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1 INTRODUCTION1.1 Semide�nite ProgrammingWe study the semide�nite linear programming problem(P) p� = sup ctxsubject to Ax � bx 2 <m;where: c; x 2 <m; b = Q0 2 Sn; the space of symmetric n � n matrices;the linear operator Ax = Pmi=1 xiQi; for Qi 2 Sn; i = 1; : : : ; m; and �denotes the L�owner partial order, i.e. X � (�) Y means Y �X is positivesemide�nite (positive de�nite). We let P denote the cone of semide�nitematrices. By a cone we mean a convex cone, i.e. a set K satisfyingK+K �K; and �K � K; 8� � 0: We consider the space of symmetric matrices,Sn, as a vector space with the trace inner product hU;Xi = traceUX: Thecorresponding norm is the Frobenius matrix norm jjX jj= ptraceX2:We let F denote the feasible set of P and we assume that the optimalvalue p is �nite; so that the feasible set F 6= ;:1.2 Background1.2.1 Cone of Semide�nite MatricesThe cone of semide�nite matrices has been studied extensively both for itsimportance and elegance. Positive de�nite matrices arise naturally in manyareas, including di�erential equations, statistics, and systems and controltheory. The cone P induces a partial order, called the L�owner partial order.Various monotonicity results were studied with respect to this partial order[29, 30]. An early paper is that by Bohnenblust [9]. Optimization problemsover cones of matrices are also discussed in the monograph by Berman [8].More recently, there has been renewed interest in semide�nite program-ming mostly due to applications in engineering (see, for instance, Ben-Taland Nemirovskii [7], Boyd et al. [14], Vandenberghe and Boyd [36]) andcombinatorial optimization (see, for instance, Alizadeh [1], Goemans andWilliamson [19], Lov�asz and Schrijver [28], Nesterov and Nemirovskii [31],Poljak [15], Helmberg et al. [22]). Nesterov and Nemirovskii's book pro-vides a unifying framework for polynomial-time interior-point algorithms inconvex programming. Up to this date, interior-point algorithms seem tobe the best algorithms (from both theoretical and practical viewpoints) for1



solving semide�nite programming problems. Freund presents an infeasible-interior-point algorithm [17]. Complexity of the algorithm depends on thedistances (in a norm induced by the initial solution) of the initial solutionto the sets of approximately feasible and approximately optimal solutions,where approximate feasibility and optimality are de�ned in terms of toler-ances which are given. The algorithm does not assume that the zero dualitygap (or even feasibility) is attainable. Indeed, for the case when the givenproblem exhibits a �nite nonzero duality gap, we can ask for a tolerancein the duality gap that is not attainable (for such a tolerance, the distancefrom the set of approximately optimal solutions would be in�nite for anystarting point). Our goal here is to study and unify the ways in which adual problem can be modi�ed to ensure a zero duality gap at optimality.Other related issues arise from the study of correlation matrices in statis-tics, e.g. Pukelsheim [32], and matrix completion problems, see [20, 5, 24].Results for multiquadratic programs is studied in [33].1.2.2 Early DualityExtensions of �nite linear programming duality to in�nite dimensions and/orto optimization problems over cones has been studied in the literature. Wedo not give a comprehensive survey, since that would probably be impossible.But we mention several early results.In [16], Du�n studies in�nite linear programs, i.e. programs for whichthere are an in�nite number of constraints and/or an in�nite number ofvariables. Also studied is the notion of optimization with respect to a partialorder induced by a cone. In�nite linear programming is closely related tothe notion of continuous programming, e.g. [26, 27, 35]. A major questionis the formulation of duals that close the duality gap. In�nite dimensionallinear programming is also studied in the books by Glasho� and Gustafson[18] and Anderson and Nash [2].More recently, duals that guarantee strong duality for general abstractconvex programs have been given in [13, 12, 11, 10]. The special case of alinear program with cone constraints is treated in [38].1.3 OutlineThis note is motivated by the recent paper of Ramana [34]. Therein a dualprogram, called an extended Lagrange-Slater dual program and denotedELSD, is presented for which strong duality holds and more importantly it2



