
A Blueprint for Semidefinite
Relaxations of Binary-Constrained

Quadratic Programs
Computing tight bounds on NP-hard problems using ADMM

by

Naomi Graham

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics & Optimization

Waterloo, Ontario, Canada, 2020

© Naomi Graham 2020

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

This thesis looks at the solution techniques of two NP-hard, large scale problems,
recently presented in [7, 16] , i.e., the quadratic assignment problem, QAP, and the side
chain positioning, SCP, problem. We summarize the approaches from [7, 16] and look at
the two problems in a unified way using a binary-constrained quadratic program, BCQP .

We show how to obtain upper and lower bounds on their optimal values by formulating
the semidefinite programming (SDP) relaxation and applying the Alternating Direction
Method of Multipliers (ADMM) algorithm to solve it.

Both problems, seemingly different on the surface, can we solved using a totally anal-
ogous approach. For this reason we were motivated to examine why this is the case. As
a result, we have found that both problems can be expressed as an integer quadratic pro-
gram with a binary linear constraint. We have therefore decided to derive the process of
obtaining the SDP relaxation and computing bounds via ADMM for the more general
problem of which SCP and QAP are shown to be particular cases. In doing this, we can
provide a motivation for every step of the process by examining the shared structure of
these two problems. Lastly, we show by nothing that the feasible set of the SDP is con-
tained a proper face of the SDP cone, we obtain a splitting of the primal variables in a
natural way, providing a good setting for ADMM.

By unifying the two problems under the umbrella of the BCQP , we better understand
why the method is so successful for these two problems and obtain a blueprint for applying
ADMM to similar combinatorial optimization problems.

iii

Acknowledgements

I would like to thank my advisor Henry Wolkowicz for giving me the opportunity to
study in the exciting area of convex optimization. Doing research with someone with his
level expertise in this field has been an incredible learning experience that I feel deeply
privileged to have had.

I would next like to thank the dear friends I have made during my time in Waterloo. I
am blown away by the number of brilliant and kind people I have met in this department
and truly believe it is a place unlike any other. I would especially like to thank my
office mates for supplying me with a steady stream of encouragement, laughs, and most
importantly, coffee.

Finally, I would like to thank my research collaborators with whom it has been an
absolute pleasure to work with. I am particularly grateful to Haesol Im, whose advice and
support made much of the work in this thesis possible.

iv

Table of Contents

1 Introduction 1

1.1 Notation . 3

1.1.1 Matrix and vector definitions . 3

1.1.2 Euclidean spaces . 4

1.1.3 Some linear maps . 4

2 Preliminaries 6

2.1 Definitions from convex analysis . 6

2.2 The cone of positive (semi)definite matrices 8

2.3 Faces of the positive semidefinite cone . 9

2.4 Optimality conditions for convex split problems 10

3 Binary-constrained quadratic program 13

3.1 Problem definition . 13

3.2 Exact hitting set . 14

3.2.1 Side chain positioning . 16

3.2.2 Quadratic Assignment Problem . 16

3.2.3 Complexity . 17

3.3 The doubly non-negative relaxation . 18

3.3.1 Reformulation . 18

3.3.2 Relaxing the rank-one constraint 21

3.3.3 Gangster constraint . 22

3.4 Refining the model . 24

3.4.1 Gangster and arrow constraints . 24

3.4.2 Trace constraint . 26

3.5 The split model . 28

v

4 Applying ADMM to the BCQP 31

4.1 Algorithm definition . 31

4.1.1 Dual problem . 32

4.1.2 Assumptions for convergence . 33

4.1.3 Normal cone intersection property 33

4.1.4 Optimality conditions . 35

4.1.5 Lagrangian saddle point . 36

4.1.6 Alternative condition for strong duality 38

4.2 Computational strategies . 39

4.2.1 R subproblem . 39

4.2.2 Y subproblem . 40

4.2.3 Upper bound . 40

4.2.4 Lower bound . 41

5 The Quadratic Assignment Problem 44

5.1 Background . 44

5.2 SDP relaxation of the QAP . 47

5.2.1 The QAP as a BCQP . 47

5.2.2 Rank one reformulation of the QAP 49

5.2.3 Gangster constraint for the QAP 50

5.2.4 Trace constraint for the QAP . 51

5.2.5 Split model for the QAP . 51

5.2.6 Strong duality . 52

5.3 ADMM for the QAP . 52

6 Side Chain Positioning problem 54

6.1 SDP relaxation of the SCP problem . 54

6.1.1 Protein folding biology . 54

6.1.2 Graphical representation . 55

6.1.3 The SCP problem as a BCQP . 56

6.1.4 Lifted reformulation of SCP problem 57

6.1.5 Gangster and trace constraint for the SCP problem 57

vi

6.2 Split model for the SCP problem . 58

6.3 Strong duality for the split model . 59

6.4 ADMM for the SCP problem . 60

6.4.1 Defining the iterates . 60

6.4.2 Upper bound computation . 60

6.4.3 Lower bound computation . 61

7 Conclusions and further notes 62

Index 63

References 66

vii

Chapter 1

Introduction

Let Sn denote the space on n× n symmetric matrices. A matrix X ∈ Sn is called positive
semidefinite if xTXx ≥ 0 for all x ∈ Rn. The set of n× n positive semidefinite matrices is
denoted by Sn+. We also use the notation X � 0 to denote that X is positive semidefinite
when the dimension is clear.

Let A be a linear map from Sn → Rm and let b ∈ Rm. Let C,X ∈ Rn×n and let
〈C,X〉 = trace(CTX) denote the trace inner product of C and X. A semidefinite program
is an optimization problem of the form:

min
X∈Sn

〈C,X〉
s.t. A(X) = b

X � 0.

(1.0.1)

Semidefinite programming (SDP) is useful in forming relaxations of hard combinatorial
problems, a notable example being the famous approximation algorithm for MAX-CUT
by Goemans and Williamson [15]. This thesis looks at the semidefinite programming
techniques for relaxations of two NP-hard combinatorial problems recently presented in
[7,16]: the Quadratic Assignment Problem, QAP, and the Side Chain Positioning, SCP,
problem. We summarize the computational techniques used in [7, 16] by viewing the two
problems as cases of a more general class of problems which we call the binary-constrained
quadratic program, BCQP.

We introduce the BCQP now, and provide further details on its associated graph the-
oretic problem are presented in Chapter 3. The BCQP is a particular case of an integer
quadratic program, IQP . An IQP is an optimization problem of the form:

min
x∈Rn

xTQx

s.t. Ax = b,
x ∈ {0, 1}n,

(1.0.2)

for a given linear transformation A : Rn → Rm, a vector b ∈ Rm, and some real symmetric

1

matrix Q ∈ Sn. The BCQP is a particular instance of an IQP (1.0.2) wherein the con-
straint matrix A is a binary matrix, meaning that all entries of A are either 0 or 1, and
where b ∈ Rm is the all ones vector which we denote ēm, where the subscript m gives the
size of the vector.

Quadratic integer programming is known to be NP-hard [9], but in some cases, by form-
ing the SDP relaxation, we obtain a convex program which can be solved by interior point
methods [2], or first order methods, such as Alternating Direction Method of Multipliers
(ADMM) [24].

A standard approach to forming the SDP relaxation of a binary IQP (1.0.2) is via a
direct lifting strategy (see [2, 23]). We give a rough summary of this process applied to a
general IQP for context, and demonstrate this process applied to the BCQP in detail in
Chapter 3. To obtain an SDP relaxation for (1.0.2), we first form an equivalent problem
by lifting the variable x ∈ Rn to the space of (n+ 1)× (n+ 1) symmetric matrices, which
we denote by Sn+1. We define the matrix:

Yx :=

(
1
x

)(
1
x

)T
∈ Sn+1, (x ∈ Rn),

and reformulate the constraints on x in (1.0.2) into constraints on this higher dimensional
variable Yx. We show in Section 3.3.1 that by making the appropriate choice of linear map
A, vector d ∈ Rm, and matrix C ∈ Sn+1, that it is possible to obtain an equivalent lifted
problem of the form

min
x∈Rn

〈C, Yx〉
s.t. A(Yx) = d.

(1.0.3)

The problem above is the reformulated version of (1.0.2). To obtain an SDP relaxation
of (1.0.3), we relax the rank-one constraint by replacing Yx with Y ∈ Sn+1

+ to obtain an
SDP relaxation of (1.0.2). The resulting SDP has the general form:

min
Y ∈Sn+1

〈C, Y 〉
s.t. A(Y) = d

Y � 0.

(1.0.4)

Further refining of the model is possible as well, i.e., we may also add the constraint of
elementwise nonnegativity on Y , which we denote by Y ≥ 0. We then call the resulting
SDP relaxations a doubly non-negative, DNN relaxation, since the variable Y is non-
negative both in the sense that Y � 0 and Y ≥ 0.

min
Y ∈Sn+1

〈C, Y 〉
s.t. A(Y) = d

Y � 0
Y ≥ 0.

(1.0.5)

One notable advantage gained in using ADMM over interior point methods is that non-

2

negativity constraints are no longer computationally expensive to compute, making the
DNN relaxation more tractable [24].

It is often the case that the feasible set of (1.0.4) is contained is a proper face (see
Section 2.3 for definitions of face and proper face) of the SDP cone. We can rephrase
this as: all feasible Y satisfy Y = V RV T , where range(Y) ⊆ range(V). This leads to
an equivalent formulation of (1.0.5), the optimization problem to which we will apply
ADMM:

inf
Y ∈Sn+1,R∈Sk

〈C, Y 〉

s.t. Y = V RV T

Y ∈ Y
R ∈ R.

(1.0.6)

We use constraints from (1.0.4) along with the relationship Y = V RV T to define sets R
and Y . To better understand the motivation for constructing this model, it is necessary
to consider the algorithm that we apply to solve it. In [5] Boyd et al. define the general
setting for which we can apply ADMM to be problems of the form:

min
x∈Rn,y∈Rk

f(x) + g(y)

s.t. Ax+By = c,
(1.0.7)

where f : Rn → R and g : Rk → R are convex functions, A,B are linear transformations
from Rn → Rm and Rk → Rm, respectively and c ∈ Rm. We call this model a split model to
emphasize that the variable is split into two variables, x and y. This is needed because each
iteration of ADMMsolves minimization sub-problems over each of the primal variables in
an alternating fashion (see Chapter 4 for the definition of the iterates). It is interesting
to consider the semidefinite setting (1.0.6), particularly where the splitting arises from the
face Y = V RV T , since many semidefinite relaxations of combinatorial problems can be
formulated as (1.0.5). A notable difference in (1.0.6) from (1.0.7) is the use set constraints
Y ∈ Y , R ∈ R, which we take into account in our analysis in Chapter 4.

1.1 Notation

1.1.1 Matrix and vector definitions

Since we make frequent use of vectors and matrices with zeros and ones in different positions
we now define conventions for notation throughout this thesis. Further definitions are given
in the preliminaries Chapter 2.

• For any matrix X, we write Xij to denote the element in the i-th row and j-th column
of X

3

• For any vector x, we write xi to denote the i-th coordinate of a vector x.

• For any m ∈ N, ēm denotes the all-ones vector in Rm.

• We write Ē to denote the matrix of all ones, in other words, Ē = ēēT .

• The notation em denotes the standard basis vector with 1 in the m-th coordinate.

• We write E00 to denote the matrix e0e
T
0 .

• I denotes the identity matrix.

1.1.2 Euclidean spaces

E (or En to specify the dimension) denotes general Euclidean space. Two important
Euclidean spaces we use are Rn, the real vector space of dimension n, and Sn, the space of
n× n symmetric matrices. Sn is equipped with the standard trace inner product:

〈X, Y 〉 :=
n∑
i=1

n∑
j=1

XijYij = trace(XY),

and the Frobenius norm,
‖X‖F :=

√
〈X,X〉.

1.1.3 Some linear maps

We now define some important linear maps which are used repeatedly throughout this
thesis.

Definition 1.1.1 (arrow map).

arrow : Sn+1 → Rn+1 arrow(X) =


X00

−X01 +X11

−X02 +X22
...

−X0n +Xnn

 (1.1.1)

Definition 1.1.2.

Diag : Rn → Sn Diag(x) =


x1 0 . . . 0

0 x2 . . .
...

...
...

. . .
...

0 xn



4

Definition 1.1.3.

diag : Rn×n → Rn diag(X) =


X11

X22
...

Xnn


Definition 1.1.4.

vec : Rn×n → Rn2

vec(X) =



X11
...

X1n
...

Xn1
...

Xnn


Definition 1.1.5.

Mat : Rnm → Rm×n Mat(x) =


x1 xm+1 . . . xm(n−1)

x2 xm+2 . . . xm(n−1)+1
...

...
. . .

...
xm x2m . . . xmn


Definition 1.1.6. The gangster operator is a linear map from Sn+1 to Sn+1 defined by:

GJ : Sn+1 → Sn+1, (GJ(Y))ij =

{
Yij if (i, j) ∈ J or (j, i) ∈ J,
0 otherwise,

(1.1.2)

where J is an index set in {0, . . . n} × {0, . . . , n} which we refer to as the gangster index.

5

Chapter 2

Preliminaries

This chapter is dedicated to preliminary results which fall under two categories. The first
category consists of selected definitions from convex analysis and optimization, covering
the required background for understanding the results presented in this thesis. The second
category consists of preliminary results that facilitate the longer proofs in later chapters.

2.1 Definitions from convex analysis

Definition 2.1.1 (convex set). [18, Definition 1.1.1] A set C ⊆ E is convex if

x, y ∈ C, λ ∈ [0, 1] =⇒ λx+ (1− λ)y ∈ C.

Definition 2.1.2 (relative interior). [18, Definition 2.1.1] The relative interior of a set
S is define to be the interior of S in the affine hull of S.

ri(S) = {x ∈ S : ∃ε > 0, B(x, ε) ∩ aff(S) ⊆ S},

where B(x, ε) denotes the open ball of radius ε centered at x.

Definition 2.1.3 (Minkowski sum). [18, Proposition 1.2.4] For any sets C1, C2 ∈ E, the
direct sum, or Minkowski sum, of C1 and C2, denoted by C1 + C2, is the following set:

C1 + C2 := {x = x1 + x2 : x1 ∈ C1, x2 ∈ C2} .

More generally, for any real numbers α1, α2, we define the set

α1C1 + α2C2 := {x = α1x1 + α2x2 : x1 ∈ C1, x2 ∈ C2} .

For a concise definition of a convex cone, we cite the following theorem from [27].

6

Definition 2.1.4 (convex cone). [27, Theorem 2.6]A set K ⊆ E is a convex cone if and
only if

K +K = K

∀λ ≥ 0, λK = K.

Definition 2.1.5 (Kronecker product). [20, Definition 4.2.1] Let A ∈ Rm×n, B ∈ Rp×q.
The Kronecker product of A and B, denoted A⊗B, is defined by:

A⊗B :=

A11B · · · A1nB
...

. . .
...

Am1B · · · AmnB

 ∈ Rmp×nq

Definition 2.1.6 (Normal cone). [18, Definition 5.2.3] Let C ∈ En be a convex set and
let x ∈ C. The normal cone to C at x, NC(x), is the set of directions s ∈ En that are
normal to C at x ∈ C. In other words:

NC(x) = {s ∈ En : 〈y − x, s〉 ≤ 0 ∀y ∈ C}.

Example 2.1.7. Let S be a subspace of En. Then for any x ∈ S, the normal cone of S at
x is the orthogonal complement of S denoted S⊥.

Proof. Let x ∈ S. By Definition 2.1.6, and using the fact that S is a subspace, we get

NS(x) = {s ∈ En : 〈y − x, s〉 ≤ 0 ∀y ∈ S}
= {s ∈ En : 〈z, s〉 ≤ 0 ∀z ∈ S}
= {s ∈ En : 〈z, s〉 = 0 ∀z ∈ S}
= S⊥.

Definition 2.1.8 (adjoint of a linear map). Let A : En → Em denote a linear map. The
adjoint of A is the unique linear map A∗ : Em → En satisfying:

〈A(x), y〉 = 〈x,A∗(y)〉, ∀x ∈ En, ∀y ∈ Em.

Proposition 2.1.9. [3, Proposition 6.46] Let A : En → Em denote a linear map. Let
A∗ : Em → En denote the adjoint of A. Then

null(A) = range(A∗)⊥

7

Corollary 2.1.10. Let A : En → Em denote a linear map. Let A∗ : Em → En denote the
adjoint of A. Let S := null(A) = {x ∈ En : A(x) = 0} denote the nullspace. Let x̄ ∈ S.
Then

NS(x̄) = range(A∗).

Proof. By Proposition 2.1.9, S⊥ = range(A∗). Since, by Example 2.1.7 S⊥ = NS(x) by for
any x ∈ S, we have that NS(x̄) = range(A∗).

2.2 The cone of positive (semi)definite matrices

Theorem 2.2.1. [31, Theorem 1.8] For every X ∈ Sn, there exists orthogonal Q ∈ Rn×n

such that:
X = Q diag(λ(X))QT .

