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1 IntroductionThe Quadratic Assignment Problem (QAP) is one of the most di�cult com-binatorial optimization problems. It is de�ned as follows:QAP: For given (real) n�nmatricesA and B, minimize f(X) := trAXBtX tover the set of permutation matrices,where trace denotes trace. This problem is well known to be NP-hard. TheQAP is surveyed in e.g. [2, 5, 8]. Lower bounds on f(X) are investigatedin [1, 3, 5, 7, 9, 12]. These constitute an essential ingredient in any Branchand Bound approach to solve the QAP. A connection between the range ofvalues of f(X) and the eigenvalues of A and B has been established in [5, 12]for the case of symmetric A and B. This resulted in the eigenvalue boundfor symmetric QAPs. (A QAP is called symmetric if both input matrices Aand B are symmetric.) In [6] it is pointed out that this eigenvalue boundis equivalent to the Ho�man-Wielandt Inequality, see also [4], in the sensethat each can be derived from the other.In this paper the eigenvalue approach for QAP is extended to the gen-eral (nonsymmetric) case. This is achieved by transforming the quadraticform f(X) into an equivalent quadratic form g(X) :=tr ~A+X ~B�+X� withHermitian matrices ~A+ and ~B+. This allows us to apply the eigenvaluebounds for symmetric QAPs also in the general case. Moreover we showhow the eigenvalues of A and ~A+ are related through majorization. Finallythe equivalence between f(X) and g(X) leads to new Ho�man-Wielandttype inequalities for nonnormal matrices.The paper is organized as follows. In Section 2 we review the Ho�man-Wielandt inequality and the eigenvalue bound for symmetric QAPs. InSection 3 we propose a nontrivial symmetrization of QAPs, leading to themain result of the paper, an eigenvalue related bound for general QAPs.The section is concluded by providing majorization relations between theeigenvalues of A and the matrix ~A+. (The matrix ~A+ is formed fromthe Hermitian and skew-Hermitian parts of A.) Several new inequalitiesof Ho�man-Wielandt type for general matrices are derived in Section 4.2 The Ho�man-Wielandt Inequality and Symmet-ric QAPsThe following notation will be used throughout the paper. � denotes theset of permutations of f1; : : : ; ng. For two vectors a; b 2 <n we de�ne the2



minimal and maximal scalar product of a and b by, respectively,< a; b >�:= minfXi aib�(i) : � 2 �g; < a; b >+:= maxfXi aib�(i) : � 2 �g:Note that < a; b >+= atb if the components of a and b are both in nonde-creasing order. The distance d(a; b) between two (possibly complex) vectorsa and b is de�ned by d(a; b) = min�2�Xi jai � b�(i)j2:For a and b real this simpli�es to d(a; b) = kak2 + kbk2 � 2 < a; b >+.If A is a square matrix, then �(A) denotes the vector of eigenvalues ofA (in arbitrary order). We denote by kKk = ptrKK� the Frobenius normof the matrix K, where �� denotes the conjugate transpose.In [10] Ho�man and Wielandt prove the following inequality for thedistance between two normal matrices A and B, and the distance betweentheir respective eigenvalues,d(�(A); �(B))� kA� Bk2: (1)This is commonly referred to as the Ho�man-Wielandt (denoted H-W) In-equality. Moreover, there exists a permutation � such thatkA� Bk2 �Xi j�i(A)� ��(i)(B)j2: (2)The inequalities can fail if A or B is nonnormal. For example, letA = � 0 10 0 � ; B = � 0 11 0 � :Then (1) fails since d(�(A); �(B)) = 2 > kA� Bk2 = 1:Moreover, with A as above and B the 0 matrix, we see that (2) fails sincekA�Bk2 = 1 >Xi j�i(A)� ��(i)(B)j2 = 0;for all permutations �. But even though (1) and (2) may fail for generalmatrices, it is still possible to extend the result to a larger class of matrices.3