can be written down in polynomial time. Previous work on general (convex)cone constrained programs, see [13, 38, 11, 10], presented dual programs forwhich strong duality holds and was based on regularization and on �ndingthe so-called minimal cone of P : We denote this dual by DRP. A procedurefor de�ning the minimal cone was presented in [11]. This procedure startedwith an initial feasible point and reduced the program, in a �nite numberof steps, to a regularized program.The main result in this note is, �rst, to show that the extended Lagrangedual program ELSD is equivalent to the regularized dual DRP. This equiva-lence is in the sense that the constraints and the set of Lagrange multipliersare the same. The di�erence in the duals is in the fact that the feasible setof Lagrange multipliers, denoted (Pf)+, is expressed implicitly in ELSD asthe solution of m systems of constraints included in the dual, whereas it isde�ned explicitly in DRP as the output of the separate procedure mentionedabove. This separate procedure �nds the minimal cone by solving a systemof constraints equivalent to that in ELSD. Also presented, is an extendeddual of the dual, i.e. this closes the duality gap from the dual side.The fact that the two duals ELSD and DRP are found using di�erenttechniques and then result in being equivalent is more than a coincidence.In fact, we show that these duals are unique in a certain sense.In Section 2 we discuss the geometry of the cone of semide�nite matrices.In particular, we present old and new results on the faces of this cone. Lem-mas 2.1 and 2.2 provide a description of the faces and characterization ofthe cases in which the sum of the positive semide�nite cone and a subspaceis closed. The two strong duality schemes are outlined in Section 3. Therelationships between the duals is presented in Section 4. We include theresults on the dual of the dual. In Section 5, we present a homogenized pro-gram which is equivalent to SDP and provides a di�erent view of optimalityconditions. We conclude with some remarks on perturbations of SDP andcomputational complexity issues.1.4 Notationrelint the relative interior@ the boundaryMk;l the space of k � l matricesMn the space of n� n matrices3



Sn the space of symmetric n� n matricesPn or P the cone of positive semide�nite matrices in SnQ � R R� Q is positive semide�niteQ �P R R�Q is positive semide�niteQ �K R R�Q 2 K, where K is a closed convex coneN (A) the null space of the linear operator AR(A) the range space of the linear operator AA� the adjoint of the linear operator A, (3.1)Ay the Moore-Penrose generalized inverse of the linear operator AK � T K is a face of T , (2.1)Kc the complementary (or conjugate) face of K, (2.2)K+ the polar cone of K, K+ = f� : h�; ki � 0; 8k 2 KgK? the orthogonal complement of K, K? = f� : h�; ki = 0; 8k 2 KgF(C) the minimal face of P containing the subset C � PPf the minimal cone of P, i.e. F(b� A(F )); (2.3)SfD the minimal cone in S, i.e. F(G�(FD)�  c0 !)SDP a semide�nite programLP a linear programP the primal SDPRP the regularization of the primal SDPp� the optimal value of the primal SDPF the feasible set of PL(x; U) the Lagrangian of P, L(x; U) = ctx+ traceU(b� Ax)4



CQ constraint quali�cationD the dual SDPELSD the extended Lagrange-Slater dual SDP to PELSDD the extended Lagrange-Slater dual SDP to DED an equivalent program to the dual SDPRD the regularization of the dual SDPd� the optimal value of the dual SDPFD the feasible set of DPfD the minimal cone of D, i.e. F(FD)Ck n(Ui;Wi)ki=1 : A�(Ui +Wi�1) = 0; trace b(Ui +Wi�1) = 0;Ui � WiW ti ; 8i = 1; : : : ; k;W0 = 0	Uk fUk : (Ui;Wi)ki=1 2 CkgWk fWk : (Ui;Wi)ki=1 2 CkgWSk fW +W t : W 2 WkgW WSm2 GEOMETRY of the PSD CONEWe now outline several known and some new results on the geometry of thecone P : More details can be found in e.g. [3, 4].The cone K � T is a face of the cone T , denoted K � T , ifx; y 2 T; x + y 2 K ) x; y 2 K: (2.1)The faces of P have a very special structure. Each face, K � P , is charac-terized by a unique subspace, S � <n :K = fX 2 P : N (X) � Sg:Moreover, relintK = fX 2 P : N (X) = Sg:5