Definition 2.2.2 (orthogonal spectral decomposition). For any X ∈ Sn, we write the
spectral decomposition of X,

X = UΛUT =
n∑
i=1

λiuiu
T
i ,

where (ui, λi) are the eigenpairs of X, and {u1, . . . , un} are an orthonormal set of eigen-
vectors. Then U is an orthogonal matrix comprised of these eigenvectors of X, and Λ is
the diagonal matrix of eigenvalues of X.

Λ =


λ1(X) 0 . . . 0

0 λ2(X) . . . 0
...

...
. . . 0

0 0 . . . λn(X)

 , λ1(X) ≥ λ2(X) ≥ . . . ≥ λn(X).

Definition 2.2.3. [19] Let X ∈ Sn and let S ⊂ {1, . . . , n}. A principal submatrix of X,
denoted by XS, is the matrix formed by deleting the ith row and column from X for every
i /∈ S.

Theorem 2.2.4. [31, Proposition 1.10]Let X ∈ Sn. The following are equivalent:

1. X ∈ Sn+;

2. xTXx ≥ 0, ∀x ∈ Rn;

3. λi(X) ≥ 0 ∀i = 1, . . . , n;

4. For any S ⊆ {1, . . . , n} Any square principal submatrix XS has non-negative deter-
minant;

8

5. 〈X, Y 〉 ≥ 0 ∀ Y ∈ Sn+.

Similarly, the following theorem characterizes Sn++, the set of n × n positive definite
matrices. We X � 0 to mean that X is positive definite.

Theorem 2.2.5. [31, Proposition 1.11]

1. Sn++ = int(Sn+).

2. Let X ∈ Sn. The following are equivalent:

(a) X ∈ Sn++;

(b) xTXx > 0, ∀x 6= 0 ∈ Rn;

(c) λi(X) > 0 ∀i = 1, . . . n;

(d) X ∈ Sn+ and rank(X) = n.

2.3 Faces of the positive semidefinite cone

In this section we define the notion of a face of a convex set, and pay special attention to
faces of the cone of positive semidefinite matrices. We will show that there a various was
to represent a the faces of the positive semidefinite cone. We also define the minimal face
of a convex cone, and prove a theorem which relates the notion of the minimal face F of
Sn+ containing a convex set to the elements of the relative interior of F .

Definition 2.3.1 (face of a convex set). Let C ⊆ E be a convex set. The convex set F ⊆ C
is called a face of C, denoted F � C, if for every x ∈ F and every y, z ∈ C such that x is
contained in the open interval (y, z), we also have y, z ∈ F .

Definition 2.3.2 (face of a convex cone). [12, Definition 2.2.1] Let K ⊆ E be a convex
cone. A convex cone F ⊆ K is called a face of K, and denoted F �K, if

x, y ∈ K, x+ y ∈ F =⇒ x, y ∈ F.

Definition 2.3.3 (proper face). A face F of a convex cone K is called a proper face of
K, denoted F / K, if F 6= K and F 6= ∅.

The following proposition shows that we have a correspondence between faces of Sn+
and subpaces of Rn.

Proposition 2.3.4. [25, Theorem 3.7.1] A set is a face of Sn+ if and only if it is of the
form {

X ∈ Sn+ : range(X) ⊆ L
}

for some linear subspace L.

9

We now give a similar proposition which also gives a definition for the relative interior
if a face of Sn+.

Proposition 2.3.5. [12, Example 2.2.3] For any k dimensional linear subspace S of Rn,
the set,

FS = {X ∈ Sn+ : range(X) ⊆ S}

is a face of Sn+. Conversely, for any face F of Sn+ there exists a linear subspace S of Rn

such that F = {X ∈ Sn+ : range(X) ⊆ S}. Moreover, the relative interior of F is

ri(F) = {X ∈ Sn+ : range(X) = S}
= {X ∈ Sn+ : range(X) = range(X̂)},

for any X̂ ∈ ri(F).

Proposition 2.3.6. [12, Example 2.2.3] Let S be an r-dimensional linear subspace of Rn

and let
FS = {X ∈ Sn+ : range(X) ⊆ S}.

Then FS is a face of Sn+. Moreover, for any V ∈ Rn×r such that range(V) = S,

FS = V Sr+V T .

Definition 2.3.7 (minimal face). Let K be a convex cone and let C ⊆ K be a convex
set. Then the minimal face F of K containing C, denoted face(C,K), is defined to be the
smallest face of K containing C, in other words,

face(C,K) =
⋂
C⊆F
FEK

F .

Proposition 2.3.8 (minimal face alternate characterization [12]). Let K be a convex cone.
If C ⊆ K is convex, then face(C,K) is equal to the smallest face of K intersecting the
relative interior of C. In particular, for any x ∈ ri(C), face(C,K) = face(x,K).

2.4 Optimality conditions for convex split problems

In this section we consider problems of the form:

min
X∈Sn1 ,Y ∈Sn2

f(X, Y)

s.t. A1(X) +A2(Y) = 0
X ∈ X
Y ∈ Y ,

(2.4.1)

10

where f : Sn → R is a differentiable convex function, and A1 : Sn1 → Rm and A2 : Sn2 → Rm

are linear maps. The two sets X ⊆ Sn1 and Y ⊆ Sn2 are closed convex sets with n1+n2 = n.

Theorem 2.4.1 (Rockafellar-Pshenichnyi lemma). [26, Theorem 2.1] Let C ⊆ E be a
convex set containing a point x̄ and let f : C ⊆ E→ R be a convex function. Then

x̄ ∈ argminx∈C f(x) ⇐⇒ 0 ∈ ∂f(x̄) +NC(x̄). (2.4.2)

If the objective function f is differentiable, then (2.4.2) becomes:

x̄ ∈ argminx∈C f(x) ⇐⇒ −∇f(x̄) ∈ NC(x̄). (2.4.3)

We can apply Theorem 2.4.1 to obtain optimality conditions for a split model (2.4.1). The
linear constraints give rise to the linear manifold defined by:

C := {(X, Y) ∈ Sn : A1(X) +A2(Y) = 0} .

Therefore, if we let K := C ∩ (X × Y), then (2.4.2) is equivalent to:

min
(X,Y)∈Sn

f(X, Y)

s.t. (X, Y) ∈ K.
(2.4.4)

Thus we can apply Theorem 2.4.1 and obtain:

(X̄, Ȳ) ∈ argmin(X,Y)∈K f(X, Y) ⇐⇒ −∇f(X̄, Ȳ) ∈ NK(X̄, Ȳ).

So far, this does not tell us much the optimal solutions to (2.4.1). We now prove a result
that says: if we can decompose the normal cone of K into the normal cones of C and
X × Y , then we obtain a more useful characterization of optimality. The usefulness will
become apparent in later chapters when we define the dual program to (1.0.6) and justify
the convergence of ADMM in Section 4.1.3.

Corollary 2.4.2. Let f : Sn → R be a differentiable convex function, let A1 : Sn1 → Rm

and A2 : Sn2 → Rm be linear maps, and let X ⊆ Sn1 and Y ⊆ Sn2 be closed convex sets
where n1 + n2 = n. Define the sets

C := {(X, Y) ∈ Sn : A1(X) +A2(Y) = 0} ,
K := C ∩ (X × Y).

Then, assuming X̄ ∈ X and Ȳ ∈ Y are such that:

NK(X̄, Ȳ) = NC(X̄, Ȳ) + (NX (X̄)×NY(Ȳ)) (2.4.5)

11

holds, then:

(X̄, Ȳ) ∈ argmin(X,Y)∈K f(X, Y) ⇐⇒

{
−∇Xf(X̄, Ȳ) ∈ range(A∗1) +NX (X̄)

−∇Y f(X̄, Ȳ) ∈ range(A∗2) +NY(Ȳ).
(2.4.6)

Proof. Assume (2.4.5) holds. Then, by Theorem 2.4.1,

(X̄, Ȳ) ∈ argmin(X,Y)∈K f(X, Y) ⇐⇒ −∇f(X̄, Ȳ) ∈ NK(X̄, Ȳ)

⇐⇒ −∇f(X̄, Ȳ) ∈ NA(X̄, Ȳ) +
(
NX (X̄)×NY(Ȳ)

)
.

Let A(X, Y) = A1(X) +A2(Y). By corollary 2.1.10 we have that

NC(X̄, Ȳ) = rangeA∗. (2.4.7)

Let w ∈ Rm. We have 〈A(X, Y), w〉 = 〈(X, Y),A∗(w)〉. We also have

〈A(X, Y), w〉 = 〈A1(X) +A2(Y), w〉
= 〈A1(X), w〉+ 〈A2(X), w〉
= 〈x,A∗1(w)〉+ 〈Y,A∗2(W)〉
= 〈(X, Y), (A∗1(W),A∗2(W))〉.

Therefore A∗(w) = (A∗1(w),A∗1(w)) ∀w ∈ Rm, which further implies that

rangeA∗ = rangeA∗1 × rangeA∗2.

Combing this result with (2.4.7), we have

NC(X̄, Ȳ) = rangeA∗1 × rangeA∗2.

Finally since ∇f(X, Y) = (∇Xf(X, Y),∇Y f(X, Y)),

0 ∈ ∇f(X̄, Ȳ) +NK(X̄, Ȳ) ⇐⇒

{
−∇Xf(X̄, Ȳ) ∈ range(A∗1) +NX (X̄)

−∇Y f(X̄, Ȳ) ∈ range(A∗2) +NY(Ȳ).

The natural question to ask now is: when does (2.4.5) hold? For this, we present the
following result from Rockafellar’s Convex Analysis [27].

Theorem 2.4.3 (Corollary 23.8.1 [27]). Let C1, . . . Cm be convex sets whose relative in-
teriors have a point in common. Then the normal cone to C1 ∩ C2 . . . ∩ Cm at any given
point x in C1 ∩ C2 . . . ∩ Cm is K1 + · · · + Km where Ki is the normal cone to Ci at x. If
certain of the sets, say C1, . . . , Ck, are polyhedral, the conclusion holds if merely the sets
C1, . . . , Ck and riCk+1, . . . , riCm have a point in common.

12

Chapter 3

Binary-constrained quadratic
program

3.1 Problem definition

Let x ∈ Rn, A ∈ Sn, and let H ∈ Rp×n be a matrix with all entries Hij ∈ {0, 1}. Recall
that we denote the p-vector of all ones by ēp ∈ Rp. Consider the following class of binary-
constrained quadratic programs (BCQP):

min xTAx
s.t. Hx = ēp

x ∈ {0, 1}n.
(3.1.1)

It is helpful to view each of the rows of H as a indicator vector over a subset of {1, . . . n}.
This gives is a one-to-one correspondence between H and a collection of subsets V1, . . .Vp
of {1, . . . , n}. Formally, for any binary matrix H, we can write H row-wise as:

H =

 | (eV1)T |

...

| (eVp)T |

 ∈ Rp×n, (3.1.2)

where the rows of H are indicator vectors in the sense that for k = 1, . . . , p,

eVk ∈ Rn : ∀i ∈ V , ei :=

{
1 if i ∈ Vk
0 otherwise.

Observe that for any x ∈ {0, 1}n, the constraint Hx = ēp forces xi = 1 for exactly one
i ∈ Vk, for all k. Furthermore, the objective xTAx =

∑n
i,j=1Aijxixj, sums up all values

Aij for which xi = xj = 1.

13

3.2 Exact hitting set

In order to see what type of problem the BCQP is modelling, we relate it a known problem
called the hitting set problem. In [14], Rawitz, Even and Shahar define the notion of a
hitting set to be the following:

Definition 3.2.1 (hitting set). Let X be a set of elements and let C be a collection of
subsets S1, S2, . . . , Sn of X . A hitting set of (X , C) is a set U ⊆ X such that Si ∩ U ≥
1 ∀i ∈ {1, . . . n}.

Suppose now that we replace the requirement that Si ∩ U ≥ 1 ∀i ∈ {1, . . . n} with the
stricter requirement of Si∩U = 1 ∀i ∈ {1, . . . n}. We then call such a set U an exact hitting
set because X “hits” each set Si exactly once. The precise definition is as follows.

Definition 3.2.2 (exact hitting set). Let X be a set of elements and let C be a collection
of subsets S1, S2, . . . , Sn of X . A hitting set of (X , C) is a set U ⊆ X such that Si ∩ U =
1 ∀i ∈ {1, . . . n}.

In [17], Guruswami and Zhou use the term exact hitting set to refer to the problem of
finding an exact hitting set of maximal cardinality, and thus they don’t require that every
subset Si intersects with the hitting set U . Rather they look for a set U that intersects the
greatest number of subsets Si, while not intersecting any such subset more than once. On
the other hand, though we have not encountered a precise definition of it in the literature
so far, we instead consider the problem of finding a minimal exact hitting set where the
notion of minimality is defined with respect to a cost function that is quadratic in the
number of elements of X (which we will define shortly). We can phrase this problem more
precisely by letting the set of elements X correspond to vertices on a graph, and adding
up the cost of the weighted edges incident to the hitting set vertices. We call this version
the quadratic exact hitting set problem (QEHSP) and we define it now. To define the
QEHSP, we consider an undirected weighted graph, G = (V , E) along with a collection
of subsets V1, . . .Vp ⊆ V . The vertex set V corresponds to the set of elements for which
we would like to find an exact hitting set and let |V| = n. The edge set, E , consists of
all unordered pairs (i, j) (occasionally denoted eij to emphasize that it corresponds an
edge) for which i and j are not members of the same Vk (for any k), with the exception of
self-loops, eii, which we include in the edge set for all i. The self-loops are included just
as a technicality, and we explain this later in Remark 3.2.3. For every edge eij, there is a
an associated weight that we denote by weight(eij). The QEHSP then is the problem of
finding a vertex set U ⊆ V that satisfies Vk ∩ U = 1 ∀k ∈ {1, . . . , p} and that minimizes
the sum ∑

i,j∈U

weight(eij).

To see that this problem is modeled as the BCQP in a natural way, we simply interpret

14

any feasible solution x as the indicator vector of some subset U of V . In other words,

xU ∈ R|V| : ∀i ∈ V , xi :=

{
1 if and only if i ∈ U ;

0 otherwise.

This way, there is a one-to-one correspondence between a feasible x = xU and an exact
hitting set U ⊆ V . Furthermore, since x ∈ {0, 1}n, the constraint∑

i∈Vk

xi = 1, ∀k ∈ {1, . . . , p} (3.2.1)

enforces the condition x is an indicator vector for an exact hitting set. Thus, the QEHSP is
then modeled by the following integer program:

min
x∈Rn

∑
i,j∈U

weight(eij)

s.t.
∑
i∈Vk

xi = 1, ∀k ∈ {1, . . . , p}

x ∈ {0, 1}n.

(3.2.2)

To write this as a BCQP , we first recall that there is also a one-to-one correspondence
between the collection of subsets V1, . . . ,Vp and the binary matrix H ∈ Rp×n, where H is
defined as in (3.1.2). Therefore, we immediately have∑

u∈Vk

xu = 1 ∀k ∈ {1, . . . , p} ⇐⇒ Hx = ēp.

Now, we construct the corresponding weight matrix W ∈ Rn×n:

Wij =

{
1
2

weight(eij) ∀i, j ∈ V , i 6= j

weight(eii) ∀i, j ∈ V , i = j.

By this definition, the sum of the pairwise edge-weights between selected vertices (i.e.,
vertices in U) is given by the quadratic objective function q(x) defined below. Letting
x = xU ,

q(x) := xTWx =
n∑

i,j=1

Wijxixj =
∑
i,j∈U

weight(eij). (3.2.3)

Hence the problem (3.2.2) is equivalent to the BCQP:

min
x∈Rn

xTWx

s.t. Hx = ēp
x ∈ {0, 1}n.

Remark 3.2.3. By allowing for self-loops in the graph, the objective function will always

15

include the value weight(euu) of the self loop euu for every u in U . It is useful to observe
that this is just equivalent to adding a linear term cTx to q(x). Due to x ∈ {0, 1}n we have

q(x) = xTWx+ cTx = xT (W + Diag(c))x.

Thus without loss of generality, we can also associate a cost ci to every vertex i ∈ V by
letting it equal to the weight of the self-loop edge eii for every i ∈ V.

We now give two examples of problems which can be modeled by the BCQP, and
for which the use of semidefinite programming with ADMM has been successful [7, 16].
Though these problems appear different on the surface, when viewed as particular cases of
the BCQP, we can unify the approaches used in [16] and [7], and treat them as applications
of a more general method. Generalizing the methods used in [7, 16] to work on a more
general problem requires analyzing what are the core traits of these problems that make it
possible to apply these methods. This is the intended outcome of this thesis.

3.2.1 Side chain positioning

In Chapter 6 we look at the Side Chain Positioning, SCP problem in detail. For now
we give a brief preview of its formulation as a BCQP. We will show that the SCP is an
instance of (3.1.1), where the weight matrix is denoted by E ∈ Rn×p and Euv gives an
energy value between elements u and v. The graph G = (V , E), as well as the subsets
V1, . . . ,Vp ⊆ V , are given by the problem (see Chapter 6 for definitions) and we define the
binary matrix H in the usual way:

H =

 | (eV1)T |

...

| (eVp)T |

 .
Let n = |V|, then we get the SCP:

min
x∈Rn

∑
u,v∈V

Euvxuxv

s.t. Hx = ēp
x ∈ {0, 1}n.