One simple extension for the H-W inequality is to the matrices A = K �Aand B = K �B, where K is positive de�nite and �A and �B are Hermitian.The validity of the inequalities follows from the fact that K has a squareroot and the eigenvalues of A are the eigenvalues of the Hermitian matrixK 12 �AK 12 . Note that A is normal if and only if K and �A commute whichimplies that A is Hermitian.In Section 4 we will present further generalizations of the H-W inequalityto arbitrary square matrices.We now consider Hermitian A and B in order to show the close relationbetween the unitary relaxation of the QAP and the H-W inequality, see also[6]. First note that in the Hermitian cased(�(A); �(B)) = kAk2 + kBk2 � 2 < �(A); �(B)>+ :Expanding also shows thatkA�Bk2 = kAk2 + kBk2 � 2trAB�: (3)Therefore the H-W inequality implies, using (3)< �(A); �(B)>� � trAB� � < �(A); �(B)>+ : (4)The following theorem was proved in [5] and [12], and is the basis forthe eigenvalue bound of symmetric QAPs.Theorem 2.1 [12] Let A and B be Hermitian matrices. ThenmaxftrAXB�X� : X unitaryg = < �(A); �(B)>+;minftrAXB�X� : X unitaryg = < �(A); �(B)>� : (5)Since the permutation matrices are contained in the set of unitary matri-ces, this result indeed provides bounds on the range of values of a symmetricQAP. Moreover, by comparing (4) and (5) we see that the equivalence ofthe H-W inequality and the eigenvalue bounds (5) becomes apparent, byobserving that �(B) can be assumed to be equal to �(XBX�) for any uni-tary X . (The fact that trAXB�X� 2 <, even if the matrices involved arecomplex, follows from (3).) 4



3 Nonsymmetric Quadratic Assignment ProblemsFor a square matrix A, let the matricesA+ = A+ A�2 ; A� = A �A�2denote the Hermitian and skew-Hermitian parts of A, respectively. Considera general real quadratic form xtAx in the vector variable x. It is well knownthat xtAx = xtA+x;for all x 2 <n, i.e. the quadratic form can be represented by an Hermitianmatrix. Note that the eigenvalues of A+ majorize (see below) the real partsof the eigenvalues of A, see [11].The objective function f(X) = trAXBtX t of a QAP with (arbitrary)real matrices A and B can be viewed as a quadratic form in the matrixvariable X . It is natural to ask for a symmetric representation of f(X), justas in the vector case.If we let x = vec(X) be the vector formed from unravelling X rowwise,and we let K = A 
 B be the Kronecker product of A and B, then it iseasily veri�ed that trAXBtX t = xtKx:Thus a trivial way to symmetrize f(X) would be to use xtK+x instead off(X). As a consequence we would have to work with the n2 � n2 matrixK+ instead of the two n�n matrices A and B. This seems computationallyintractable, e.g. even storing K+ is nontrivial for larger values of n.In the following we propose a di�erent approach to symmetrize f(X),that keeps the factored Kronecker product form of f(X). This approach isbased on the fact that trAXBtX t = 0 if A is (real) symmetric and B isskewsymmetric.Lemma 3.1 Let A and B be real n�n matrices with A = At and B = �Bt.Then for any real n� n matrix XtrAXBtX t = 0:Proof. trA(XBtX t) = trAt(XBX t) = �trAXBtX t:The �rst equality follows from trMN = trM tN t, the second from the prop-erties of A and B. 2Note that the lemma is wrong if we allow complex matrices A and B, orif X is allowed to be complex. 5



