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Abstract

A technique is proposed to transform a nonsymmetric Quadratic
Assignment Problem (QAP) into an equivalent one, consisting of (com-
plex) Hermitian matrices. This technique provides several new Hoffman-
Wielandt type eigenvalue inequalities for general matrices and extends
the eigenvalue bound for symmetric QAPs to the general case.
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1 Introduction

The Quadratic Assignment Problem (QAP) is one of the most difficult com-
binatorial optimization problems. It is defined as follows:

QAP: For given (real) nxn matrices A and B, minimize f(X) := trAX B'X*
over the set of permutation matrices,

where trace denotes trace. This problem is well known to be NP-hard. The
QAP is surveyed in e.g. [2, 5, 8]. Lower bounds on f(X) are investigated
in [1, 3, 5, 7, 9, 12]. These constitute an essential ingredient in any Branch
and Bound approach to solve the QAP. A connection between the range of
values of f(X) and the eigenvalues of A and B has been established in [5, 12]
for the case of symmetric A and B. This resulted in the eigenvalue bound
for symmetric QAPs. (A QAP is called symmetric if both input matrices A
and B are symmetric.) In [6] it is pointed out that this eigenvalue bound
is equivalent to the Hoffman-Wielandt Inequality, see also [4], in the sense
that each can be derived from the other.

In this paper the eigenvalue approach for QAP is extended to the gen-
eral (nonsymmetric) case. This is achieved by transforming the quadratic
form f(X) into an equivalent quadratic form g(X) :=trAd; X B;X* with
Hermitian matrices jL|_ and B_|_. This allows us to apply the eigenvalue
bounds for symmetric QAPs also in the general case. Moreover we show
how the eigenvalues of A and jl_|_ are related through majorization. Finally
the equivalence between f(X) and g(X) leads to new Hoffman-Wielandt
type inequalities for nonnormal matrices.

The paper is organized as follows. In Section 2 we review the Hoffman-
Wielandt inequality and the eigenvalue bound for symmetric QAPs. In
Section 3 we propose a nontrivial symmetrization of QAPs, leading to the
main result of the paper, an eigenvalue related bound for general QAPs.
The section is concluded by providing majorization relations between the
eigenvalues of A and the matrix A, . (The matrix A, is formed from
the Hermitian and skew-Hermitian parts of A.) Several new inequalities
of Hoffman-Wielandt type for general matrices are derived in Section 4.

2 The Hoffman-Wielandt Inequality and Symmet-
ric QAPs

The following notation will be used throughout the paper. Il denotes the
set of permutations of {1,...,n}. For two vectors a,b € R"™ we define the



minimal and mazimal scalar product of a and b by, respectively,

<a,b>_:= min{z aibpy cm €}, <a,b>pi= max{z aiby) :m € I}

Note that < a,b >, = a'b if the components of a and b are both in nonde-
creasing order. The distance d(a, b) between two (possibly complex) vectors

a and b is defined by

d(a.b) = mi i —b_n|?.
(CL, ) frnelﬁlzl:hl 71'(1)|

For a and b real this simplifies to d(a,b) = ||a||> + ||8]|* =2 < a,b >..

If A is a square matrix, then A(A) denotes the vector of eigenvalues of
A (in arbitrary order). We denote by ||K|| = VtrK K* the Frobenius norm
of the matrix K, where -* denotes the conjugate transpose.

In [10] Hoffman and Wielandt prove the following inequality for the
distance between two normal matrices A and B, and the distance between
their respective eigenvalues,

d(M(4), \(B)) < ||A - B*. (1)

This is commonly referred to as the Hoffman-Wielandt (denoted H-W) In-
equality. Moreover, there exists a permutation w such that

A= B|I> <Y T 1Ai(4) = Ay (B (2)
The inequalities can fail if A or B is nonnormal. For example, let
01 01
23] a0
Then (1) fails since
d(A(A), \(B))=2>||[A- B|*=1.
Moreover, with A as above and B the 0 matrix, we see that (2) fails since

IA=B|I* =1> 3 [Ai(4) = Ari) (B)* = 0,

for all permutations w. But even though (1) and (2) may fail for general
matrices, it is still possible to extend the result to a larger class of matrices.



One simple extension for the H-W inequality is to the matrices A = KA
and B = KB, where K is positive definite and A and B are Hermitian.
The validity of the inequalities follows from the fact that K has a square
root and the eigenvalues of A are the eigenvalues of the Hermitian matrix
K:AK?. Note that A is normal if and only if K and A commute which
implies that A is Hermitian.

In Section 4 we will present further generalizations of the H-W inequality
to arbitrary square matrices.