(3.2.4)

The SCP differs from the general BCQP in that it has the additional structure that the
collection of subsets V1, . . . ,Vp form a partition of V , which is not a required assumption
for the BCQP, and is in fact not true for our next example, the QAP.

3.2.2 Quadratic Assignment Problem

The QAP, a well-known problem in combinatorial optimization, which we detail in Chap-
ter 5, can also be modeled as a BCQP. The QAP is an optimization problem defined

16

over the space of permuation matrices (see Definition 5.1.1). We can rewrite the problem
by vectorizing the permuatition matrix X by defining x = vec(X) ∈ Rn2

. Using some
simple algebraic manipulations we show in Chapter 5 that we can model the QAP as the
following BCQP.

min
x∈Rn2

xT (BT ⊗ A)x− 2cTx

s.t.

[
eT ⊗ I
I ⊗ eT

]
x = ē2n

x ∈ {0, 1}n2
.

(3.2.5)

On the surface, the QAP does not seem like it should be an instance of a QEHSP, but since
it satisfies BCQP formulation, we now know that it is. In this case, the QAP corresponds
to a QEHSP on a graph G = (V , E) where |V| = n2, and the subsets of V (which we can
obtain from the rows of the binary matrix in (3.2.5)) are not a partition of V .

3.2.3 Complexity

We now discuss the overall complexity of the BCQP. Recall that a problem is NP-complete
if it is both in NP and it is an NP-hard problem. A problem is NP-hard if there is a
polynomial time reduction to the problem from another known NP-complete problem. It
is well known [11] that the QAP contains the Traveling Salesman Problem as a special
case. It is also well known that there does not exist a polynomial time approximation
scheme for the TSP unless P = NP , due to the fact that such a scheme would be used
to solve the NP-complete Hamiltonian cycle problem in polynomial time, thereby proving
P = NP . Specifically, we have the following theorem:

Theorem 3.2.4 ([33, Theorem 2.9]). For any α > 1, there does not exist an α-approximation
for the Traveling Salesman Problem on n cities, provided P 6= NP. In fact, the existence
of a O(2n)-approximation algorithm for the TSP would similarly imply that P = NP.

As the QAP is an instance of the BCQP , we have proven here that the BCQP is
both NP-hard and inapproximable. Although the SCP problem seems like a simpler case
instance of the BCQP , it is also NP-hard [1] and hard to approximate. Chazelle proves
in [10] that it is NP-complete to approximate the solution to the SCP within a factor of
cn, where c is a constant and n is the number of vertices of the corresponding graph.

In regards to feasibility, checking whether or not the BCQP is feasible is clearly in NP.
As we saw earlier, the problem of finding a feasible solution to the BCQP is equivalent
to the problem finding an exact hitting set. One can reformulate the exact hitting set as
a exact satisfiability problem (XSAT), (see [29].) Furthermore, XSAT was shown to be
NP-Complete [29] [28]. Thus we conclude that finding a feasible solution to the general
BCQP is an NP-complete problem. However, for the QAP and SCP problem, we obtain
the existence of a feasible solution for free due to their inherent structure. This point implies
that the BCQP is too general to properly capture the shared structure of the QAP and the
SCP. We will see that there are further traits that the SCP and the QAP share with makes

17

them amenable to solving via their SDP relaxations. Identifying the minimal structure is
needed on H in order to have success with the proposed method is an interesting question,
and we expect that the work presented in this thesis will help to narrow it down.

3.3 The doubly non-negative relaxation

We now move on to formulating the doubly non-negative, DNN relaxation of (3.1.1).
Recall that the first step is to reformulate (3.1.1) in terms of a larger, symmetric, rank-
one matrix. We do not prescribe an algorithm for this reformulation, but rather provide
derivations that justify why the constraints used in [7, 16] apply more generally to the
BCQP reformulation. Since there are many valid reformulations, the results in this section
serve as a blueprint for using semidefinite programming with ADMM for any problem that
can be formulated as a BCQP.

3.3.1 Reformulation

Recall the general format for the BCQP :

min
x∈Rn

xTWx

s.t. Hx = ēp
x ∈ {0, 1}n.

(3.3.1)

In this section we rewrite (3.3.1) as an equivalent program (PBCQP) over the space of rank
one symmetric matrices. We propose the following program as a reformulation of (3.3.1):

(PBCQP)

min
Y ∈S(n+1)

〈Ŵ , Y 〉

s.t. arrow(Y) = e0

KY = 0
rank(Y) = 1,

(3.3.2)

with

Ŵ :=

[
0 0
0 W

]
and K :=

[
p −ēTpH

−HT ēp HTH

]
. (3.3.3)

We let FBCQP denote the feasible set of (3.3.2). We claim that this program is equivalent
to (3.3.1), despite the fact that there is no clear dependency on x. However, the constraint
rank(Y) = 1 creates an implicit dependency on x in the sense that:

Y is feasible for (PBCQP) ⇐⇒ Y =

(
1
x

)(
1
x

)T
where x is feasible for (3.1.1).

To prove this, we first prove two preliminary propositions. We begin by showing that
the arrow constraint forces all rank one solutions of the SDP relaxation to be integral.

18

Proposition 3.3.1. Let Y ∈ Sn+1 and rank(Y) = 1. Then

arrow(Y) = e0 ⇐⇒ Y =

(
1
x

)(
1
x

)T
, with x ∈ {0, 1}n.

Proof. Since Y is rank-one and symmetric, Y = yyT where y ∈ Rn+1. We denote the first
component of y by y0, and the remaining components by ȳ,

y =

(
y0

ȳ

)
, y0 ∈ R, ȳ ∈ Rn.

Since arrow(Y) = e0, we have Y00 = 1, thus y2
0 = 1. Also by arrow(Y) = e0, we have

ȳ ◦ ȳ = y0ȳ. If y0 = 1 then ȳ ∈ {0, 1}n. Thus we have

Y =

(
1
x

)(
1
x

)T
, with x ∈ {0, 1}n.

If y0 = −1 then ȳ ∈ {0,−1}n and

Y =

(
−1
−x

)(
−1
−x

)T
=

(
1
x

)(
1
x

)T
, with x ∈ {0, 1}n.

For the other direction, suppose

Y =

(
1
x

)(
1
x

)T
, with x ∈ {0, 1}n.

Then

Y =

[
1 xT

x xxT

]
with x ∈ {0, 1}n.

Since x ∈ {0, 1}n, x = x ◦ x. Thus

arrow(Y) =

(
1

x ◦ x− x

)
=


1
0
...
0

 = e0.

Proposition 3.3.2. Let Yx =

(
1
x

)(
1
x

)T
. Then Hx = e ⇐⇒ KYx = 0.

19

Proof. The following are equivalent:

Hx = ēp[
−ēp H

](1
x

)
= 0(

1
x

)T [
−ēp H

]T [−ēp H
](1

x

)
= 0

tr

((
1
x

)T [
−ēp H

]T [−ēp H
](1

x

))
= 0

tr

([
ēTp ēp −ēTpH
−HT ēp HTH

](
1
x

)(
1
x

)T)
= 0

tr

([
p −ēTpH

−HT ēp HTH

] [
1 xT

x xxT

])
= 0

traceKYx = 0.

Note that K =

[
p −ēTpH

−HT ēp HTH

]
=

[
−ēTp
HT

] [
−ēTp
HT

]T
, so K must be positive semidefinite.

Since both K � 0 and Y � 0, we have

traceKYx = 0 ⇐⇒ KYx = 0.

We can now prove that the lifted problem (3.3.2) is indeed equivalent to (3.3.1).

Theorem 3.3.3. Y is feasible for (3.3.2) if and only if

Y =

(
1
x

)(
1
x

)T
where x is feasible for (3.1.1).

Proof. Suppose Y is feasible for (3.3.2). Then arrow(Y) = e0 and rank(Y) = 1, therefore

Y =

(
1
x

)(
1
x

)T
with x ∈ {0, 1}n, by Proposition 3.3.1. By Proposition 3.3.2, Hx = e.

Therefore the forward direction holds. Now suppose that Y =

(
1
x

)(
1
x

)T
and x is feasible

for (3.1.1). By Proposition 3.3.2, KY = 0. Clearly, rank(Y) = 1, therefore arrow(Y) = e0

by Proposition 3.3.1.

Finally, we see that (3.3.1) is equivalent to (3.3.2) since we can rewrite the objective
function in terms of Yx.

q(x) = xTWx = trace(xTWx) = trace(WxxT) = trace(ŴYx) = 〈Ŵ , Yx〉

20

Since an equivalent program is equally difficult, we must consider a relaxation of
(PBCQP) obtained by relaxing the rank-one constraint on Y .

3.3.2 Relaxing the rank-one constraint

Since (3.3.2) is a reformulation of (3.1.1), it remains NP-hard. To form the SDP relaxation,
we relax the rank-one constraint on Y into a positive semidefinite constraint Y � 0. Recall
that we obtain a DNN relaxation by including elementwise nonnegativity as a constraint.
We let (PDNN) denote the following doubly nonnegative relaxation:

(PDNN)

min
Y ∈Sn+1

〈Ŵ , Y 〉
s.t. arrow(Y) = e0

KY = 0
0 ≤ Y ≤ 1
Y � 0.

(3.3.4)

In addition to the elementwise nonnegativity constraint, we proceed as in [7, 16, 24] and
further impose the constraint Y ≤ 1. Note that if Y is a solution to (3.3.2), the diagonal
of Y is made up of x2

i where xi ∈ {0, 1} for i = 1, . . . , n. Therefore, we know that
Yii ≤ 1 for all i. This fact, along with the fact that Y is positive semidefinite, implies that
Y ≤ 1. To see why this is, we recall Theorem 2.2.4 Item 4. If there exist coordinates (i, j)
such that Yij ≥ 1, then necessarily, Yji ≥ 1 since Y is symmetric, and furthermore, the
principal submatrix XI , generated by removing all the columns and rows with indices in
I = {0, 1, . . . , n} \ {i, j} will have negative determinant, violating Theorem 2.2.4 Item 4.

We denote the feasible set of the DNN relaxation by FSDP , i.e.,

FSDP :=
{
Y ∈ Sn+1

+ : arrow(Y) = e0, KY = 0, 0 ≤ Y ≤ 1.
}
. (3.3.5)

By relaxing the rank-one constraint we have that FBCQP ⊆ FSDP . Ultimately we are
interested in solutions to (3.3.2), which are exactly the rank one feasible points of FSDP .
We have the relationship:

FBCQP = FSDP ∩
{
Y ∈ Sn+1

+ : rank(Y) = 1
}
.

Thus, if we obtain a rank one optimal solution for (3.3.4) it must also be an optimal
solution for (3.3.2). We may also add constraints which are redundant to (3.3.1) and
maintain this property, possibly obtaining an even stronger relaxation. We use this idea
in the next sections to obtain two additional constraints: the gangster constraint and the
trace constraint.

21

3.3.3 Gangster constraint

The gangster constraint is a constraint that “shoots holes” in a matrix in the sense that
it constrains elements of the matrix to be equal to zero. This constraint is used for both
the QAP and SCP in previous work, however, for each of the two problems, the indices of
the entries constrained to be zero (the gangster index) differ. In this section we present an
original derivation for the gangster constraint that has the added benefit of showing that
there exists a general formula for this constraint which depends entirely on matrix H in
(3.1.1).

Recall the definition of the gangster operator Definition 1.1.6. We let E00 denote a
(n + 1) × (n + 1) matrix with all entries equal to zero aside from the top left (0, 0) entry
which is equal to one. Given a two dimensional index set J ⊆ {1, . . . , n+1}×{1, . . . , n+1},
the so-called gangster constraint applied to Y ∈ Sn+1 is the following:

GJ(Y) = E00.

In [34], Zhao et. al define the gangster index for the QAP by first forming a block matrix
from the lifting of x to Yx. As we will see in Chapter 5, the variable x in (3.2.5) is the
vectorization of a matrix X ∈ Rn×n. By letting xi denote the ith column of X, we can
write:

x =


1
x1

...
xn

 , xi ∈ Rn ∀i ∈ {1, . . . n}.

Then the lifted variable YX is given by:

YX =


1
x1

...
xn




1
x1

...
xn


T

=

[
1 xT

x xxT

]
,

with xxT made up of n2 block matrices given by xixj
T

for all i, j ∈ {1, . . . , n}. It was
observed in [34] that for all x feasible for the lifting of the QAP, the diagonal elements
of the off diagonal blocks of xxT are all equal to zero, and the off-diagonal elements of
the diagonal blocks of xxT are also all equal to zero. In the case of the SCP, it was
found that the off-diagonal elements of the diagonal blocks are always equal to zero [6].
Instead of looking at the specific problem at hand to determine what entries of xxT can
be constrained to zero, we now show that given a BCQP in the form (3.1.1), we need to
simply use the constraint matrix H to get the appropriate gangster indices.

Theorem 3.3.4. Let x be feasible for (3.1.1). Let DH be a diagonal matrix with entries
equal to the diagonal entries of HTH. Then

(HTH −DH) ◦ xxT = 0. (3.3.6)

22

Proof. The following are equivalent.

Hx = ēp

HTHx = HT ēp

HTHx−HT ēpx = HT ēp −HT ēpx

(HTH −DH)x = DH(e− x)

(HTH −DH)xxT = DH(exT − xxT)

trace
(
(HTH −DH)xxT

)
= trace

(
DH(exT − xxT)

)=
n∑
i=1

(DH)ii (xi − x2
i)︸ ︷︷ ︸

=0


trace

(
(HTH −DH)xxT

)
= 0

(HTH −DH) ◦ xxT = 0.

Note (HTH − DH) and xxT are both symmetric with all non-negative entries. The last
equality follows from the fact that

trace(AB) =
n∑
i=1

n∑
j=1

aijbji =
n∑
i=1

n∑
j=1

aijbij,

for square symmetric matrices A,B of order n. When all terms in the a sum are non-
negative, they must all be zero if their sum is zero. That is,

trace(AB) = 0 =⇒ A ◦B = 0.

Hence the last equality holds.

When we consider the binary constraint Hx = ēp, in particular, the corresponding
graphical interpretation presented in Section 3.2 as an exact hitting set, we see that The-
orem 3.3.4 makes intuitive sense. (3.3.6) is enforcing the condition that xi and xj cannot
simultaneous be equal to 1 if i and j are in the same set Vk, in other words, we cannot
select two elements from the same subset Vk.

We now use (3.3.6) to formulate the gangster constraint. First, we construct indices
from the non-diagonal nonzero entries of HTH. Then, as Y is one column and one row
larger than xxT , we extend the index set to contain also the top left entry of Y . This gives
the gangster index. To avoid shifting all the indices over, we do this by starting the index
from (0, 0).

Definition 3.3.5 (Gangster Index). Let H be as in the BCQP (3.1.1) and let

J̄ := {(i, j) : i 6= j and (HTH)ij 6= 0, i, j ∈ {1, . . . , n}}. (3.3.7)

23

The gangster set, J , is defined by

J = {0, 0} ∪ J̄

Corollary 3.3.6. Let Yx be feasible for (3.3.2). Then GJ(Y) = E00.

Proof. This fact follows directly from Theorem 3.3.4 and Theorem 3.3.3.

The gangster constraint enforces two things, first that the upper (0, 0) element of Y is
one; and second that Yij = 0 for all (i, j) ∈ J̄ . With the addition of the gangster constraint
we have the updated DNN relaxation of (3.3.2):

min
Y ∈Sn+1

〈Ŵ , Y 〉
s.t. arrow(Y) = e0

GJ(Y) = E00

KY = 0
0 ≤ Y ≤ 1
Y � 0.

(3.3.8)

3.4 Refining the model

In this section we take a closer look at the structure of the feasible set of (3.3.8). The
purpose of this section is to give proofs of the relationship between the constraints in the
model which are not always apparent a priori. In particular, we find that the presence of
the gangster constraint renders the arrow constraint redundant (Theorem 3.4.3).

We also provide a condition on the original problem (3.3.1) under which we can de-
termine that the trace of all feasible Y is equal to a constant t + 1 (Proposition 3.4.5) .
Although this shows that traceY = t + 1 is redundant to the model, we include it in the
model as it strengthens the ADMM subproblems [16]. The final outcome of this section
is an equivalent model to (3.3.8) formed by removing the arrow constraint and imposing
the trace constraint. The resulting model is the general version of the DNN relaxation of
the QAP use in [16] and the DNN relaxation of the SCP problem in [7].

3.4.1 Gangster and arrow constraints

We will see that there is significant structure imposed by the constraint GJ(Y) = E00.

Proposition 3.4.1. Let K be as defined in (3.3.3) and let Y ∈ Sn+1
+ . Then

KY = 0

GJ(Y) = E00

arrow(Y) = e0

=⇒
∑
i∈V k

Yii = 1 ∀k ∈ {1, . . . , p}.

24

Proof. Define D =
[
−ep H

]
and recall that K = DTD. Since nullK = nullD, KY =

0 ⇐⇒ DY = 0. Therefore we have

0 = DY =


−1 | eTV1 |

...
...

−1 | eTVi |

...
...

−1 | eTVn |




Y00 Y01 . . . Y0n

Y10 Y11 . . . Y1n
...

...
. . .

...
...

...
. . .