Let ~A+ = (A+ + iA�); ~A� = A+ � iA� (6)denote the positive and negative Hermitian parts of A, respectively. Notethat both ~A+ and ~A� are Hermitian. Using the positive Hermitian parts ofA and B we can symmetrize f(X).Theorem 3.1 Let A and B be two real n� n matrices. For any real n� nmatrix X trAXB�X� = tr ~A+X ~B�+X�: (7)Proof. trAXB�X� = tr(A+ +A�)X(B+� B�)X�= trA+XB+X� � trA�XB�X�:The last equality follows from the previous lemma.tr ~A+X ~B�+X� = tr(A+ + iA�)X(B+ + iB�)X�= trA+XB+X� � trA�XB�X�:The last equality follows again from the previous lemma. 2As a consequence we can bound the range of an arbitrary QAP by theminimal and maximal scalar product of �( ~A+) and �( ~B+).Theorem 3.2 Let a QAP with real matrices A and B be given. Then forall permutation matrices X< �( ~A+); �( ~B+) >� � trAXBtX t � < �( ~A+); �( ~B+) >+ :Proof. By Theorem (3.1) we have for all permutation matrices XtrAXBtX t = trAXB�X� = tr ~A+X ~B�+X�because A;B and X are real. The bounds follow from Theorem (2.1) byobserving that permutation matrices are unitary. 2Relation (3) also provides a bound on the range of values of an arbitraryQAP.Theorem 3.3 Let a QAP with real matrices A and B be given. Then forall permutation matrices X�kAk2 � kBk22 � trAXBtX t � kAk2 + kBk22 (8)6



Proof. We have0 � kA�XBX tk2 = kAk2 + kBk2 � 2trAXBtX tfor all permutation matrices X . 2It was already pointed out that the eigenvalues of A+ majorize the realparts of those of A. We conclude this section by providing similar majoriza-tion relations for the eigenvalues of A and ~A+. Following the notation in[11] we denote by x[1] � : : : � x[n]the components of a given vextor x = (x1; : : : ; xn) 2 <n in nonincreasingorder. For given x; y 2 <n, we say that x majorizes y (denoted x � y) ifkXi=1 x[i] � kXi=1 y[i]; k = 1; : : : ; n� 1; (9)x1 + � � �+ xn = y1 + � � �+ yn: (10)Theorem 3.4 Let A be an arbitrary n � n matrix. Then�( ~A+) � Re(�(A))� Im(�(A)):Proof. Let M = (1 + i)A: Then M+ = ~A+. Using�(M+) � Re(�(M))see [11, p.237], we conclude�( ~A+) � Re(�((1+ i)A)):Since Re((1 + i)z) = Re(z)� Im(z), the result follows. 2Theorem 3.5 Let A be an arbitrary n � n matrix. Then�(A+) + Im(�(A�)) � �( ~A+):Proof. Note that ~A+ can be written as the sum of the two Hermitianmatrices A+ and iA�. Using�(M) + �(N) � �(M +N)for Hermitian matrices M and N , see [11, p.241], the result follows. (In aslight abuse of notation, we assumed here that for a Hermitian matrix M ,�(M) denotes the sequence of eigenvalues of M in nonincreasing order.) 2Finally we provide a majorization result between the singular values ofA and the eigenvalues of ~A+. Let �k(A) denote the kth largest singular valueof A and �k( ~A+) denote the kth largest eigenvalue of ~A+.7



Theorem 3.6 Let A be an arbitrary n � n matrix. Then�k( ~A+) � p2�k(A); k = 1; : : : ; n;and (j�1( ~A+)j; : : : ; j�n( ~A+)j) �w p2(�1(A); : : : ; �n(A));where �w denotes weak majorization, i.e."�" replaces "=" in (10).Proof. In [11, p.240], it is shown that�k(M+) � �k(M)and (j�1(M+)j; : : : ; j�n(M+)j) �w (�1(M); : : : ; �n(M)):The result follows using ~A+ = ((1 + i)A)+: 2It should be pointed out that similar results as those above can be ob-tained by using the negative Hermitian parts ~A� and ~B� instead of thepositive Hermitian parts.4 New Ho�mann-Wielandt Type InequalitiesWe conclude by providing inequalities between the distance of two generalmatrices, based on the symmetrization derived in Section 3. First we relatethe distance between two matrices to the distance between the eigenvaluesof the respective positive Hermitian parts.Theorem 4.1 Let A and B be two real n� n matrices. Thend(�( ~A+); �( ~B+)) � kA�Bk2:Moreover, there exists a permutation � such thatkA�Bk2 �Xi (�i( ~A+)� ��(i)( ~B+))2:8