The complementary (or conjugate) face of K is Kc = K? \ P andKc = fX 2 P : N (X) � S?g: (2.2)Moreover, relintKc = fX 2 P : N (X) = S?g:Note: Each face K (respectively, Kc) is exposed, i.e. it is equal to theintersection of P with a supporting hyperplane; the supporting hyperplanecorresponds to any X 2 relintKc (respectively, relintK). Also, complemen-tary faces are orthogonal and satisfy XY = 0; 8X 2 K; Y 2 Kc:Another property of the cone P ; see [11], is that it is projectionallyexposed, i.e. every face of P is the image of P under some projection. Infact, if Q 2 Sn is the projection onto the subspace S; the null space ofmatrices in relintK; then the face K satis�esK = (I �Q)P(I � Q):The minimal cone of P is de�ned asPf = \fK � P : K � (b� A(F ))g; (2.3)i.e. the minimal cone is the intersection of all faces of P containing thefeasible slacks.The following lemma describes orthogonal complements to faces in termsof the data. The connection is in terms of a semide�nite completion problem.(For more on completion problems see e.g. [20].) The lemma shows thatwe can express the orthogonal complement of a face in terms of a system ofsemide�nite inequalities.Lemma 2.1 Suppose that C is a convex cone and C � P : LetK := fW +W t : U � WW t; for some U 2 Cg:Then((F(C))c)? = K= (W +W t : " I W tW U # � 0; for some U 2 C) :(2.4)6



Proof. Suppose that W + W t 2 K; i.e. U � WW t; for some U 2 C:Since xt(U�WW t)x � 0 8x; we get N (U) � N (W t): Equivalently, R(U) �R(W ): Since UU y is the projection (orthogonal) onto the range of U , whereU y denotes the Moore-Penrose generalized inverse of U , we conclude thatW = UU yW: We have shown thatU �WW t ) W = UH; for some H: (2.5)Therefore, traceWV = 0; for all V 2 (F(C))c; i.e. W +W t 2 ((F(C))c)?:To prove the converse inclusion, suppose that V 2 ((F(C))c)? and U 2C \ relintF(C): Let U be orthogonally diagonalized by Q = [Q1Q2]U = QtDiag (d1 0)Q; QtQ = I;with Q1; n� r; d1 > 0: Therefore,F(C) = fQ1BQt1 : B � 0; B 2 Srgand (F(C))c = fQ2BQt2 : B � 0; B 2 Sn�rg:Now V 2 ((F(C))c)? implies that0 = traceV Q2BQt2 = traceQt2VQ2B; 8B � 0;i.e. Qt2V Q2 = 0:This implies that Q2Qt2V Q2Qt2 = 0 as well. Note that Q2Qt2 is the orthog-onal projection onto N (U): Therefore the nonzero eigenvalues of V corre-spond to the eigenvectors in the eigenspace formed from the column spaceof Q1. Since the same must be true for V V t; this implies that �U � V V t;for some � > 0 large enough, i.e. V 2 K:The alternative expression for K in (2.4) follows from the Schur comple-ment. 2Now, note the following interesting and surprising closure property ofthe faces of P . This is surprising because it is not true in general that thesum of a cone and a subspace is closed.Lemma 2.2 Suppose that the proper face K satis�esf0g 6= K�P ; K 6= P :7



Then P +K? = P + spanKc; (2.6)P + spanK is not closed: (2.7)Proof. Since spanKc � K?, we getP +K? � P + spanKc:From the characterization of faces in [3, 4], there exists a subspace S � <n;with dimension t, such thatK = fX � 0 : N (X) � Sg:After applying an orthogonal transformation to <n, we can assume that Sis the span of the �rst t unit vectors. Therefore, X 2 K has a t� t 0 block,i.e. X = " 0t 00 �X # :Moreover, for X in the relative interior of K, we have �X � 0: This impliesthat K? = (Y : Y = " C DDt 0 # ; C 2 St; D 2 Mt;n�t) :Now suppose that we are given Tn 2 K?; Pn 2 P ; n = 1; 2; : : : and thesequence Tn + Pn ! L = " L1 L2Lt2 L3 # :Comparing the corresponding bottom right blocks, we see that necessarilyL3 � 0: Therefore L = " L1 L2Lt2 0 #+ " 0 00 L3 # ;i.e. L 2 K? + P : This proves P +K? is closed, i.e.P +K? � P + spanKc:To prove the converse inclusion, suppose thatW 2 (P +K?) n (P + spanKc):8