...
Yn0 Yn1 . . . Ynn

 (3.4.1)

Expanding the first column of DY (3.4.1) gives:

0 = −Y00 + eTVkY[1:n]0 ∀k ∈ {1, . . . , p}
⇐⇒ 1 =

∑
i∈V k Yi0 ∀k ∈ {1, . . . , p}

⇐⇒ 1 =
∑

i∈V k Y0i ∀k ∈ {1, . . . , p} by symmetry of Y,
⇐⇒ 1 =

∑
i∈V k Yii ∀k ∈ {1, . . . , p} by arrow(Y) = e0.

Lemma 3.4.2. Let Y ∈ Sn+1 and suppose GJ(Y) = E00 holds. Then∑
i∈Vk

Yij = Yjj ∀k ∈ {1, . . . , p} (3.4.2)

Proof. If GJ(Y) = E00, then by definition of J , Yij = 0 if i, j ∈ V k and i 6= j. Therefore,∑
i∈Vk

Yij = Yjj.

The next theorem shows the surprising fact that the arrow constraint of the model
becomes redundant when we add the gangster constraint. This means, in particular, that
we can restate theorem above without the assumption that arrow(Y) = e0.

Theorem 3.4.3. Let K be as defined in (3.3.3) and let Y ∈ Sn+1
+ . Then{

KY = 0

GJ(Y) = E00

=⇒ arrow(Y) = e0.

Proof. If we expand (3.4.1) elementwise, we get, for every i, j ∈ {1, . . . , n},

0 = (DY)ij = −Y0j + eTViY[1:n]j = −Y0j +
∑
k∈Vi

Ykj = −Y0j + Yjj

The last equality holds by Lemma 3.4.2. Therefore Y0j = Yjj ∀j ∈ {1, . . . , n}. And since
Y00 = 1, we have arrow(Y) = e0.

25

The redundancy of the arrow constraint allows us to now strengthen Proposition 3.4.1.

Corollary 3.4.4. Let K be as defined in (3.3.3) and let Y ∈ Sn+1
+ . Then{

KY = 0

GJ(Y) = E00

=⇒
∑
i∈V k

Yii = 1 ∀k ∈ {1, . . . , p}.

Proof. By Proposition 3.4.1, we have
KY = 0

GJ(Y) = E00

arrow(Y) = e0

=⇒
∑
i∈V k

Yii = 1 ∀k ∈ {1, . . . , p}.

However, Theorem 3.4.3 tell us that{
KY = 0

GJ(Y) = E00

=⇒ arrow(Y) = e0.

Therefore, we conclude that{
KY = 0

GJ(Y) = E00

=⇒
∑
i∈V k

Yii = 1 ∀k ∈ {1, . . . , p}.

We have shown that arrow(Y) = e0 is implied by KY = 0 and GJ(Y) = e0. This means
that we can remove the arrow constraint from (3.3.8) with no change to the feasible set. We
also showed that all feasible solutions to (3.3.8) satisfy

∑
i∈Vk Yii = 1 for all k = 1, . . . , p.

We will use this fact in the next section to obtain an additional constraint on Y .

3.4.2 Trace constraint

We now give a condition on (3.3.1) under which we can add a trace constraint on Y into
the model. Both of our examples, the QAP and the SCP problem, satisfy this condition.
But for a general BCQP, this may not be satisfied. This is to say that not all feasible
solutions to (3.1.1) have the same trace. Let G = (V,E) be the input graph to (3.1.1)
and let V1, . . . ,Vp denote the given vertex subsets. Suppose that these subsets satisfy the

26

following:

There exists a subcollection {Ṽ1 . . . Ṽt} ⊆ {V1, . . . ,Vp} such that
{Ṽ1 . . . Ṽt} is a partition of V = {1, . . . , n}. (3.4.3)

Proposition 3.4.5. Suppose there exists a subcollection {Ṽ1 . . . Ṽt} ⊆ {V1, . . . ,Vp} such
that {Ṽ1 . . . Ṽt} is a partition of V = {1, . . . , n}. Then{

KY = 0

GJ(Y) = E00

=⇒ trace(Y) = t+ 1.

Proof. We apply Lemma 3.4.2 and note that

trace(Y) = Y00 +
n∑
i=1

Yii = 1 +
t∑

k=1

∑
i∈Ṽk

Yii = 1 + t.

We now establish an additional lemma which uses the same logic as Proposition 3.4.5,
but is phrased in such a way that it will be useful later on when for the computation of
upper bounds in Section 4.2.3.

Lemma 3.4.6. Suppose that the BCQP satisfies the condition (3.4.3) and let x be feasible
for the BCQP. Then xTx = t.

Proof. xTx =
∑n

i=1(xi)
2 =

∑n
i=1 xi

∑t
k=1

∑
i∈Ṽ k xi =

∑t
k=1 = t.

Without the trace constraint (i.e., if the BCQP does not satisfy (3.4.3)) we obtain the
following DNN relaxation:

min
Y ∈Sn+1

〈Ŵ , Y 〉
s.t. GJ(Y) = E00

KY = 0
0 ≤ Y ≤ 1
Y � 0.

(3.4.4)

If the problem satisfies the condition (3.4.3), we can add the redundant trace constraint to

27

the model:
min

Y ∈Sn+1
〈Ŵ , Y 〉

s.t. GJ(Y) = E00

KY = 0
0 ≤ Y ≤ 1
traceY = t+ 1
Y � 0.

(3.4.5)

Remark 3.4.7. For simplicity, for the remainder of this thesis we consider model with the
trace constraint (3.4.5).

Since the arrow constraint was redundant, we may remove it without changing the
feasible set. Furthermore, since the trace constraint is also redundant, we can add it
without any change to the feasible set. Thus the model (3.4.5) is equivalent to (3.3.8).
Since we will refer to it often in subsequent chapters, we now give a name to the feasible
set of (3.4.5):

FDNN = {Y ∈ Sn+1
+ : GJ(Y) = E00, KY = 0, 0 ≤ Y ≤ 1, traceY = t+ 1}. (3.4.6)

3.5 The split model

We now construct the split model on which we will apply ADMM. The model presented
in this chapter is a generalized version of the model used for the QAP in [16] and for
the SCP in [7]. Deriving this model for the BCQP unifies the techniques used in [7, 16],
potentially opening the door to apply this technique for other problems provided that the
problem can be formulated as a BCQP. We define the sets:

R :=
{
R ∈ Sn+1−r

+ : traceR = t+ 1
}
, (3.5.1)

Y :=
{
Y ∈ Sn+1 : GJ(Y) = E00, 0 ≤ Y ≤ 1

}
, (3.5.2)

where r := rank(K). We let V ∈ Rn+1×(n+1−r) be a matrix whose columns form a basis of
null(K), which has dimension n+ 1− r. In other words, V is a full rank matrix such that
range(V) = null(K). We also assume that V has orthonormal columns, i.e., V TV = I.
The split SDP relaxation (PV) is then defined to be the following:

(PV)

min 〈Ŵ , Y 〉
s.t. Y = V RV T

Y ∈ Y
R ∈ R.

(3.5.3)

We call (3.5.3) the split model because we have written the problem in terms of two separate
primal variables, R and Y , which are constrained to be in separate sets R, and Y . This
choice will becoming significant later when we use ADMM to solve (3.5.3).

28

To show that (3.5.3) is equivalent to (3.4.5), we simply require the following lemma and
proposition. The following lemma justifies applying the trace constraint to R.

Lemma 3.5.1. Let V ∈ Rn×k and let R ∈ Rk×k, for some arbitray n, k ∈ N and suppose
that V TV = I. Then trace(V RV T) = trace(R)

.

Proof.
trace(Y) = trace(V RV T) = trace(V TV R) = trace(R).

Now, for completeness we establish the equivalence of (3.4.4) and (3.5.3) by showing
that there is a one-to-one correspondence between feasible solutions to (3.4.4) and (3.5.3).

Proposition 3.5.2. Let V ∈ R(n+1)×(n+1−r) be a full rank matrix that satisfies V TV = I
and range(V) = null(K). Then

Y ∈ FDNN ⇐⇒ Y = V RV T and R ∈ R, Y ∈ Y .

Proof. Observe that KY = 0 ⇐⇒ range(Y) ⊆ null(K). Since K is a subspace of
dimension (n+ 1− r), by Proposition 2.3.4 it determines a face of Sn+1

n , given by

FK :=
{
Y ∈ Sn+1

+ : range(Y) ⊆ null(K)
}
.

In other words,
KY = 0 ⇐⇒ Y ∈ FK E Sn+1

+ .

Since V ∈ R(n+1)×(n+1−r) and range(V) = null(K), by Proposition 2.3.6 we have

FK = V Sn+1−r
+ V T .

The rest of the statement is trivial, since the constraints defining Y are identical to the
constraints that define FDNN , with the exception of the trace constraint, which is covered
by Lemma 3.5.1.

We can see that there are many possible ways to define R and Y so that (3.5.3) is
equivalent to (3.4.5). Since Y and R are linked through the linear equation Y = V RV T ,
we can take any affine constraint on Y and formulate an equivalent affine constraint on R,
and add this constraint to the set R without changing the feasible set.

Ultimately the choice constraints in R and Y impact the way in which the iterates
of ADMM are computed, as we will see in detail in Chapter 4. However, it is not clear
whether adding a greater number of redundant constraints to the model will help or hinder
the performance of ADMM. This raises an interesting question of whether it is always

29

better to have more constraints, or whether we can determine at what point adding more
constraints will negatively affect the behaviour of ADMM. So far this is not established
and is an area to be further researched. For now, our choice of R and Y follows the model
used in practice in [7, 16].

Remark 3.5.3. Note that a matrix V satisfying the hypothesis of Proposition 3.5.2 always
exists. Previous work in [6, 34] constructs an explicit formula for V using the structure
of K. If such an explicit formula is hard to find, one can always construct V satisfying
the required properties by implementing a QR factorization. Recall that K = DTD and
therefore null(D) = nullK. Thus by taking the QR factorization of DT , we can find a V
with range(V) = null(D). The QR factorization as defined in [30] involves writing DT in
terms the matrices Q1, Q2 and R:

DT = QR =
[
Q1 Q2

] [R
0

]
= Q1R,

Q1 ∈ Rp×p Q2 ∈ Rp×n+1−p.

Assuming DT is of full rank r, the columns of Q2 form an orthonormal basis for null(D)
[30]. Therefore, we can take V = Q2.

30

Chapter 4

Applying ADMM to the BCQP

In this chapter, we define the iterates for ADMM applied to the split model (3.5.3) derived
in Section 3.5. We address the assumptions required for the convergence of ADMM and
provide a simple condition under which they are satisfied. We define the dual problem to
(3.5.3) and show that under the provided condition, the primal and dual optimal values
are equal, and the dual optimal value is attained. We then summarize computational
approaches from [7,16] for explicitly computing the iterates of ADMM efficiently, as well
as strategies for rounding output of ADMM to obtain upper and lower bounds on the
optimal solution to (3.1.1).

4.1 Algorithm definition

Recall that K is as defined in (3.3.3) and r := dim null(K). Futhermore, we assume that
V is some full rank matrix in R(n+1)×(n+1−r) such that range(V) = null(K) and V TV = I.
Recall from section 3.5 that the sets R and Y are defined as follows:

R :=
{
R ∈ Sn+1−r

+ : traceR = t+ 1
}
,

Y :=
{
Y ∈ Sn+1 : GJ(Y) = E00, 0 ≤ Y ≤ 1

}
.

Lastly, recall that we obtained the following split model

min 〈Ŵ , Y 〉
s.t. Y = V RV T

Y ∈ Y
R ∈ R

(4.1.1)

as a relaxation for the original problem (3.1.1). This is the model on which we will apply
ADMM. The ADMM algorithm works by iteratively updating the primal variables Y k

and Rk, as well as a dual iterate which we denote by Zk. Since we have not yet defined
the dual problem, we do this now.

31

4.1.1 Dual problem

As always, we assume that the columns of the matrix V ∈ Rn+1−r×n+1 form a basis of
null(K) and that V TV = I. Recall the primal problem

(PV) p∗ = min
R∈R,Y ∈Y

{〈Ŵ , Y 〉 : Y = V RV T}. (4.1.2)

The Lagrangian L(R, Y, Z) : R×Y × Sn+1 → R: for (4.1.2) is defined by:

L(R, Y, Z) = 〈Ŵ , Y 〉+ 〈Z, Y − V RV T 〉. (4.1.3)

Note that the set constraints R ∈ R and Y ∈ Y are not treated as constraints, but rather
define the domain of the objective function of (4.1.2). This subtle difference changes how
we define the Lagrangian and consequently the Lagrangian dual problem. In particular,
we do not assign Lagrange multipliers to the constraints of R and Y . The dual function
arises by minimizing the Lagrangian with respect to (R, Y) over R×Y :

g(Z) = min
R∈R,Y ∈Y

L(R, Y, Z).

Finally, the Lagrangian dual problem of (4.1.2) is

(DV) d∗ = sup
Z
g(Z). (4.1.4)

To define that ADMM iterates, we require the notion of an augmented Lagrangian, which
is defined for our problem (4.1.2) as the following function:

LA(R, Y, Z) := 〈Ŵ , Y 〉+ 〈Z, Y − V RV T 〉+
β

2

∥∥Y − V RV T
∥∥2

F
, (4.1.5)

where β > 0 is a penalty parameter. Finally, the ADMM algorithm applied to (4.1.1) is
defined by the iterates:

Rk+1 = argminR∈R LA(R, Y k, Zk) (4.1.6)

Y k+1 = argminY ∈Y LA(Rk+1, Y, Zk) (4.1.7)

Zk+1 = Zk + β(Y k+1 − V̂ Rk+1V̂ T) (4.1.8)

Definition 4.1.1 (Strong Duality). Consider the primal-dual pair (PV), (DV) defined in
equations (4.1.2) and (4.1.4) respectively. We say that strong duality holds for (PV), (DV)
the dual optimal value is attained, i.e., there exists Z∗ such that g(Z∗) = maxZ g(Z) = d∗,
and furthermore, we have p∗ = d∗.

32

4.1.2 Assumptions for convergence

In [5] Boyd, Parikh, Chu, Peleato and Eckstein give a survey on the history, theory and
applications of Alternating Direction Method of Multipliers (ADMM). They show that
the following three sequences converge, under assumption that we will list next.

• Residual convergence: Y k − V RkV T → 0 as k →∞.

• Objective convergence: 〈Ŵ , Y k〉 → p∗ as k →∞.

• Dual variable convergence: Zk → Z∗ as k →∞.

The proof convergence of the sequences above in [5] relies on the following assumptions.

1. The objective function is closed, proper and convex;

2. The Lagrangian has a saddle point, i.e., there exists a point (R∗, Y ∗, Z∗) ∈ R×Y ×
Sn+1 such that

L(R∗, Y ∗, Z) ≤ L(R∗, Y ∗, Z∗) ≤ L(R, Y, Z∗) ∀R ∈ R, Y ∈ Y , Z. (4.1.9)

Note that item 1 is a fairly weak condition, which is clearly satisfied for our model as
〈Ŵ , Y 〉 is a linear function. In contrast, we will dedicate the entire next section addressing
item 2.

4.1.3 Normal cone intersection property

In this section we make use of the preliminary results established in Section 2.4 to show
that the existence of a feasible Ŷ ∈ FDNN such that rank(Ŷ) = dim(null(K)) is sufficient
in guaranteeing that item 2 is holds.

Let V be as defined for the primal SDP (4.1.2). We define the set

N := {(R, Y) ∈ Sn+1−r × Sn+1 : Y − V RV T = 0} ⊆
(
Sn+1−r × Sn+1

)
.

Note that R ⊆ Sn+1−r and Y ⊆ Sn+1. In order to write the feasible region of (4.1.2)
as an intersection of sets, we first extend the sets R and Y so that they are subsets of
(Sn+1−r × Sn+1). We define the notation that, for any n ∈ N, 0n denotes the set of all-zero
symmetric matrices of size n. Then we have the extended versions of R and Y given by:

R̄ = R× 0n+1 ⊆
(
Sn+1−r × Sn+1

)
,

Ȳ = 0n+1−r × Y ⊆
(
Sn+1−r × Sn+1

)
.

33

Observe that K := N ∩R×Y = N ∩ R̄ ∩ Ȳ . Furthermore, since Y is a polyhedral set, Ȳ
also polyhedral. Likewise, R̄ is a closed convex set and ri(R̄) = ri(R). Our goal is to show
that the normal cone condition (2.4.5) holds for all feasible points (R, Y), in other words
that

NK(R, Y) = NN (R, Y) + (NR(R)×NY(Y)) ,

for all (R, Y) ∈ K. We note that this is equivalent to

NK = NN (R, Y) +NR̄(R, Y) +NȲ(R, Y) ∀(R, Y) ∈ K. (4.1.10)

By Theorem 2.4.3, (4.1.10) holds if N ∩ Ȳ ∩ ri(R̄) is nonempty, in other words if there
exists (R, Y) ∈ N such that Y ∈ Y and R ∈ ri(R). The following lemma states that we
can show that N ∩ Ȳ ∩ ri(R̄) is nonempty simply by finding that there exists Ŷ ∈ FDNN
such that rank(Ŷ) = dim(null(K)).