Proof. Note that by Theorems (3.1) and (3.2) we havekA�Bk2 = trAA� + trBB� � 2trAB�= tr ~A+ ~A+ + tr ~B+ ~B+ � 2tr ~A+ ~B+:� X�2i ( ~A+) + �2i ( ~B+)� 2 < �( ~A+); �( ~B+) >+ := d(�( ~A+); �( ~B+)):The remaining part of the theorem is proved similarly using the minimalscalar product of the eigenvalues. 2Finally we provide a lower bound on the distance between the eigenvaluesof two arbitrary matrices.Theorem 4.2 Let A and B be two arbitrary n � n matrices. Then(Re(trA)� Re(trB))2n + (Im(trA)� Im(trB))2n � d(�(A); �(B)): (11)Proof. Let a = Re(�(A)), b = Re(�(B)), c = Im(�(A)), d = Im(�(B)),e = a � b, and f = c � d. Then a lower bound on the distance of theeigenvalues of A and B is given by the (global) minimum of the followingprogram. mine;f Xi e2i + f2isuch that Xi ei = Re(trA)�Re(trB)Xi fi = Im(trA)� Im(trB):The objective function is convex, andei = Re(trA)� Re(trB)nand fi = Im(trA)� Im(trB)nsatisfy the �rst and second order su�cient optimality conditions. Substitu-tion into the objective function yields the result. 2We leave it as an open problem to derive good upper bounds on d(�(A); �(B)).9



5 Discussion and SummaryWe have shown that an arbitrary QAP can be expressed using (possiblycomplex) Hermitian matrices. This allowed us to derive eigenvalue relatedbounds on the range of values of general QAPs. We do not claim thatthese bounds, taken as they are, will be competitive with existing bound-ing rules for general QAPs. To make these bounds better, further work,as in the symmetric case is necessary. In [12] the concept of "reductions"is used to improve the eigenvalue bound for symmetric problems. This in-volved nonsmooth optimization and turned out to be very successful. Since"reductions" can also be applied in the general case, the improvement tech-niques apply here as well. On the other hand, a projection technique is usedin [9] to improve the eigenvalue bound of Theorem (2.1) by constraining theset of unitary matrices to an a�ne subspace. A similar technique can beapplied also for general QAPs. Future research will have to demonstrate thepractical quality of the bounds proposed in this paper.The close connection between the Ho�man-Wielandt inequality and theeigenvalue bound for symmetric QAPs on one hand, and the symmetriza-tion of general QAPs on the other hand suggested several extensions of theHo�man-Wielandt inequality for general matrices. The key role is playedhere by ~A+, the positive Hermitian part of A.References[1] A.A. Assad and W. Xu, On lower bounds for a class of (0,1) programs,Operations Research Letters 4, 175{180, 1985.[2] R.E. Burkard, Locations with spatial interactions: the quadratic as-signment problem, Discrete Location Theory (eds.: P.B. Mirchandaniand R.L. Francis), Wiley Intersection Series in Discrete Mathematicsand Optimization, 387{437, 1990.[3] P. Carraresi and F. Malucelli, A new lower bound for the quadraticassignment problem, Technical Report TR-7/88, Pisa, 1988.[4] W.E. Donath and A.J. Ho�man, Lower bounds for the partitioning ofgraphs, IBM J. Res. Dev. 17, 420{425, 1973.[5] G.Finke, R.E.Burkard and F.Rendl, Quadratic assignment problems,Annals of Discrete Mathematics 31, 61{82, 1987.10
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