Then there exists a separating hyperplane, i.e. there exists � such thattrace�W < 0 � trace�(P + w); 8P 2 P ; w 2 spanKc: (2.8)This implies that � � 0 and � 2 (Kc)?: But then trace �W = trace�P +trace�w; with P 2 P ; w 2 K?: From Lemma 2.1 and (2.5) we get thatw = UH +H tU; for some U 2 Kc and so trace�w = 0: This implies thattrace�W = trace�P � 0; which contradicts (2.8). This completes the proofof (2.6).Now suppose that X 2 relintK and X = QDQt; Q = [Q1 Q2] ; QQt =I; is an orthogonal diagonalization of X with the columns of Q1 spanningN (X) and the columns of Q2 spanningR(X):ThenK = �Q2BQt2 : B � 0	 ;and spanK = �Q2BQt2 : B 2 S	 : Now let B � 0 and n = 1; 2; : : : : We seethat [Q1 Q2] " 1nB�1 II nB # " Qt1Qt2 # 2 Pwhile [Q1 Q2] " 0 00 �nB # " Qt1Qt2 # 2 spanK:However, the limit of the sum of the two sequences is[Q1 Q2]" 0 II 0 # " Qt1Qt2 #which is not in the sum (P + spanK): 2Corollary 2.1(Pf)+ = P+ + (Pf)? = P + (Pf)? = P + span (Pf)c:Proof. From the de�nition of a face and the closure condition above, weget (Pf)+ = (P \ Pf)+= (P \ span (Pf))+= P+ + (Pf)?: 29



3 DUALITY SCHEMES3.1 Lagrangian DualityThe Lagrangian for P isL(x; U) = ctx+ traceU(b�Ax):Consider the max-min problemp� = maxx minU�0L(x; U):The inner minimization problem has the hidden constraint Ax � b, i.e. theminimization problem is unbounded otherwise. Once this hidden constraintis added to the outer maximization problem, the minimization problem hasoptimum U = 0: Therefore we see that this max-min problem is equivalentto the primal P. This illustrates that we have the correct constraint on thedual variable U .The Lagrangian dual to P is obtained by reversing the max-min to amin-max and rewriting the Lagrangian, i.e.p� � d� = minU�0maxx L(x; U) = trace bU + xt(c� A�U):Here A� denotes the adjoint of the linear operator A, i.e.(A�U)i = traceQiU: (3.1)The inner maximization now has the hidden constraint c� A�U = 0: Oncethis hidden constraint is added to the outer minimization problem, the innermaximization has optimum x = 0: Therefore we see that this min-maxproblem is equivalent to the following dual program.(D) d� = min trace bUsubject to A�U = cU � 0:3.1.1 Linear Programming Special CaseWe note that the SDP pair P and D look exactly like linear programming(LP) duals but with � replaced by � : In fact, if the adjoint operator A�includes constraints that force U to be diagonal, then we see that LP is aspecial case of SDP. 10



Now suppose that we consider P and D as LPs, i.e. suppose that wereplace � with � : Then the operator A is an n �m matrix, and U 2 <n:In this special case, we always have strong duality, i.e. p� = d� and d� isattained. Moreover, we can have more than one dual of P. Let P= denotethe set of indices of the rows of A corresponding to the implicit equalityconstraints, i.e. P= := fi : x 2 F implies Ai:x = big:Then we can consider the equality constraints Ai:x = bi; for any subset ofP=, without changing P. This is equivalent to allowing the dual variablesUi; i 2 P= to be free rather than nonnegative. Thus we see that we canhave di�erent duals for P while maintaining strong duality. In fact, thereare an in�nite number of duals, since the space of dual variables can be anyset which includes the nonnegative orthant and restricts Ui � 0; i =2 P=:It is clearly better to have a smaller set of dual variables. In fact, in thecase of LP discussed above, if some of the inactive constraints at the opti-mum can be identi�ed, then we can restrict the corresponding dual variablesto be 0. This is equivalent to ignoring the inactive constraints. Of course,we do not, in general, know which constraints will be active at the optimum.Having more than one dual program occurs because there is no strictlyfeasible solution for P. We see below that a similar phenomenon occurs forP in the SDP case, but with the additional complication of possible lossof strong duality. In addition, the semide�nite constraint is not as simpleas the nonnegativity constraint in LP. The question arises whether or notwe get the same dual if we treat the semide�nite constraint U � 0 as afunctional constraint using the minimal eigenvalue of U .3.2 Strong Duality and RegularizationIf a constraint quali�cation, denoted CQ, see Section 5, holds for P, thenwe have strong duality for the Lagrange dual program, i.e. p� = d� andd� is attained. The usual CQ is Slater's condition, there exists x̂ suchthat (b � Ax̂) 2 intP : Examples where p� < d�; and/or one of d�; p� isnot attained, have appeared in the literature, see e.g. [17]. One can closethe duality gap by using the minimal cone of P : Therefore, an equivalentprogram is the regularized P program, see [11, 38],(RP) p� = max ctxsubject to Ax �Pf bx 2 <m:11