Lemma 4.1.2. Suppose there exists Ŷ ∈ FDNN such that rank(Ŷ) = dim(null(K)). Then
there exists R̂ such that (R̂, Ŷ) is feasible for (3.5.3) and R̂ ∈ ri(R).

Proof. Recall that in the model of (3.5.3), we assume that V ∈ R(n+1)×(n+1−r) is a full
rank matrix such that range(V) = null(K). Since Ŷ ∈ FDNN , then by Proposition 3.5.2,
Ŷ = V R̂V T for some R̂ ∈ Sn+1−r

+ . We can see by the definitions of R, Y , and FDNN , that

the pair (R̂, Ŷ) is feasible for (3.5.3). We claim that the relative interior of R corresponds
to the positive definite matrices in R, i.e.,

ri(R) = {R ∈ Sn+1−r : trace(R) = t+ 1, R � 0}.

Let Z = {R ∈ Sn+1−r : trace(R) = t + 1}. Then since the trace is linear transformation,
Z is an affine set. Therefore aff(R) ⊆ Z. Furthermore, since Z ⊆ R, we must have
Z ⊆ aff(R), which gives aff(R) = Z. By recalling the definition of relative interior,

ri(R) = {R ∈ R : ∃ε > 0 such that B(R, ε) ∩ aff(R) ⊆ R}
= {R ∈ R : ∃ε > 0 such that B(R, ε) ∩ Z ⊆ R}.

Since Z is open, for any R ∈ Z there exists ε0 > 0 such that B(x, ε0) ⊆ Z. Thus for
any R ∈ R, if ∃ε > 0 such that B(R, ε) ∈ Sn+1−r

+ , we can take εmin = min(ε, ε0) so that
B(R, εmin) ⊆ Z ∩ Sn+1−r

+ = R. Therefore,

ri(R) = {R ∈ R : ∃ε > 0 such that B(R, ε) ⊆ Sn+1−r
+ }

= {R ∈ R : R ∈ int(Sn+1−r
+)}

= {R ∈ R : R ∈ Sn+1−r
++ }.

The last line holds by Theorem 2.2.5, item 1.

We now show that given rank(Ŷ) = n + 1 − r and Ŷ = V R̂V T , we have R̂ � 0. We
already know that rank(R) ≤ n+ 1− r because R ∈ Sn+1−r

+ . Therefore, by Theorem 2.2.5,

item 2d, to show that R̂ � 0, it suffices to show that rank(R) ≥ n+ 1− r.

34

Since Ŷ is obtained by multiplying R̂ by matrices V and V T on either side, the rank
of Ŷ can be at most the rank of R̂. Thus

n+ 1− r = rank(Ŷ) ≤ rank(R̂),

as desired. Therefore, we conclude that (R̂, Ŷ) is feasible for (3.5.3) and R̂ ∈ ri(R).

Remark 4.1.3. We note that by Proposition 2.3.8, the condition Ŷ ∈ FDNN such that
rank(Ŷ) = dim(null(K)) is equivalent to saying that the face defined by KY = 0 is in fact
the minimal face of Sn+1

+ containing the feasible set FDNN .

4.1.4 Optimality conditions

Due to the fact that the objective function of (4.1.2) is continuous and the feasible set is
closed, we know that an optimal solution to (4.1.2) always exists. We now show that if there
exists Ŷ ∈ FDNN such that rank(Ŷ) = dim(null(K)), then for any optimal solution to the
primal problem (4.1.2), there exists a dual optimal solution with optimal value equal to the
primal optimal value. A crucial step in the proof uses the normal cone intersection/sum
property (4.1.10) from the previous section.

Proposition 4.1.4. Suppose there exists Ŷ ∈ FDNN such that rank(Ŷ) = dim(null(K)).
Then (R, Y) is optimal for (4.1.2) if and only if there exists Z satisfying:

V TZV ∈ NR(R), (4.1.11)

−Ŵ ∈ Z +NY(Y). (4.1.12)

Proof. Let A be the linear map defined by

A(R, Y) = V RV T − Y.

Then A(R, Y) = A1(R) +A2(Y) where,

A1(R) = V RV T ,

A2(Y) = −Y.

Recall that by definition, the adjoint A∗ of A is the unique linear map satisfying

〈A(R, Y), Z〉 = 〈(R, Y),A∗(Z)〉.

By observing that

〈A(R, Y), Z〉 = 〈V RV T − Y, Z〉 = 〈R, V TZV 〉 − 〈Y, Z〉 = 〈(R, Y), (V TZV,−Z)〉,

we get
A∗(Z) = (V TZV,−Z) = (A∗1(Z),A∗2(Z)).

35

As before, let N = {(R, Y) : Y = V RV T} and let K = N ∩ R × Y . Then, by Corol-
lary 2.1.10,

NN (R, Y) = rangeA∗ = range(A∗1)× range(A∗2).

By assumption, there exists Ŷ ∈ FDNN such that rank(Ŷ) = dim(null(K)). Therefore, by
Lemma 4.1.2 and Theorem 2.4.3, we have that

NK(R, Y) = NN (R, Y) + (NR(R)×NY(Y))

holds for all (R, Y) ∈ K. Therefore, by Corollary 2.4.2, we have that (R, Y) ∈ K is optimal
for (4.1.2) if and only if {

−∇R〈Ŵ , Y 〉 ∈ range(A∗1) +NR(R̄);

−∇Y 〈Ŵ , Y 〉 ∈ range(A∗2) +NY(Ȳ),

which is equivalent to saying that there exists Z such that

V TZV ∈ NR(R),

−Ŵ ∈ Z +NY(Y).

4.1.5 Lagrangian saddle point

We now use the optimality conditions proved in Section 4.1.4 to show that if there exists
Ŷ ∈ FDNN such that rank(Ŷ) = dim(null(K)) then the Lagrangian has a saddle point,
i.e. item 2 is satisfied. Recall that we already know that an optimal R, Y exists, and
furthermore, there exists Z such that R, Y, Z satisfy (4.1.11). We now show that this
R, Y, Z is also a saddle point of the Lagrangian.

Proposition 4.1.5. Suppose there exists Ŷ ∈ FDNN such that rank(Ŷ) = dim(null(K)).
If (R̄, Ȳ) is optimal for (4.1.2), then there exists Z̄ such that (R̄, Ȳ , Z̄) is a saddle point
for the Lagrangian (4.1.3).

Proof. Let (R̄, Ȳ) be optimal for (4.1.2). By Proposition 4.1.4, there exists Z̄ satisfying:

V T Z̄V ∈ NR(R̄), (4.1.13)

−Ŵ ∈ Z̄ +NY(Ȳ). (4.1.14)

We compute the gradients:

∇RL(R, Ȳ , Z̄) = −V T Z̄V,

∇YL(R̄, Y, Z̄) = Ŵ + Z̄.
(4.1.15)

36

Thus, (4.1.13) is equivalent to:{
0 ∈ ∇RL(R̄, Ȳ , Z̄) +NR(R̄)

0 ∈ ∇YL(R̄, Ȳ , Z̄) +NY(Ȳ).
(4.1.16)

By Theorem 2.4.1, (4.1.16) is equivalent to

(R̄, Ȳ) ∈ argminR∈R,Y ∈Y L(R, Y, Z̄).

Next, we note that since ∇ZL(R̄, Ȳ , Z) = Ȳ − V R̄V T ,

Ȳ − V R̄V T ⇐⇒ ∇ZL(R̄, Ȳ , Z) = 0

⇐⇒ Z̄ ∈ argmaxZ L(R̄, Ȳ , Z).

This proves that that (R̄, Ȳ , Z̄) is a saddle point of the Lagrangian.

Finally we use the the existence of a saddle point of the Lagrangian to conclude that
strong duality holds.

Lemma 4.1.6. If the Lagrangian (4.1.3) has a saddle point (R̄, Ȳ , Z̄), then strong duality
holds. Moreover, (R̄, Ȳ , Z̄) is primal-dual optimal.

Proof. Let (R̄, Ȳ , Z̄) be a saddle point. Then,

Z̄ ∈ argmaxZ L(R̄, Ȳ , Z) and (R̄, Ȳ) ∈ argminR∈R,Y ∈Y L(R, Y, Z̄).

Note that L(R̄, Ȳ , Z) is concave in Z. Thus we can apply Theorem 2.4.1 to get:

Z̄ ∈ argmaxZ L(R̄, Ȳ , Z)

⇐⇒ ∇ZL(R̄, Ȳ , Z̄) = 0

⇐⇒ Ȳ = V R̄V T .

Since (R̄, Ȳ) ∈ argminR∈R,Y ∈Y L(R, Y, Z̄) and Ȳ = V R̄V T ,

(R̄, Ȳ) ∈ argminR∈R,Y ∈Y{L(R, Y, Z̄) : Ȳ = V R̄V T}
⇐⇒ (R̄, Ȳ) ∈ argminR∈R,Y ∈Y{〈Ŵ , Y 〉 : Ȳ = V R̄V T}

⇐⇒ L(R̄, Ȳ , Z̄) = p∗.

Therefore, R̄, Ȳ is optimal for the primal problem (4.1.2). Furthermore

(R̄, Ȳ) ∈ argminR∈R,Y ∈Y L(R, Y, Z̄)

⇐⇒ g(Z̄) = L(R̄, Ȳ , Z̄) = 〈Ŵ , Ȳ 〉+ 〈Z̄, Ȳ − V R̄V T 〉 = 〈Ŵ , Ȳ 〉 = p∗.

37

Thus, since weak duality holds, g(Z̄) = p∗ implies that Z̄ ∈ argmaxZ g(Z). In other words,
Z̄ is optimal for the dual problem, and, d∗ = g(Z̄) = p∗.

In this section so far we have shown that if we can determine the existence of Y ∈ FDNN
such that range(Y) = null(K), then the Lagrangian has a saddle point, strong duality
holds, and also the conditions:

V TZV ∈ NR(R),

−Ŵ − Z ∈ NY(Y),

Y = V RV T Y ∈ Y , R ∈ R.

are necessary and sufficient for optimality. But this raises the question: when does such a
Y exist? We have not yet addressed how to check this. The examples of the QAP and the
SCP problem are structured in such a way that we can check this by constructing such a
feasible Y with rank(Y) = dim(nullK)) . By definition of K, we know that the null space
of K is determined by the null space of

[
−ēp H

]
. We are interested then in the question

of whether the may be some more general property of H which lead us to conclude the
existence of a sufficiently high rank feasible Y . We don’t have the answer to this question,
but we investigate it further in the next section.

4.1.6 Alternative condition for strong duality

We rephrase this condition in the following theorem in hopes that it will help make it easier
to answer. Much of the observations made in the proof come from [12, Section 6.3].

Theorem 4.1.7. Let

FB := {x ∈ Rn : Hx = e, x ∈ {0, 1}n} H := {x ∈ Rn : Hx = e}

If aff(FB) = H then there exists Ŷ feasible such that range(Ŷ) = null(K). In particular,
strong duality holds for (3.5.3).

Proof. Suppose that aff(FB) = H, and let d := dimH = dim aff(FB). Then there exists

x1, . . . , xd+1 affinely independent vectors in FB. Therefore the vectors

(
1
x1

)
, . . . ,

(
1

xd+1

)
are affinely independent. Then let Ŷ be the barycentre:

Ŷ =
1

d+ 1

d+1∑
i=1

(
1
xi

)(
1
xi

)T
.

Therefore rank(Ŷ) = d+ 1 and Ŷ ∈ FDNN . Recall that FV is defined to be

FV = {X ∈ Sn+1
+ : range(X) ⊆ null(K)}

= {X ∈ Sn+1
+ : range(X) ⊆ range(V)}.

38

We already have range(Ŷ) ⊆ null(K). So it remains to show that null(K) = d+ 1. This is
true since dim null(K) = dim null(

[
−ēp H

]
) = dimH + 1 = d+ 1.

Therefore we can determine that strong duality holds for (3.5.3) if we can determine
that the dimension of integer polytope FB is the same as the dimension of the subspace
H. We show in later chapters that strong duality holds the QAP and the SCP by giving
an explicit formula for a feasible Y with range(Y) = null(K). However, it is not clear if
these are simply special cases of the BCQP or if there are some addition assumptions we
can place on the BCQP to show that such a Y will exist.

4.2 Computational strategies

We now look at the computational aspect of finding explicit iterates for (4.1.6) and (4.1.7)
and using the output (Rout, Y out, Zout) to obtain upper and lower bounds on the optimal
value of the original problem (3.1.1). These strategies are found in previous work, specif-
ically in [6, 7, 16, 24] for the QAP and the SCP problem. We present these strategies for
the general BCQP in order to highlight how the choice of constraints in the model (3.5.3)
is related to, and motivated by, the computability of the resulting ADMM subproblems.

4.2.1 R subproblem

We refer to the problem argminR∈R LA(R, Y k, Zk) as the R subproblem and to the prob-
lem argminY ∈Y LA(Rk+1, Y, Zk) as the Y subproblem. These subproblems can be solved

explicitly. Here we assume V̂ T V̂ = I. We begin by rearranging terms and competing the
square:

Rk+1 = argminR∈R LA(R, Y k, Zk)

= argminR∈R−〈Z, Y V̂ RV̂ T 〉+
β

2

∥∥∥Y − V̂ RV̂ T
∥∥∥2

F

= argminR∈R
β

2

∥∥∥∥R− V̂ (Y k +
1

β
Zk)V̂

∥∥∥∥2

F

(4.2.1)

= PR(V̂ T (Y k +
1

β
Zk)V̂).

The equality at (4.2.1) holds by the assumption that V̂ T V̂ = I. Let X̂ := V̂ T (Y k+ 1
β
Zk)V̂ ∈

Sn+1−r with the spectral decomposition

X̂ = QΛQT .

If there is no trace constraint in R, it is possible to obtain PR(X̂) by projecting X̂ onto the
positive semidefinite cone [6,24] using Eckart-Young Theorem [13]. Otherwise, as in [7,16],

39

PR(X̂) is obtained by projecting diag(Λ) onto the unit simplex, ∆ defined by:

∆ := {λ ∈ Rn+1−p
+ :

n+1−p∑
i=1

λi = n+ 1}.

Explicitly, [16] computes the solution to R the subproblem (4.1.6) by computing:

Rk+1 = QP∆(diag(Λ))QT .

Where Λ is the diagonal matrix of eigenvalues of V̂ T (Y k + 1
β
Zk)V̂ .

4.2.2 Y subproblem

We show how to obtain an explicit formula for the Y -update by examining the Y sub-
problem. Again by completing the square we obtain a projection, this time, onto the set
Y .

Y k+1 = argminY ∈Y LA(Rk+1, Y, Zk)

= argminY ∈Y
β

2

∥∥∥∥Y − (V̂ Rk+1V̂ T − 1

β
(Ŵ + Zk)

)∥∥∥∥2

F

= PY(V̂ Rk+1V̂ T − 1

β
(Ŵ + Zk))

Now we redefine X̂ = V̂ Rk+1V̂ T − 1
β
(Ŵ + Zk). PY(X̂) denotes the projection of X onto

the set Y . Then by definition of the set Y , we get:

(
Y k+1

)
ij

=
(
PY(X̂)

)
ij

=


1 if i = j = 0,

0 if (i, j) ∈ J̄ ,
min{1,max{Xij, 0}} otherwise.z

4.2.3 Upper bound

Let (Y out, Rout, Zout) be the output from ADMM . A strategy used successfully [24] [6] [16]
for obtaining an upper bound on the optimal solution is to take the second through last
entries of the first column of Y out to obtain a vector xout ∈ Rn that satisfies Hxout = ēp
and xout ∈ [0, 1]. Next it is necessary to obtain an integral solution x∗ from the fractional
solution xout so that x∗ is feasible for (3.1.1). If we let c = xout, we can find the nearest
integral solution by solving the following problem:

min
x∈Rn

‖x− c‖2

s.t. Hx = ēp
x ∈ {0, 1}n.

(4.2.2)

40

Here we must make the assumption that our problem satisfies the condition (3.4.3). Recall
that if this condition holds then by lemma 3.4.6, every feasible solution x satisfies xTx = t.
Thus we can replace the quadratic objective with a linear objective by:

‖x− c‖2 = −2cTx+ ‖c‖2 + t.

Therefore we get an equivalent linear program:

min
x∈Rn

−cTx
s.t. Hx = ēp

x ∈ [0, 1]n.

(4.2.3)

In order to guarantee that a solution to (4.2.2) will return a solution to (4.2.3) we must
have that the set of extreme points of the set {x ∈ Rn : Hx = e, x ∈ [0, 1]n} are integral.
If H is totally unimodular, as is the case for the QAP and the SCP problem, then this
holds. Thus, if H is totally unimodular, then (4.2.3) is equivalent to (4.2.2). To obtain a
feasible solution to (4.2.2) it suffices to run the simplex method on (4.2.3).

4.2.4 Lower bound

As (4.1.2) is a relaxation (3.3.1), finding the optimal solution of (4.1.2) to a very high ac-
curacy will yield a lower bound on the optimal value of (3.3.1). However, using ADMM to
obtain a high accuracy solution can be time consuming [5]. Instead, we solve (4.1.2) to
moderate accuracy and, taking advantage of the fact that strong duality holds, and that
the dual iterate converges to the optimum dual multiplier, we may use a suboptimal dual
output variable Zout to obtain a lower bound. This requires simply computing the value of
g(Zout). We can facilitate this computation using the method from [16, 22]. This method
uses a new functional h(Z) to obtain an equivalent dual problem to (4.1.4). We will first
require a small lemma which we prove now.

