, Vn-1 and 51,52,..., 5n,
which satisfy the interlacing property (1.5); that is
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Then there exists a real symmetric n n matrix of the form

(4.a7) .4= rf t

with D diag(7,-y,..., 7_), sch ht the spectrum of A is {, ,..., }.
We will now show that an analogous inverse eigenvalue theorem holds when the

interlacing (1.g) is replaced by the types of near-interlacing occurring in Theorem
a.1. The proof closely follows Mirsky, but we include it nevertheless for the sake of
completeness. (See also Theorem 7 in [la].)

THEOREM 4.7. Suppose we are given real numbers, 2,..., n-1, 51, 2, n-2,
and 55, 5a, which satisfy

(4.as)
Assume that one of the following three cases holds:

1. 55 >_ 5a >_ /1;
2. /-1 >_ b >_ ;
3. " > > b > > "+ /or some j, 1 > j > n- 2.

Then there exists a real n n matrix of the form

A _t t

such that D diag(’l,’,... ,’-1) and such that the spectrum ofA is {51,... ,5,_1}

Proof. The characteristic equation of A is given by

(4.39) det(AI A) H (A i) A t + 0.

We need to choose r and t so that the numbers 5i, i 1,..., n, are the roots of (4.39),
where with some abuse of notation, we refer to 5b, 5a 5n-, 5n. First suppose that
the 5i are distinct. Let

n n--1

f(A) H(A 5i1, g(A) II (A /i).
i=l i--1

By direct verification, or by Lagrange’s interpolation formula, we have

(4.40) f(A) A- 5i- Ei + (A
i=1 i=1 k=l

Due to the near-interlacing in case 1, that is, when 5b >_ 5a >_ /i (or 5n-i >_ 5n >_ ?i),
we have

n k-1 n-2

f(’k) H (’k 5) H (’k 5) H (/ 51
i--n--1 i--1 i--k

n k-1 n-2

(--1) H I"Yk (’1(-1)k-1 H I"Yk e’l H (9’k ei)
i=n--1 i=1 i=k

n

(-11 H
i--1



NONSYMMETRIC EIGENVALUE PERTURBATIONS 777

and

n--I

g’(/k) (-1)k-1 H I’Y /il"
i=l

i--k

It follows that

f(/k)
>0, k--i,2,.., n-1.

Similarly, this can be shown to hold in the other two cases as well.
Now choose

f(’k) k 1, 2,..., n

and

Then the eigenvalues of A are the roots of f(.), which are the n values 5i. (A modifi-
cation of the proof yields the case of nondistinct 5i.) [:]

Remark 4.3. In [11], A. Horn proved the following inverse eigenvalue result, which
may be viewed as a converse to Theorem 4.4.

If we are given real numbers

a > a: >... > a

and

such that the majorization (4.33) holds, then there exists an n n real symmetric
matrix A with diagonal elements a11, a22,. ann and with eigenvalues

One proof of Horn’s theorem is due to Mirsky [17], and relies on Theorem 4.6.
(See also Theorem 9.B.2 in [15].) Hence it seems apppropriate to ask whether one
can obtain analogous converses to Theorem 4.5 or Corollary 4.1 by utilizing Theorem
4.7. At the present time, this remains an open problem.

Remark 4.4. In this subsection we have seen that known results for symmet-
ric matrices regarding interlacing and majorization can be extended, under certain
conditions, to "near-symmetric" matrices, i.e., matrices of the form (3.19). This was
possible because these extensions depended more on the realness of the spectrum than
on symmetry per se. Other results in the literature regarding symmetric matrices can
also be extended to the near-symmetric case by employing the present work; e.g.,
results on eigenvalue bounds appearing in Wolkowicz and Styan [25].

Acknowledgment. The authors wish to thank Q. Ye for pointing out reference
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