Moreover, by the de�nition of faces, there exists x̂ such that (b � Ax̂) 2relintPf : Therefore, the generalized Slater's constraint quali�cation holds,i.e. strong duality holds for this program. (This is proved in detail in[11, 38].) Thus, the following is a dual program for P for which strongduality holds (DRP) p� = min trace bUsubject to A�U = cU �(Pf )+ 0;where the polar cone(Pf)+ := fU : traceUP � 0; 8P 2 Pfg:One can also close the duality gap from the dual side. Let FD denotethe feasible set of D. The minimal cone of D is de�ned asPfD = \fK : K � P;K � FDg: (3.2)Therefore, an equivalent program is the regularized D program,(RD) d� = min trace bUsubject to A�U = cU �PfD 0:Strong duality holds for this program. We therefore get the following strongdual of the dual.(DRD) d� = max ctxsubject to Ax �(PfD)+ bx 2 <m:The above presents two pairs of symmetric dual programs: RP and DRP;and RD and DRD. These dual pairs have all the nice properties of dual pairsin ordinary linear programming, i.e. [38, Theorem 4.1] yields the followingfor our dual pairs. This extends the duality results over polyhedral conespresented in [6].Theorem 3.1 Consider the paired regularized programs RP and DRP.1. If one of the problems is inconsistent, then the other is inconsistent orunbounded. 12



2. Let the two problems be consistent, and let x0 be a feasible solution forP and U0 be a feasible solution for DRP. Thenctx0 � trace bU0:3. If both RP and DRP are consistent, then they have optimal solutionsand their optimal values are equal.4. Let x0 and U0 be feasible solutions of RP and DRP, respectively. Thenx0 and U0 are optimal if and only iftraceU0(b� Ax0) = 0;if and only if U0(b� Ax0) = 0:5. The vector x0 2 <m and matrix U 2 Sn are optimal solutions of RPand DRP, respectively, if and only if (x0; U0) is a saddle point of theLagrangian L(x; U) for all (x,U) in <m 
 (Pf)+; and thenL(x0; U0) = ctx0 = trace bU0:3.3 Extended DualsThe above dual program DRP uses the minimal cone explicitly. In [34],the Extended Lagrange-Slater Dual program is proposed. First de�ne thefollowing sets:Ck = f(Ui;Wi)ki=1 : A�(Ui +Wi�1) = 0; trace b(Ui +Wi�1) = 0;Ui � WiW ti ; 8i = 1; : : : ; k;W0 = 0g;Uk = fUk : (Ui;Wi)ki=1 2 Ckg; (3.3)Wk = fWk : (Ui;Wi)ki=1 2 Ckg:Note that Schur complements imply thatUi � WiW ti () " I W tiWi Ui # � 0:In [34] it is shown that strong duality holds for the following dual of P(ELSD) p� = min trace b(U +W )subject to A�(U +W ) = cW 2 WmU � 0:13



The advantage for this dual is that it is stated completely in terms of thedata of the original program, whereas DRP uses the minimal cone explicitly.Moreover, the size of ELSD is polynomially bounded in the size of the inputproblem P.At a �rst glance the duals DRP and ELSD appear very di�erent, espe-cially in light of the fact that the matrices W do not have to be symmetric.However, the adjoint operator A� involves traces which are unchanged bytaking the symmetric part of matrices. Therefore, we can replace W byW +W t, or equivalently, replace Wm by Wsm: We show below that, afterthis change, the two duals are actually equal, i.e. P +W = (Pf)+; whereW =WSm = fW +W t :W 2 Wmg:4 RELATIONSHIP BETWEEN DUALS4.1 Duals of PWe now show the relationships between the above two strong dual programs.The algorithm to �nd the minimal cone is based on [11, Lemma 7.1]which we now phrase for our speci�c P problem; we include a proof forcompleteness.Lemma 4.1 Suppose Pf � K � P : The systemA�U = 0; U �K+ 0; traceUb = 0 (4.1)is consistent only ifthe minimal cone Pf � fUg? \K � K: (4.2)Proof. Since traceU(Ax� b) = 0, for all x, we get (A(F )� b) � U?; i.e.Pf � fUg?: Also, that fUg? \K is a face of K follows from U �K+ 0.2The result in [11, Lemma 7.1] is for more general convex, cone valuedfunctions. However, the linearity of P means that it is equivalent to ourstatement above, i.e. the subgradient removes the need for the initial feasiblepoint and then, complementary slackness is equivalent to traceUb = 0 inthe presence of the stationarity condition A�U = 0:We now use the algorithm for �nding Pf presented in [11] to show therelation between the two duals of P. We see that each step of the algorithm14