Lemma 4.2.1. Let A ∈ Sn. Then

max
B∈Sn+ tr(B)=k

〈A,B〉 = kλmax(A).

41

Proof. Let A = UDAU
T be the spectral decomposition of A.

max
B∈Sn+ tr(B)=k

〈A,B〉 = max
B∈Sn+ tr(B)=k

〈DA, B〉 (4.2.4)

=
n∑
i=1

λi(A)Bii (4.2.5)

≤
n∑
i=1

λmax(A)Bii

= λmax tr(B)

= kλmax(A)

Note that (4.2.4) holds because

max
B∈Sn+ tr(B)=k

〈A,B〉 = max
B∈Sn+ tr(B)=k

〈UDAU
T , B〉

= max
B∈Sn+ tr(B)=k

tr(UDAU
TB)

= max
B∈Sn+ tr(B)=k

tr(DAU
TBU),

and B � 0 if and only if UTBU � 0, hence,

max
B∈Sn+ tr(B)=k

tr(DAU
TBU) = max

B∈Sn+ tr(B)=k
tr(DAB)

= max
B∈Sn+ tr(B)=k

〈DA, B〉.

Lastly, (4.2.5) holds because B is positive semidefinite, thus all diagonal entries of B are
non-negative.

Proposition 4.2.2. Let

h(Z) := min
Y ∈Y
〈Ŵ , Y 〉+ (n+ 1)λmax(V

TZV) d∗Z := max
Z

h(Z).

Then
d∗Z is attained and d∗Z = d∗.

42

Proof.

d∗ = max
Z

min
R∈R,Y ∈Y

{
〈Ŵ , Y 〉+ 〈Z, Y − V RV T

}
= max

Z

{
min
Y ∈Y

{
〈Ŵ , Y 〉+ 〈Z, Y 〉

}
+ min

R∈R

{
〈V TZV,−R〉

}}
= max

Z

{
min
Y ∈Y

{
〈Ŵ , Y 〉+ 〈Z, Y 〉

}
−max

R∈R

{
〈V TZV,R〉

}}
= max

Z

{
min
Y ∈Y

{
〈Ŵ , Y 〉+ 〈Z, Y 〉

}
− (t+ 1)λmax(V TZV)

}
(4.2.6)

= d∗Z

Equality at (4.2.6) holds as a consequence of Lemma 4.2.1.

By this Proposition 4.2.2, we have that h(Zout) = g(Zout) ≤ p∗. It’s clear now that to
obtain a lower bound on p∗ we simply take the output dual variable Zout and compute:

h(Zout) = min
Y ∈Y

{
〈Ŵ , Y 〉+ 〈Zout, Y 〉

}
− (t+ 1)λmax(V TZoutV).

Computing (t + 1)λmax(V TZoutV) is just a matter of finding the largest eigenvalue of

V TZoutV . As for solving the minimization problem minY ∈Y〈Ŵ + Zout, Y 〉, we take ad-
vantage of the nice structure of the set Y and the fact that this minimization problem is
separable into scalar minimization problems: By the definition of the inner product,

〈Ŵ + Zout, Y 〉 =
∑
ij

(Ŵ + Zout)ijYij.

Therefore

min
Y ∈Y
〈Ŵ + Zout, Y 〉 = min

Y ∈Y

∑
ij

(Ŵ + Zout)ijYij

=
∑
ij∈Jc

min
0≤Yij≤1

(Ŵ + Zout)ijYij +
∑
ij∈Jc

min
Yij=0

(Ŵ + Zout)ijYij.

We obtain from inspection that the minimizer Y ∗ is:

(Y ∗)ij =


0 if (i, j) ∈ J,
1 if (i, j) /∈ J and (Ŵ + Zout)ij < 0,

0 if (i, j) /∈ J and (Ŵ + Zout)ij ≥ 0.

43

Chapter 5

The Quadratic Assignment Problem

5.1 Background

The Quadratic Assignment Problem (QAP) is a combinatorial optimization problem that
is of fundamental importance in optimization. As discussed in Section 3.2.3, the Traveling
Salesman Problem is a particular case of the QAP. This means that the QAP not only
NP-hard, but also is NP-hard to approximate, assuming that P 6= NP. Before defining the
QAP, we get some preliminary definitions out of the way.

Definition 5.1.1 (permutation, π). Let I = {1, ..., n}. A permutation of the set I is a
bijective map π : I → I.

Remark 5.1.2. We denote the set of all permutations on n elements by Sn.

Definition 5.1.3 (doubly stochastic matrices). The set of doubly stochastic matrices is
defined as the following:

D :=
{
X ∈ Rn×n : Xe = e,XT e = e,Xij ≥ 0 ∀i, j ∈ {1, ...n}

}
.

Definition 5.1.4 (binary matrices). The set of n×n matrices with all entries in {0, 1} is
denoted by:

Z :=
{
X ∈ Rn×n : Xij ∈ {0.1},∀i, j ∈ {1, ...n}

}
.

Definition 5.1.5 ([4, 32]). The set of permutation matrices Π is defined as Π := D ∩ Z.

The QAP was first introduced in 1957 by Koopmans and Beckman to model the facility
location problem [21]. In the facility location problem, we have a set of n locations and n
facilities. All locations are at some given fixed distance apart. We may imagine that the

44

set of locations represents a collection of holes that are already dug in the ground, and
ready to have a building constructed in its place. We then also have n facilities and a
associated flow between every pair of facilities. We imagine these facilities to be buildings
and for each building, we must decide which location (among the n given locations) is best
suited for its construction. The flows can represent, for example, expected foot traffic, or
any similar quantity that we would like to minimize. We can imagine that two buildings
serve some function that results in there being a lot of people traveling in between them.
Thus, placing two such facilities further apart results in greater total travel, which is clearly
undesirable. As such, we prefer to place facilities which have a high flow between them,
closer together, and vice versa. To do so optimally, we must minimize:∑

location pairs (i,j)

distance(i, j)× flow(π(i), π(j)),

over all possible choices of permutation π. A permutation is equivalent to an assignment
of facilities to locations. That is to say, we place the facility π(i) at the location i, for
every i ∈ {1, . . . , n}. Then, for every pair of locations (i, j), we take the distance between
them and multiply it by the flow between two facilities π(i) and π(j). The cost of placing
a single facility at a specific location will depend on the location of all other facilities, so
it is necessary to sum up costs in a pairwise manner as above. Intuitively, it makes sense
that such a problem is not amenable to a greedy algorithm and that this problem possesses
many local minima, making it highly non-convex and thus very difficult to solve.

Most discussion on the subject of the QAP uses the language of the facility location
problem, even when we not dealing with the problem of physically assigning facilities to
locations. Strictly speaking, the QAP is the more abstract problem of finding a minimum-
cost pairing between elements of two equally-sized sets, given some flow values for all
pairs of elements in the first set, and some distance values between all pairs of elements
in the second set. The flow and distance values are fundamentally no different, just as it
is arbitrary to decide which set corresponds to the facilities and which corresponds to the
locations. Using the words location, facility, flow and distance merely allows us to refer to
these two separate sets and the weights of their respective pairs in a clear and unambiguous
way.

The commonly used formulation of QAP is called the Koopmans-Beckman formulation
[8], which we define now. Suppose we have the following input data:

• aij, the flow between facilities i and j, ∀i, j ∈ {1, . . . n},

• bij, the distance between locations i and j, ∀i, j ∈ {1, . . . n}.

The Koopmans-Beckman QAP is then following optimization problem:

min
π∈Sn

n∑
i=1

n∑
j=1

aπ(i)π(j)bij. (5.1.1)

45

A slightly more general formulation allows for a linear cost term, cost cπ(i)i, which represents
the cost associated to placing facility π(i) at location i:

min
π∈Sn

n∑
i=1

n∑
j=1

aπ(i)π(j)bij + 2
n∑
i=1

cπ(i)i. (5.1.2)

Given an instance of the QAP of the form (5.1.2), we can define its equivalent trace
formulation. To show that this works, we must first define the notion of a permutation
matrix associated to π.

Definition 5.1.6. Let π ∈ Sn. We define the permutation associated to π as the n × n
matrix that satisfies:

(Xπ)ij =

{
1 if π(j) = i

0 otherwise.

Remark 5.1.7. We denote the set of n× n permutation matrices by Πn.

Lemma 5.1.8. Let π ∈ Sn and let Xπ be the associated permutation matrix. Then we
obtain the permutation matrix Xπ by permuting the columns of an identity matrix according
to π. In other words, let e1, . . . , en denote the standard basis vectors, then

I =
[
eT1 . . . eTn

]
Xπ =

[
eπ(1) . . . eπ(n)

]
.

Proof. This follows directly from Definition 5.1.6.

Given an instance of the QAP in the form of (5.1.2). We let A,B,C be symmetric
matrices such that Aij = aij, Bij = bij, and Cij = −cij. We obtain the following trace
formulation

(QAP) min
X∈Πn

〈AXB − 2C,X〉, (5.1.3)

where a feasible solution X is interpreted as:

Xij =

{
1 if facility i is to be built at location j,

0 otherwise.

The connection between (5.1.2) and (5.1.3) is straightforward if we apply the following
lemma:

Lemma 5.1.9. Let π ∈ Sn and let X be the associated permutation matrix. Let A ∈ Sn.
Then

(XTAX)ij = Aπ(i)π(j).

Proof. To proof follows from these two facts:

46

1. multiplying A on the right by X rearranges the columns,

2. multiplying A on the left by XT rearranges the rows.

Item 1 and Item 2 follow from straightforward matrix multiplication.

Applying Lemma 5.1.9 we see the equivalence between (5.1.2) and (5.1.3).

〈AXB − 2C,X〉 = trace(XTAXB)− 2 trace(XTC)

=
n∑
i=1

n∑
j=1

Aπ(i)π(j)Bji − 2
n∑
i=1

Cπ(i)i

=
n∑
i=1

n∑
j=1

aπ(i)π(j)bij + 2
n∑
i=1

cπ(i)i

Although the Koopmans-Beckman formulation is more transparent in terms of what
optimization problem we are solving, the trace formulation is easier to manipulate. For
this reason we will use the trace formulation going forward.

5.2 SDP relaxation of the QAP

To obtain the SDP relaxation for the QAP , we will first show that it can be written as a
BCQP. As a result, it suffices to apply the theory established in Chapter 3 to obtain the
SDP model and the ADMM implementation. In this section we show that all necessary
assumptions are satisfied and we obtain the resulting algorithm by applying the results
in Chapter 3. The results will be the same as previous work applying ADMM to the
DNN relaxation of the QAP in [24] and [16], thus we do this simply to confirm that the
process works. In Chapter 6 we do the same again fo the SCP problem. An implementation
is done in

5.2.1 The QAP as a BCQP

Let A,B,C ∈ Sn be given, and let Πn denote the set of n×n permutation matrices. Recall
the trace formulation of the QAPis:

(QAP) min
X∈Πn

〈AXB − 2C,X〉. (5.2.1)

47

We obtain a more explicit form for the constraint X ∈ Πn by recalling that Π = D ∩ Z
[4, 32].Thus we can rewrite (5.2.1) to obtain:

min
X∈Rn×n

〈AXB − 2C,X〉
s.t. Xe = e

XT e = e
X ◦X −X = 0.

(5.2.2)

To write this in the form of (3.3.1) we simply take advantage of the property of the kronecker
product:

Lemma 5.2.1. Let A,B,X be real matrices with the appropriate compatible dimensions.
Then

vec(AXB) = (BT ⊗ A)vec(X).

Proposition 5.2.2. Let A,B,X be as in (5.2.2) and let

x = vec(X) ∈ Rn2

, c = vec(C) ∈ Rn2

.

Then
〈AXB − 2C,X〉 = xT (BT ⊗ A)x− 2cTx.

Proof.

〈AXB − 2C,X〉 = 〈AXB,X〉 − 2〈C,X〉
= 〈vec(AXB), vec(X)〉 − 2〈vec(C), vec(X)〉
= 〈BT ⊗ Avec(X), vec(X)〉 − 2〈vec(C), vec(X)〉
= traceBT ⊗ Avec(X)vec(X)T − trace vec(C)vec(X)T

= xT (BT ⊗ A)x− 2cTx

Proposition 5.2.3. Let X ∈ Rn×n, let x := vec(X) and let

H :=

[
eT ⊗ I
I ⊗ eT

]
∈ Rn2×2n. (5.2.3)

Then 
Xe = e

XT e = e

X ◦X −X = 0

⇐⇒

{
Hx = ē2n

x ∈ {0, 1}n2
.

48

Proof. By Lemma 5.2.1 the following are equivalent:

Xe = e
IXe = e

(eT ⊗ I)vec(X) = vec(e)
(eT ⊗ I)x = e.

Similarly, the following are also equivalent:

XT e = e
eTXI = eT

(IT ⊗ eT)vec(X) = vec(eT)
(I ⊗ eT)x = e.

Lastly, X ◦ X − X = 0 if and only if all entries of X are in {0, 1}. Equivalently, x ∈
{0, 1}n2

.

By Proposition 5.2.2 and Proposition 5.2.3, we obtain following BCQP model below
which is equivalent to (5.2.1):

min
x

xT (BT ⊗ A)x− 2cTx

s.t. Hx = ē2n

x ∈ {0, 1}n2
.

(5.2.4)

5.2.2 Rank one reformulation of the QAP

Now that it is established that the QAP is an instance of a BCQP , we can obtain the
SDP relaxation in the analogous way to Section 3.3.2. We first write the lifted reformula-
tion, which requires that we define the following matrices:

L :=

[
0 −(vec(C)T)

−vec(C) B ⊗ A

]
,

K =

[
n2 ēTn2H

HT ēn2 HTH

]
=
[
ēn2 H

]T [
ēn2 H

]
.

Applying the process detailed in Section 3.3.1, we linearize the objective and rewrite the
constraints on x as constraints on Y . We obtain the following lifted reformulation of
(5.2.1):

min
Y ∈Sn2+1

〈L, Y 〉

s.t. KY = 0
arrow(Y) = e0

rank(Y) = 1.

(5.2.5)

49

Then, as in Section 3.3.2 our initial DNN relaxation for (5.2.5) is obtained by relaxing the
rank one constaint and adding the cutting planes 0 ≤ Y ≤ 1. We obtain:

min
Y ∈Sn2+1

〈L, Y 〉

s.t. arrow(Y) = e0

KY = 0
Y � 0
0 ≤ Y ≤ 1.

(5.2.6)

5.2.3 Gangster constraint for the QAP

As in Section 3.3.3 we will modify the model by removing the arrow constraint, adding the
gangster constraint as well as the trace constraint. In order to obtain an expression for the
gangster indices J we simply apply Theorem 3.3.4. Recall by the definition of H we have:

HTH =
[
(eT ⊗ I)T (I ⊗ eT)T

] [eT ⊗ I
I ⊗ eT

]
= (e⊗ I)(eT ⊗ I) + (I ⊗ e)(I ⊗ eT)

= eeT ⊗ I + I ⊗ eeT . (5.2.7)

To see the elegant structure of this set, we write (5.2.7) explicitly:

eeT ⊗ I =


I I . . . I

I I . . .
...

...
...

. . .
...

I I . . . I

 I ⊗ eeT =


E 0 . . . 0
0 E . . . 0
...

...
. . . 0

0 0 . . . E

 .
Since Diag(HTH) = 2I, then by Theorem 3.3.4 the gangster indices correspond to the
indices of the nonzero entires of the matrix:

HTH − 2I =


Ē − I I . . . I

I Ē − I . . .
...

...
...

. . .
...

I I . . . Ē − I

 .
We see now that J̄ is equal to the index of the following elements:

• The off-diagonal elements of the n diagonal n-blocks.

• The diagonal elements of the off-diagonal n-blocks.

50

5.2.4 Trace constraint for the QAP

It is apparent from the structure of (5.2.3) that (5.2.4) satisfies the condition (3.4.3). We
can apply Proposition 3.4.5 to get that traceY = n+ 1. Furthermore, as in Section 3.4.1,
the arrow constraint is redundant and we chose to remove it. Thus we get the equivalent
refined model:

min
Y ∈Sn2+1

〈L, Y 〉

s.t. GJ(Y) = E00

KY = 0
traceY = n+ 1
0 ≤ Y ≤ 1
Y � 0.

(5.2.8)

The next and final step is to derive the split SDP model, the one on which we apply
ADMM .