We now consider Hermitian A and B in order to show the close relation
between the unitary relazation of the QAP and the H-W inequality, see also
[6]. First note that in the Hermitian case

d(A(4), A(B)) = IAII* + [IB]|* = 2 < A(A), A\(B) >+ .
Expanding also shows that
|A = B|I* = ||AlI* +||B||* - 2tr AB™. (3)
Therefore the H-W inequality implies, using (3)
<AA)AB)>- < trAB* < < A(4),A(B)>4. (4)

The following theorem was proved in [5] and [12], and is the basis for
the eigenvalue bound of symmetric QAPs.

Theorem 2.1 [12] Let A and B be Hermitian matrices. Then

max{trAXB*X" : X unitary} = < A(A4),A(B) >y,
min{trAX B* X" : X unitary} = < A(A),A(B)>_. (5)

Since the permutation matrices are contained in the set of unitary matri-
ces, this result indeed provides bounds on the range of values of a symmetric
QAP. Moreover, by comparing (4) and (5) we see that the equivalence of
the H-W inequality and the eigenvalue bounds (5) becomes apparent, by
observing that A(B) can be assumed to be equal to A(X BX*) for any uni-
tary X. (The fact that trAX B*X* € R, even if the matrices involved are
complex, follows from (3).)



3 Nonsymmetric Quadratic Assignment Problems

For a square matrix A, let the matrices
A+ A* A— A*
+ A=
2 2
denote the Hermitian and skew-Hermitian parts of A, respectively. Consider

a general real quadratic form z! Az in the vector variable z. It is well known
that

A_|_:

eiAe = 2'A, e,

for all z € R", i.e. the quadratic form can be represented by an Hermitian
matrix. Note that the eigenvalues of A, majorize (see below) the real parts
of the eigenvalues of A, see [11].

The objective function f(X) = trAXB*X" of a QAP with (arbitrary)
real matrices A and B can be viewed as a quadratic form in the matrix
variable X . It is natural to ask for a symmetric representation of f(X), just
as in the vector case.

If we let = vec(X) be the vector formed from unravelling X rowwise,
and we let K = A ® B be the Kronecker product of A and B, then it is
easily verified that

trAXB'X' = 2'K=.

Thus a trivial way to symmetrize f(X) would be to use 'Kz instead of
f(X). As a consequence we would have to work with the n? x n? matrix
K instead of the two n X n matrices A and B. This seems computationally
intractable, e.g. even storing K, is nontrivial for larger values of n.

In the following we propose a different approach to symmetrize f(X),
that keeps the factored Kronecker product form of f(X). This approach is
based on the fact that trAXB*X* = 0 if A is (real) symmetric and B is
skewsymmetric.

Lemma 3.1 Let A and B be real n xn matrices with A = A* and B = —B*.
Then for any real n X n matric X

trAXB'X' = 0.
Proof.
trA(XB'X') = trA(XBX") = —trAXB'X".

The first equality follows from tr M N = tr M* N, the second from the prop-
erties of A and B. a

Note that the lemma is wrong if we allow complex matrices A and B, or
if X is allowed to be complex.



Let 5 5
A_|_ = (A_|_ —|— iA_), A_ — A_|_ - ZA_ (6)

denote the positive and negative Hermitian parts of A, respectively. Note
that both A, and A_ are Hermitian. Using the positive Hermitian parts of
A and B we can symmetrize f(X).

Theorem 3.1 Let A and B be two real n X n matrices. For any realn X n
matriz X
trAXB* X" =trA, XB7 X~ (7)

Proof.
trAXB*X* = tr(Ay +A_)X(By— B_)X~
= trA, XB, X" —trA_XB_X".
The last equality follows from the previous lemma.
trA{ XB1X* = tr(Ay +iA_)X (B4 +iB_)X~
= trA, XB,. X" —trA_XB_X".

The last equality follows again from the previous lemma. a
As a consequence we can bound the range of an arbitrary QAP by the
minimal and maximal scalar product of A(Ay) and A(B.).

Theorem 3.2 Let a QAP with real matrices A and B be given. Then for
all permutation matrices X

<AAL),MBy) >_ < trAXB!Xt < < A(A3),MBL) >4 .
Proof. By Theorem (3.1) we have for all permutation matrices X
trAXB'X' = trAXB*X" =trA, XB1 X"

because A, B and X are real. The bounds follow from Theorem (2.1) by
observing that permutation matrices are unitary. o
Relation (3) also provides a bound on the range of values of an arbitrary

QAP.

Theorem 3.3 Let a QAP with real matrices A and B be given. Then for
all permutation matrices X
—IAI” - 11B]*
2

1411* + 11 BII*

<trAXB'X' < 5 (8)



Proof. We have
0<||A+XBX">=||A])® +|B|* £ 2trAX B'X*

for all permutation matrices X . a

It was already pointed out that the eigenvalues of A, majorize the real
parts of those of A. We conclude this section by providing similar majoriza-
tion relations for the eigenvalues of A and fL_. Following the notation in
[11] we denote by

the components of a given vextor z = (z1,...,2,) € ®" in nonincreasing
order. For given z,y € R", we say that ¢ majorizes y (denoted z > y) if

k k
=1 =1
zit-teT = Yt At Yne (10)

Theorem 3.4 Let A be an arbitrary n X n matriz. Then

MAL) = Re(A(4)) - Im(A(4)).
Proof. Let M = (1+i)A. Then M, = A,. Using

A(My) = Re(A(M))
see [11, p.237], we conclude
MAy) = Re(A((1+9)4)).