5.2.5 Split model for the QAP

Analogously to section 3.5 we define the sets:

R := {R ∈ Sn−p+ : trace(R) = t+ 1},
Y := {Y ∈ Sn+1

+ : 0 ≤ Y ≤ 1, GJ(Y) = e0},
(5.2.9)

and let V be a matrix such that the columns of V form an orthonormal basis for null(K).
In [34], Zhao et al. propose a choice of basis for null(K). They let

V0 =

[
In−1

−eTn−1

]
∈ Rn×(n−1), (5.2.10)

V =

[
1 0

1
n
en2 V0 ⊗ V0

]
∈ R(n2+1)×(n−1)2+1. (5.2.11)

We use the fact prove in [34] that rank(V) = (n−1)2+1 and range(V) = null(K). Using QR

decomposition V , we can obtain V̂ that satisfies V̂ T V̂ = I with the same dimensions and
range as V . Thus we assume going forward that V̂ is some matrix with rank(V̂) = nullK

and V̂ T V̂ = I. We then have the split model:

min
R,Y

〈L, Y 〉

s.t. Y = V̂ RV̂ T

Y ∈ Y
R ∈ R.

(5.2.12)

51

We define the optimal value of the problem (5.2.12):

p∗QAP = min
R∈R,Y ∈Y

{〈L, Y 〉 : Y = V̂ RV̂ T}. (5.2.13)

The Lagrangian L(R, Y, Z) : R×Y × Sn2+1 → R: for (5.2.13) is defined by:

L(R, Y, Z) = 〈L, Y 〉+ 〈Z, Y − V̂ RV̂ T 〉. (5.2.14)

The Lagrangian dual function is defined by:

g(Z) = min
R∈R,Y ∈Y

L(R, Y, Z),

Thus we obtain the Lagrangian dual problem of (5.2.13):

d∗QAP = sup
Z
g(Z). (5.2.15)

5.2.6 Strong duality

Let V̂ be as defined in the previous section, let FV̂ = V̂ S(n−1)2+1
+ V̂ T , and define the

barycenter:

Ŷ :=
1

n!

∑
X∈Πn

(
1

vec(X)

)(
1

vec(X)

)T
. (5.2.16)

By construction every rank-one term in the sum is feasible for (5.2.5), thus it is also feasible
for the relaxation. Since the cardinality of Πn is n!, Ŷ is a convex combination of feasible
points for (5.2.5). As the feasible set in convex, we conclude that Ŷ is feasible for (5.2.8).
This implies Ŷ satisfies KŶ = 0, and consequently, Ŷ ∈ FV̂ . Thus, if it holds that

rank(Ŷ) ≤ (n− 1)2 + 1 = rank(V̂).

Furthermore, it is proven in [34] that rank(Ŷ) = (n − 1)2 + 1. Thus by Proposition 2.3.5
Ŷ ∈ ri(FV). By Proposition 4.1.5, this implies that a saddle point of (5.2.14) exists, and
furthermore (by lemma 4.1.6) that strong duality holds, i.e.,

d∗QAP = max
Z

min
R∈R,Y ∈Y

〈L, Y 〉+ 〈Z, Y − V̂ RV̂ T 〉 and p∗QAP = d∗QAP . (5.2.17)

5.3 ADMM for the QAP

In this section we define the ADMM iterates for the model (5.2.13) and briefly discuss how
to use the output of ADMM to obtain upper and lower bounds on the optimal solution to

52

(5.2.1). Applying ADMM to the DNN relaxation of the QAP was first done in [24], and
more recently in [16] authors applied a variant of ADMM , called Peaceman-Rachford to
solve the same model as in [24] but with the additional trace constraint. For simplicity,
we present the ADMM iterates and not Peaceman-Rachford, however, the strategy used
in [16] for finding upper and lower bounds still applies. As in Chapter 4, let β > 0 be a
parameter and define the augmented Lagrangian by:

LA(R, Y, Z) := 〈L, Y 〉+ 〈Z, Y − V̂ RV̂ T 〉+
β

2

∥∥∥Y − V̂ RV̂ T
∥∥∥2

F
. (5.3.1)

Then we have the following updates for the primal and dual iterates respectively:

Rk+1 = argminR∈R LA(R, Y k, Zk),

Y k+1 = argminY ∈Y LA(Rk+1, Y, Zk),

Zk+1 = Zk + β(Y k+1 − V̂ Rk+1V̂ T).

By section 4.2.1 and section 4.2.2, these are solved explicitly by computing the projec-
tions:

Rk+1 = PR(V̂ T (Y k +
1

β
Zk)V̂),

Y k+1 = PY(V̂ Rk+1V̂ T − 1

β
(L+ Zk)),

Zk+1 = Zk + β(Y k+1 − V̂ Rk+1V̂ T).

Upper and lower bounds on the optimal value of (5.2.1) are computed using the method
described in and section 4.2.3. A variation in the upper bound computation from [16] uses
the spectral decomposition of the output and perturbs the eigenvalues before solving the
LP (4.2.3). Specifically, they take the spectral decompositon of Y out:

Y out =
r∑
i=1

λiviv
T
i ,

and let ξ ∈ Rr be a random vector with entries in the interval (0, 1) and then define

xout =
r∑
i=1

ξiλivi.

Finally, we obtain an upper bound by solving the LP in (4.2.3) with c = xout. This process
is repeated a number of times, and the best result, i.e. the feasible solution to (5.2.4)
corresponding to the lowest objective value is returned.

53

Chapter 6

Side Chain Positioning problem

6.1 SDP relaxation of the SCP problem

In this chapter we present a second application of the semidefinite programming for binary
constrained quadratic programs: the Side Chain Positioning, SCP problem. The work
of using ADMM for the SDP relaxation of the SCP problem was done in [7] and we
follow a very similar approach, borrowing many of their techniques, while also noting that
these techniques are not dissimilar from the approach used for the QAP. Implementation
details and numerical results can be found in [7]. The work presented in [7] is not a
direct contribution of this thesis but rather is included to show that the application of the
techniques in [16] developed for QAP generalizes to other NP-hard problems.

We now describe the SCP problem and how it arises in Molecular Biology. We then
show that it is an instance of a BCQP, and as a result we can directly apply the method
defined in Chapter 3 to obtain the split model, and then use the methods outlined in
Chapter 4 to compute ADMM iterates and obtain bounds on the optimal solution.

6.1.1 Protein folding biology

The SCP problem arises in molecular biology, in particular, in the task of protein structure
prediction. Protein structure prediction is the process of determining the three-dimensional
shape of a protein based on its known two-dimensional sequence of amino acids. In what
follows, we briefly describe the necessary background for understanding protein-structure-
prediction and define the SCP problem. We subsequently focus on defining the SCP on
a graph and modeling it as a BCQP . For further information on the biology of protein
folding see [10, Sect.1.1] and the references therein.

A protein molecule is made up of a sequence of amino acids connected by peptide bonds.
Each amino acid in the chain is formed of a central carbon atom which is attached to an
amino group, a carboxyl group, and a side chain. The amino acids are connected in such
a way that the carboxyl group of one amino acid forms a peptide bond with the amino

54

group of the next amino-acid. This alternating sequence forms what is know as the protein
backbone. We consider the setting wherein the backbone is fixed, but the side chains of
each amino acid may take on various positions in space. These different possible positions
of a side chain are called rotamers. By determining the position of every side chain we
obtain the shape of protein molecule, know as the protein conformation.

In practice, protein side chains are observed to occupy a only a discrete number of
positions in space. Thus, the side-chain positioning problem (SCP) amounts to the se-
lection of a single rotamer, from a discrete set of possible rotamers, for each amino side
chain in the protein molecule. In order to determine the true protein conformation, we rely
on the assumption that the side chains will be positioned in a way such that the protein
molecule’s total energy is minimized. The total energy of a protein molecule is defined
to be the sum of the pairwise enegry between atoms. The positions of side chains that
achieves this minimum is called global minimum energy conformation (GMEC).

The energy between two atoms can be calculated based off some energy function which
we do not discuss here. Instead we note that the energy will depend on, among other things,
the distance between the two atoms. Thus it is reasonable that different rotatmers will
result in different pairwise energy values between two side chain atoms. For our purposes
we do not look at the energy function but rather assume that we are given a fixed energy
value for each pair or rotamers corresponding to different side chains.

In addition to the energy between two rotamers, there exists an energy between the
backbone and selected rotamer, sometimes referred to as the self-energy of the rotamer.
Hence the energy of a proposed protein conformation obtained summing up over all pairs
of side chain atoms, the energy between their respective rotamer pairs, in addition to
summing up the self-energies of the selected rotamers.

6.1.2 Graphical representation

As in [1, 6, 10] we express the SCP problem as an optimization problem on a graph. We
remark that this corresponds exactly to the formulation of the BCQP as QEHSP.

For a given protein molecule, we can extract the following information:

• p, the number of side chain atoms;

• Si, the set of rotamers for the ith side chain, for i ∈ {1, . . . , p};

• mi, the number of rotamers for the ith side chain, mi = |Si| ∀i ∈ {1, . . . , p};

• n0, the sum of the rotamer set sizes, n0 =
∑p

i=1mi;

• For every pair of rotamers (u, v), u ∈ Si, v ∈ Sj with i, j ∈ {1, . . . n0}, we have the
energy value wuv = wvu;

• For every rotamer u, we have the self energy given by wuu.

55

Then we construct a weighted undirected graph G = (V , E) in the following way. We
label the rotamers using the numbers in {1, . . . , n0}, and let the vertices of the graph, V ,
correspond to the set of all rotamers. In particular we let V = V1 ∩ · · · ∩ Vp where

V1 = {1, . . . ,m1}
V2 = {m1 + 1, . . . ,m1 +m2}

...

Vp =
{∑p−1

i=1 mi + 1, . . . ,
∑p

i=1mi

}
.

The edge set E is comprised of pairs of rotamers (u, v) belonging to different side chains,
and the corresponding edge-weight is given by the energy, i.e., weight(euv) = wuv. Thus
we have just defined an undirected, weighted p-partite graph.

The total energy of a protein molecule conformation is given by the sum of the pairwise
energies between rotamers. Thus we are looking to pick one vertex from every Vi in a way
that minimizes the sum of the weights of the edges between selected vertices. Note that
this is no different from the QEHSP presented in Chapter 3. As such, we apply the same
process to obtain the corresponding BCQP.

6.1.3 The SCP problem as a BCQP

To begin, we define the following energy matrix, E ∈ Rn0×n0 :

Eij := wij ∀(i, j) ∈ E i 6= j,
Eij := 0 ∀(i, j) /∈ E i 6= j,
Eii := wii ∀i ∈ V.

(6.1.1)

For any U ⊆ V , we define the indicator vector x ∈ {0, 1}n0 by:

xu =

{
1, if u ∈ U,
0, if u /∈ U.

The SCP problem is then be formulated as the following integer problem:

min
x

∑
(i,j)∈E

Eijxixj

s.t.
∑
i∈Vk

xi = 1 ∀k = 1, . . . , p

x ∈ {0, 1}n0 .

(6.1.2)

56

To obtain the corresponding BCQP , we define the binary constraints matrix:

H =


ēTm1

0 . . . 0
0 ēTm2

. . . 0
...

...
. . .

...
0 0 . . . ēTmp

 ∈ Rp×n0 .

Then we obtain the equivalent BCQP :

min
x

xTEx

s.t. Hx = ēp
x ∈ {0, 1}n0 .

(6.1.3)

6.1.4 Lifted reformulation of SCP problem

In this section we obtain the lifted reformulation of (6.1.3). Let

Ê :=

[
0 0
0 E

]
K :=

[
p −ēTpA

−AT ēp ATA

]
.

Applying the process detailed in Section 3.3.1, we get that (6.1.3) is equivalent to (6.1.4).

min
Y ∈Sn0+1

〈Ê, Y 〉
s.t. KY = 0

arrow(Y) = e0

rank(Y) = 1.

(6.1.4)

Then, as in Section 3.3.2 our initial DNN relaxation for (6.1.4) is obtained by relaxing the
rank one constraint and adding the cutting planes 0 ≤ Y ≤ 1. We obtain:

min
Y ∈Sn0+1

〈Ê, Y 〉
s.t. arrow(Y) = e0

KY = 0
Y � 0
0 ≤ Y ≤ 1.

(6.1.5)

6.1.5 Gangster and trace constraint for the SCP problem

To obtain the final model we just need to find the trace of all feasible Y and apply Theo-
rem 3.3.4 to obtain the gangster index. Recall that the gangster index set J is defined by
J = (0, 0) ∪ J̄ where J̄ is the set of indices for the nonzero entries of (ATA− I). Note the

57

structure of ATA:

ATA =


Ēm1 0 · · · 0

0 Ēm2 · · · 0
...

...
. . .

...
0 0 · · · Ēmp .

 .
Since Diag(ATA) = I, the gangster indices correspond to the indices of the nonzero entires
of the matrix ATA− I.

ATA− I =


Ēm1 − Im1 0 · · · 0

0 Ēm2 − Im2 · · · 0
...

...
. . .

...
0 0 · · · Ēmp − Imp .

 .
We see now that J̄ is equal to the index of the following element the off-diagonal elements
of the p diagonal mi-blocks. Next we can easily obtain that traceY = p+1. This is because
by the problem definition in Section 6.1.3, all V1 . . .Vp form a partition of V . Thus (3.4.3)
is satisfied and applying Proposition 3.4.5 gives trace(Y) = p+ 1.

6.2 Split model for the SCP problem

To obtain the split model, we note the rank(K) = n0 + 1− p [6]. Thus we define a matrix
V̂ whose columns form an othonormal basis for null(K). In [6], Burkowski et al. construct
the following matrices. For k ≥ 2,

Bk :=

[
Ik−1

−ēTk−1

]
.

If k = 1, Bk = 0 ∈ R. They also define the matrix:

W =


1 0 0 · · · 0
em1 Bm1 0 · · · 0
em1 0 Bm2 · · · 0

...
...

...
. . .

...
emp 0 0 · · · Bmp

 ∈ R(n0+1)×(n0+1−p)

where the columns of W are linearly independent and are in the null space of K [6].

In implementation (see [7]), the QR decomposition of W in Matlab can be used to

obtain an orthogonal matrix V̂ whose columns form a basis for null(K). Thus we obtain

58

the relaxation of (6.1.3) that is used in [7]:

min
R,Y

〈Ê, Y 〉

Y = V̂ RV̂ T

R ∈ R
Y ∈ Y ,

(6.2.1)

where R and Y are defined by

R :=
{
R ∈ Sn0−p

+ : trace(R) = p+ 1
}
,

Y :=
{
Y ∈ Sn0+1 : 0 ≤ Y ≤ 1, GJ(Y) = E00

}
.

(6.2.2)

6.3 Strong duality for the split model

To see that V̂ corresponds to the minimal face, it suffices to find Ŷ feasible for (6.2.1) such

that rank(Ŷ) = n0+1−p. Surprisingly, we can easily construct such a Ŷ by using the matrix
W above. We Let wi denote the ith column of W . We observe that wi + w1 ∈ {0, 1}n0+1

for all i = 2, . . . n0 + 1. Thus, we define a new set of linearly independent vectors by

v1 = w1

vi = wi ∀i ∈ {2, . . . , n0 + 1}.

Then the vi are linearly independent and we can write

vi =

(
1
ṽi

)
,

where the ṽi satisfy for all i ∈ {1, . . . n0 + 1− p}:

• ṽi ∈ {0, 1}n0 ;

• Hṽi = ēp.

Thus each ṽi is feasible for (6.1.3). Thus

(
1
ṽi

)(
1
ṽi

)T
is feasible for (6.1.4). Thus,

Ŷ =
1

n0 + 1− p

n0+1−p∑
i=1

(
1
ṽi

)(
1
ṽi

)T
is feasible for (6.2.1) and rank(Ŷ) = n0 + 1− p. Thus by Proposition 4.1.5, we have that
the Lagrangian has a saddle point and by lemma 4.1.6, strong duality holds. Thus we can
apply ADMM to the model (6.2.1). We do this in the next section.

59

6.4 ADMM for the SCP problem

6.4.1 Defining the iterates

To obtain the ADMM iterates, it suffices to use the iterates from Chapter 4, and tailor
them to the split model (6.2.1). Similarly to the work done for the QAP in [16], we can
alternatively apply the variant of ADMM called Peaceman-Rachford. This work is done
in [7]. The calculations of the iterates, as well as the upper and lower bounds remains the
same, and we present them in the following sections.

We now define the Augmented Lagrangian for the problem (6.2.1):

LA(R, Y, Z) := 〈Ê, Y 〉+ 〈Z, Y − V̂ RV̂ T 〉+
β

2

∥∥∥Y − V̂ RV̂ T
∥∥∥2

F
. (6.4.1)

The iterates are:

Rk+1 = argminR∈R LA
(
R, Y k, Zk

)
= PR

(
V̂ T

(
Y k +

1

β
Zk

)
V̂

)
,

Y k+1 = argminY ∈Y LA
(
Rk+1, Y, Zk

)
= PY

(
V̂ Rk+1V̂ T − 1

β
(Ê + Zk)

)
,

Zk+1 = Zk + β
(
Y k+1 − V̂ Rk+1V̂ T

)
.