Since Re((1+ )z) = Re(z) — Im(z), the result follows. a
Theorem 3.5 Let A be an arbitrary n X n matriz. Then

A(AL) + Im(A(A-)) = A(Ay).

Proof. Note that A, can be written as the sum of the two Hermitian
matrices A, and ¢A_. Using

A(M) + A(N) = A(M + N)

for Hermitian matrices M and N, see [11, p.241], the result follows. (In a
slight abuse of notation, we assumed here that for a Hermitian matrix M,
A(M) denotes the sequence of eigenvalues of M in nonincreasing order.) O

Finally we provide a majorization result between the singular values of
A and the eigenvalues of A . Let o1(A) denote the k" largest singular value
of A and A\i(A,) denote the k** largest eigenvalue of A, .



Theorem 3.6 Let A be an arbitrary n X n matriz. Then
}‘k(A‘F) < \/io-k(A)’ k:]-’"'ana
and ) )
(A (AD)], - (AL <0 V2(01(4), .- ., 5u(4)),

where <, denotes weak majorization, i.e.”<” replaces =" in (10).
Proof. In [11, p.240], it is shown that

Ar(My) < o) (M)
and

(A (M) s Pa(Mp)]) <w (91(M), . . ., 00 (M)

The result follows using
Ay = ((L+9)A)4
O
It should be pointed out that similar results as those above can be ob-

tained by using the negative Hermitian parts A_ and B_ instead of the
positive Hermitian parts.

4 New Hoffmann-Wielandt Type Inequalities

We conclude by providing inequalities between the distance of two general
matrices, based on the symmetrization derived in Section 3. First we relate
the distance between two matrices to the distance between the eigenvalues
of the respective positive Hermitian parts.

Theorem 4.1 Let A and B be two real n X n matrices. Then
d(A(A1),A(By)) < ||lA- BJ”.

Moreover, there exists a permutation w such that

|A- B> < Z(M(l‘h) — Ar(i)(B4))?.



Proof. Note that by Theorems (3.1) and (3.2) we have
|A—-B|* = trAA* +trBB* - 2trAB*
trA A, +trByB, —2trA, B,.
> N OAN(AR) + A (By) -2 < AAy), A(By) >+ -
= (A, A(BL).

The remaining part of the theorem is proved similarly using the minimal
scalar product of the eigenvalues. a

Finally we provide a lower bound on the distance between the eigenvalues
of two arbitrary matrices.

Theorem 4.2 Let A and B be two arbitrary n X n matrices. Then
(Re(trA) — Re(trB))? L+ (Im(trA) — Im(trB))?
n n

Proof. Let a = Re(A(A4)), b = Re(A(B)), c = Im(A(4)), d = Im(A(B)),
e =a—0>b, and f = ¢ — d. Then a lower bound on the distance of the
eigenvalues of A and B is given by the (global) minimum of the following

program.
: 2 2
min ) el + i
k3

such that

Z e; = Re(trA) — Re(trB)
Z fi = Im(trA) — Im(trB).
The objective function is convex, and

o — Re(trA) — Re(trB)

2

n
and
Im(trA) — Im(trB)
fi=
n
satisfy the first and second order sufficient optimality conditions. Substitu-
tion into the objective function yields the result. a

We leave it as an open problem to derive good upper bounds on d(A(4), A(B)).



5 Discussion and Summary

We have shown that an arbitrary QAP can be expressed using (possibly
complex) Hermitian matrices. This allowed us to derive eigenvalue related
bounds on the range of values of general QAPs. We do not claim that
these bounds, taken as they are, will be competitive with existing bound-
ing rules for general QAPs. To make these bounds better, further work,
as in the symmetric case is necessary. In [12] the concept of ”reductions”
is used to improve the eigenvalue bound for symmetric problems. This in-
volved nonsmooth optimization and turned out to be very successful. Since
”reductions” can also be applied in the general case, the improvement tech-
niques apply here as well. On the other hand, a projection technique is used
in [9] to improve the eigenvalue bound of Theorem (2.1) by constraining the
set of unitary matrices to an affine subspace. A similar technique can be
applied also for general QAPs. Future research will have to demonstrate the
practical quality of the bounds proposed in this paper.

The close connection between the Hoffman-Wielandt inequality and the
eigenvalue bound for symmetric QAPs on one hand, and the symmetriza-
tion of general QAPs on the other hand suggested several extensions of the
Hoffman-Wielandt inequality for general matrices. The key role is played
here by A_|_, the positive Hermitian part of A.
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