6.4.2 Upper bound computation

We apply the approach outlined in Section 4.2.3 for obtaining an upper bound. This
general approach was first implemented for the SCP problem in [6] and then again in [7].
Let Y out be the output Y -iterate of the ADMM algorithm. To obtain an upper bound on
the optimal solution of (6.1.3) it suffices to find a feasible solution to (6.1.3). Note that
if rank(Y out) = 1, we are done. Otherwise, we obtain a rank-one approximation to Y out,

which will have the form Y c :=

(
1
c

)(
1
c

)T
. Approaches for obtaining c are given in [6]

and [7]. To obtain a feasible solution for (6.1.3) we find the closest feasible x to c [6]. This
means that we must solve :

min
x
‖x− c‖ s.t. Ax = ēp, x ∈ {0, 1}n0 . (6.4.2)

From section 4.2.3, recall that this reduces to solving the LP:

min −cTx
s.t. Hx = ēp

x ∈ [0, 1]n.
(6.4.3)

60

Although we could run the simplex algorithm on this, as noted in [6], a solution to (6.4.3)
just returns a greedy solution in the sense for the every rotamer set Vk, the subvector xk

will have a one in the index ik such that cik has the greatest value.

6.4.3 Lower bound computation

We now present the lower bound computation. This is a direct application of section 4.2.4.
We let h be the dual functional defined in Proposition 4.2.2. Thus by Proposition 4.2.2 we
get a lower bound on on the optimal value of (6.1.3) by simply computing:

h(Zout) = 〈Ê, Y ∗〉+ 〈Zout, Y ∗〉 − (t+ 1)λmax(V TZoutV) ≤ d∗

where

(Y ∗)ij =


0 if (i, j) ∈ J
1 if (i, j) /∈ J and (Ŵ + Zout)ij < 0

0 if (i, j) /∈ J and (Ŵ + Zout)ij ≥ 0.

We have demonstrated that the computation of the ADMM iterates, as well as the bound-
ing techniques for the SCP problem are nearly identical to those of the QAP, and therefore,
as done in [7], we can directly apply the approach from [16]. Generalizing the two problems
to a BCQP reveals why this is the case and allows us to re-use this technique for future
problems.

61

Chapter 7

Conclusions and further notes

In this thesis we aimed to generalize the method of obtaining tight bounds on the BCQP based
off of the success of the methods in [6,7,24,34]. In the process of developing this theory, we
came across steps which required some further assumptions that were not present in the
original BCQP formulation. For example, we found that property (3.4.3) holds for both
the SCP problem and the QAP. We used this property to obtain the trace constraint, and
also in our computation of the upper bound in section 4.2.3. Arguably, not having this
property is not an immediate deal breaker as we could simply drop the trace constraint and
find a new method of computing the upper bound. We found that the constraint KY = 0
restricts the feasible set to a face of the positive semidefinite cone. We showed that if the
face determined by KY = 0 was in fact the minimal face of the positive semidefinite cone
containing the feasible set, then strong duality holds, and the afrementionned convergence
results for ADMM hold.

However, we did not find that this would hold for the general BCQP formulation of
K. Instead we proved this individually for both problems by finding a feasible Y with
rank(Y) = n + 1 − rank(K). The fact that it holds for the QAP and SCP problem is
encouraging, but these are also very structured problems, and there are no guarantees
(yet) that this will exist for the general BCQP . We noted that for both the QAP and the
SCP problem, the constraints matrix H is totally unimodular. A first question is whether
the total unimodularity plays a role in having the affine hull of the feasible set FBCQP be
equal to {x ∈ Rn : Hx = ēp}. Perhaps this is not a sufficient enough assumption but we
have not yet determined a counter example.

Without better understanding of this question, we will have to continue treating in-
stances of the BCQP based on their specific structure. However, by following the work
done in this thesis, we no longer have to start from scratch. We now have a blueprint for
how to obtain the SDP model and its iterates, and we know what assumptions we need to
check in order to apply this approach.

62

Index

(y, z), open interval, 9
0n, set of all zero n× n matrices, 34
A, symmetric matrix, 13
B(x, ε), open ball, 6
C, linear manifold, 11
D, matrix such that DTD = K, 25
DH , diagonal of HTH, 22
E, energy matrix, 16, 56
E00, matrix e0e

T
0 , 22

Euv, energy between u and v, 16
FB, feasible set, 38
G = (V , E), weighted undirected graph, 14,

56
GJ(Y), gangster map acting on Y , 5
H, binary constraint matrix, 13, 16
J , gangster index, 5, 24
K, constraint matrix for lifted problem, 49,

57
L, matrix for linear objective function, 49
NC(x), normal cone to C at x, 7
PV , primal split SDP , 28
Q1, Q2, QR factorization matrices, 30
S⊥, orthogonal complement of S, 7
U , matrix of eigenvalues, 8
V , full rank matrix with range(V) = null(K),

28
V0, matrix, 51
W , weight matrix, 15
X � 0, X positive semidefinite, 1
YX , lifted variable, 22
Z∗, optimal dual variable, 32
D, set of doubly stochastic matrices, 44
∆, unit simplex, 40
Diag(x), linear map, 4
E, Euclidean space, 4
En, Eucliean space of dimension n, 4

Λ, diagonal matrix of eigenvalues, 8
Mat(x), linear map, 5
Sn+, cone of positie semidefinite matrices, 1,

8
Sn++, cone of positive definite matrices, 9
Sn, space of n× n symmetric matrices, 1, 4
arrow(X), arrow map, 4
J̄ , index set, 24
R̄, R× 0n+1, 34
Ȳ , 0n+1−r × Y , 34
ēm, all ones vector of dimension m, 2
ēp, p vector of all ones, 13
A∗, adjoint of a linear map A, 7
C, collection of subsets, 14
E , edge set, 14
FK , face defined by KY = 0, 29
FBCQP , feasible set of BCQP , 21
FBCQP , feasible set of BCQP, 18
FDNN , feasible set of doubly non-negative

relaxation, 28
FSDP , feasible set, 21
I, {1, . . . , n}, 44
L(R, Y, Z), Lagrangian, 32, 52
LA(R, Y, Z), augmented Lagrangian, 32
N , null space of constraint Y = V RV T , 33
R, constraint set, 28
Sn, set of permutations on n elements, 44
U , hitting set, 14
V , vertex set, 14
X , set of elements, 14
X ,Y , generic convex sets, 11
Y , constraint set, 28
Z, set of binary matrices, 44
diag(X), linear map, 5
face(C,K), minimal face of K containing C,

10

63

Ê, padded energy matrix, 57
λi, ith eigenvalue, 8
〈X, Y 〉, trace inner product, 4
‖X‖F , Frobenius norm, 4
⊗, Kronecker product, 7
π, permutation, 44
ri, relative interior, 6
/, proper face, 9
�, face of a convex cone, 9
vec(X), vectorization of X, 5
weight eij, weight associated to edge eij, 14

V̂ , matrix, 51
X̂, intermediate matrix, 39, 40
akl, flow between facilities k and l, 45
bij, distance between locations i and j, 45
d∗, dual optimal value, 32
d∗QAP , dual optimal value for QAP relaxation,

52
d∗Z , maximum value of h(Z), 42
eVk , indicator vector for the set Vk, 13
g(Z), dual functional, 32, 52
h(Z), dual function, 42
p∗, primal optimal value, 32
p∗QAP , primal optimal value for QAP relaxation,

52
r, rank of K, 28
SCP, side-chain positioning, 55

Vi, ith subset of V , 13
{Ṽ1 . . . Ṽt}, subcollection of {V1, . . . ,Vp}, 27

adjoint of a linear map, 7
amino group, 54

barycentre, 38
binary matrix, 2
binary-constrained quadratic program, BCQP,

1

carboxyl group, 54
central carbon atom, 54
cone of positie semidefinite matrices, Sn+, 8
cone of positive definite matrices, Sn++, 9
constraint matrix, 2
convex cone, 7

convex set, 6

direct sum, 6
distance between locations i and j, 45
doubly non-negative, DNN, 2, 18
doubly stochastic, 44

energy matrix, E, 56
exact hitting set, 14
exact satisfiability problem, 17

face of a convex cone, �, 9
facilities, 44, 45
facility location problem, 44
flow, 45
Frobenius norm, ‖X‖F , 4

gangster constraint, 22
gangster index, 5, 22
gangster operator, 5
global minimum energy conformation, 55
global minimum energy conformation, GMEC,

55

indicator vector, 15
integer quadratic program, IQP , 1

Kronecker product, 7

lifted problem, 2
locations, 44

minimal face, 10
Minkowski sum, 6

normal cone to C at x, NC(x), 7
NP-complete, 17
NP-hard, 17

orthogonal complement, 7
orthogonal spectral decomposition, 8
orthonormal eigenvectors, 8

permutation matrix associated to π, 46
permutation, π, 44
positive semidefinite matrix, 1
principal submatrix, 8

64

proper face, /, 9
protein backbone, 55
protein conformation, 55

QR factorization, 30
Quadratic Assignment Problem, QAP, 1

relative interior, ri, 6
rotamers, 55

saddle point, 33
self-energy, 55
self-loops, eii, 14
semidefinite program, SDP, 1
set constraints, 32
set of symmetric n× n matrices, Sn, 4
side chain, 54
Side Chain Positioning, SCP, 1, 16, 54
split model, 3
strong duality, 32

the flow between facilities i and j, 45
trace formulation, 46
trace inner product, 〈X, Y 〉, 4

unit simplex, ∆, 40

65

References

[1] T. Akutsu. NP-hardness results for protein side-chain packing. Genome Informatics,
8:180–186, 1997. 17, 55

[2] F. Alizadeh. Interior point methods in semidefinite programming with applications to
combinatorial optimization. SIAM J. Optim., 5:13–51, 1995. 2

[3] S. Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer
New York, 1997. 7

[4] G. Birkhoff. Three observations on linear algebra. Univ. Nac. Tucumán. Revista A.,
5:147–151, 1946. 44, 48

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found.
Trends Machine Learning, 3(1):1–122, 2011. 3, 33, 41

[6] F. Burkowski, Y-L. Cheung, and H. Wolkowicz. Efficient use of semidefinite pro-
gramming for selection of rotamers in protein conformations. INFORMS J. Comput.,
26(4):748–766, 2014. 22, 30, 39, 40, 55, 58, 60, 61, 62

[7] F. Burkowski, J. Im, and H. Wolkowicz. A peaceman-rachford splitting method for
the protein side-chain positioning problem, 2020. iii, 1, 16, 18, 21, 24, 28, 30, 31, 39,
54, 58, 59, 60, 61, 62

[8] E. Çela. The quadratic assignment problem, volume 1 of Combinatorial Optimization.
Kluwer Academic Publishers, Dordrecht, 1998. Theory and algorithms. 45

[9] W. Chaovalitwongse, I. Androulakis., and P. Pardalos. Quadratic integer program-
ming: Complexity and equivalent forms. 01 2008. 2

[10] B. Chazelle, C. Kingsford, and M. Singh. A semidefinite programming approach to side
chain positioning with new rounding strategies. INFORMS J. Comput., 16(4):380–392,
2004. 17, 54, 55

[11] E. de Klerk, D.V. Pasechnik, and R. Sotirov. On semidefinite programming relaxations
of the traveling salesman problem. SIAM Journal on Optimization, 19(4):1559–1573,
Jan 2009. 17

66

[12] D. Drusvyatskiy and H. Wolkowicz. The many faces of degeneracy in conic optimiza-
tion. Foundations and Trends® in Optimization, 3(2):77–170, 2017. 9, 10, 38

[13] C. Eckart and G. Young. The approximation of one matrix by another of lower rank.
Psychometrica, 1(3):211–218, 1936. 39

[14] D. Rawitz G. Even and S. Shahar. Hitting sets when the vc-dimension is small.
Information Processing Letters, 95(2):358 – 362, 2005. 14

[15] M.X. Goemans and D.P. Williamson. New 3/4-approximation algorithms for the
maximum satisfiability problem. SIAM J. on Discrete Mathematics, 7, 1994. 1

[16] N. Graham, H. Hu, H. Im, X. Li, and H. Wolkowicz. A restricted dual Peaceman-
Rachford splitting method for QAP. Technical report, University of Waterloo, Wa-
terloo, Ontario, 2020. 29 pages, research report. iii, 1, 16, 18, 21, 24, 28, 30, 31, 39,
40, 41, 47, 53, 54, 60, 61

[17] V. Guruswami. and Y. Zhou. Tight bounds on the approximability of almost-satisfiable
horn sat and exact hitting set. Theory of Computing, 8(11):239–267, 2012. 14

[18] J.-B. Hiriart-Urruty and C. Lemaréchal. Fundamentals of convex analysis.
Grundlehren Text Editions. Springer-Verlag, Berlin, 2001. Abridged version of ıt
Convex analysis and minimization algorithms. I [Springer, Berlin, 1993; MR1261420
(95m:90001)] and ıt II [ibid.; MR1295240 (95m:90002)]. 6, 7

[19] R. Horn and C. Johnson. Matrix Analysis. Cambridge University Press, New York,
1985. 8

[20] R.A. Horn and C.R. Johnson. Topics in Matrix Analysis. Cambridge University Press,
Cambridge, 1994. Corrected reprint of the 1991 original. 7

[21] T.C. Koopmans and M.J. Beckmann. Assignment problems and the location of eco-
nomic activities. Econometrica, 25:53–76, 1957. 44

[22] X. Li, T.K. Pong, H. Sun, and H. Wolkowicz. A strictly contractive Peaceman-
Rachford splitting method for the doubly nonnegative relaxation of the minimum cut
problem. Technical report, University of Waterloo, Waterloo, Ontario, 2019. 40 pages,
research report. 41

[23] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization.
SIAM J. Optim., 1(2):166–190, 1991. 2

[24] D.E. Oliveira, H. Wolkowicz, and Y. Xu. ADMM for the SDP relaxation of the QAP.
Math. Program. Comput., 10(4):631–658, 2018. 2, 3, 21, 39, 40, 47, 53, 62

[25] G. Pataki. Geometry of Semidefinite Programming. In H. Wolkowicz, R. Saigal, and
L. Vandenberghe, editors, Handbook OF Semidefinite Programming: Theory, Algo-
rithms, and Applications. Kluwer Academic Publishers, Boston, MA, 2000. 9

67

[26] B.N. Pshenichnyi. Necessary conditions for an extremum, volume 4 of Translated from
the Russian by Karol Makowski. Translation edited by Lucien W. Neustadt. Pure and
Applied Mathematics. Marcel Dekker Inc., New York, 1971. 11

[27] R.T. Rockafellar. Convex analysis. Princeton Landmarks in Mathematics. Prince-
ton University Press, Princeton, NJ, 1997. Reprint of the 1970 original, Princeton
Paperbacks. 6, 7, 12

[28] T.J. Schaefer. The complexity of satisfiability problems. In Proceedings of the tenth
annual ACM symposium on Theory of computing, pages 216–226, 1978. 17

[29] T. Schmidt. Computational Complexity of SAT, XSAT and NAE-SAT for linear and
mixed Horn CNF formulas. PhD thesis, Universität zu Köln, 2010. 17

[30] L.N. Trefethen and D. Bau. Numerical Linear Algebra. SIAM, 1997. 30

[31] L. Tunçel. Polyhedral and semidefinite programming methods in combinatorial opti-
mization, volume 27 of Fields Institute Monographs. American Mathematical Society,
Providence, RI; Fields Institute for Research in Mathematical Sciences, Toronto, ON,
2010. 8, 9

[32] J. von Neumann. Discussion of a maximum problem. In A.H. Taub, editor, Jon von
Neumann, Collected Works, pages 89–95. Pergamon, New York, 1963. 44, 48

[33] D.P. Williamson and D.B. Shmoys. The Design of Approximation Algorithms. Cam-
bridge University Press, USA, 1st edition, 2011. 17

[34] Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite programming relax-
ations for the quadratic assignment problem. volume 2, pages 71–109. 1998. Semidefi-
nite programming and interior-point approaches for combinatorial optimization prob-
lems (Toronto, ON, 1996). 22, 30, 51, 52, 62

68

	Introduction
	Notation
	Matrix and vector definitions
	Euclidean spaces
	Some linear maps

	Preliminaries
	Definitions from convex analysis
	The cone of positive (semi)definite matrices
	Faces of the positive semidefinite cone
	Optimality conditions for convex split problems

	Binary-constrained quadratic program
	Problem definition
	Exact hitting set
	Side chain positioning
	Quadratic Assignment Problem
	Complexity

	The doubly non-negative relaxation
	Reformulation
	Relaxing the rank-one constraint
	Gangster constraint

	Refining the model
	Gangster and arrow constraints
	Trace constraint

	The split model

	Applying ADMM to the BCQP
	Algorithm definition
	Dual problem
	Assumptions for convergence
	Normal cone intersection property
	Optimality conditions
	Lagrangian saddle point
	Alternative condition for strong duality

	Computational strategies
	R subproblem
	Y subproblem
	Upper bound
	Lower bound

	The Quadratic Assignment Problem
	Background
	SDP relaxation of the QAP
	The QAP as a BCQP
	Rank one reformulation of the QAP
	Gangster constraint for the QAP
	Trace constraint for the QAP
	Split model for the QAP
	Strong duality

	ADMM for the QAP

	Side Chain Positioning problem
	SDP relaxation of the SCP problem
	Protein folding biology
	Graphical representation
	The SCP problem as a BCQP
	Lifted reformulation of SCP problem
	Gangster and trace constraint for the SCP problem

	Split model for the SCP problem
	Strong duality for the split model
	ADMM for the SCP problem
	Defining the iterates
	Upper bound computation
	Lower bound computation

	Conclusions and further notes
	Index
	References