�nds a smaller dimensional face Pk which contains the minimal cone Pf :We show that P+k = P +Wsk ; Wsk = (Pk)?:There is one di�erence with the algorithm discussed here and the one from[11]; here we �nd the points in the relative interior of the complementaryfaces, rather than an arbitrary point (which may be on the boundary). Thisguarantees the immediate correspondence with the dual ELSD.Step 1De�ne P0 := P and note that, since W0 = 0 in (3.3),U1 := fU � 0 : A�U = 0; traceUb = 0g:Choose Û1 2 relintU1: (If Û1 = 0; then Slater's condition holds for Pand we STOP.) Further, letP1 := (F(U1))c (= fÛ1g? \ P0 � P0):We can now de�ne the following equivalent program to P and its La-grangian dual. (RP1) p� = max ctxs.t. Ax �P1 bx 2 <m:(DRP1) d�1 = min trace bUs.t. A�U = cU �(P1)+ 0:Note that p� � d�1 � d�: From Corollary 2.1 and Lemma 2.1 we con-clude that (P1)+ = (P \ P1)+ = P + (P1)?so that (P1)+ = P + ((F(U1))c)?; (P1)? =WS1 :Therefore we get the following equivalent program to DRP1:(ELSD1) d�1 = min trace b(U + (W +W t))s.t. A�(U + (W +W t)) = cA�U1 = 0; traceU1b = 0U � 0; " I W tW U1 # � 0:15



Step 2We can now apply the same procedure to the program RP1. SinceWS1 = (P1)?; we getU2 := fU � 0 : (U +V ) �(P1)+ 0; A�(U +V ) = 0; trace (U +V )b = 0g:Choose Û2 2 relintU2: (If Û2 = 0; then the generalized Slater's condi-tion holds for RP1 and we STOP.)P2 := (F(U2))c (= fÛ2g? \ P1 � P1):We get a new equivalent program to P and its Lagrangian dual.(RP2) p� = max ctxs.t. Ax �P2 bx 2 <m:(DRP2) d�2 = min trace bUs.t. A�U = cU �(P2)+ 0:We now have p� � d�2 � d�1 � d�. From Corollary 2.1 and Lemma 2.1we conclude that (P2)+ = (P \ P2)+ = P + (P2)?and (P2)+ = P + ((F(U2))c)?; (P2)? =WS2 :Therefore we get the following equivalent program to DRP2:(ELSD2) d�1 = min trace b(U + (W +W t))s.t. A�(U + (W +W t)) = cA�U1 = 0; traceU1b = 0A�(U2 + (W1 +W t1)) = 0;trace (U2 + (W1 +W t1))b = 0U � 0; " I W t1W1 U1 # � 0" I W tW U2 # � 0:: : : Step k : : : 16



The remaining steps of the algorithm and the regularization are similarand we see that after k � minfm;ng steps we obtain the equivalence of RPwith RPk , and ELSD with ELSDk. The following theorem clari�es some ofthe relationships between the various sets.Theorem 4.1 For some k � minfm;ng; we haveF(Uk) = (Pk)c; and U1 � U2 � : : : � Uk = : : : = Um = (Pf)c: (4.3)Wsk = (Pk)? = ((F(Uk))c)?; WS1 � : : : � WSk = : : : =WSm = (Pf)?:(4.4)Proof. The nesting is clear from the de�nitions and is discussed in [34,Lemma 3] (for Wk). Moreover, in [34, Lemma 2] it is shown that for k =1; 2; : : : ; m,(b� Ax)U = 0; and (b�Ax)W = 0; 8x 2 F; U 2 Uk ;W 2 Wk:Therefore, the inclusions in (Pf)c; (Pf)? follow. Equality follows from thedimension of the feasible set, F � <m, and a partial converse of Lemma 4.1,i.e. if U ck 6= Pf ; then the system (4.1), with U 6= 0, is consistent, see [11,Corollary 7.1]. 24.2 Duals of DSimilar results can be obtained for the dual of D, i.e. we can use the minimalcone to close the duality gap and we can get an explicit representation forthe minimal cone. The extended Lagrange-Slater dual of the dual D is(ELSDD) d� = max trace ctxsubject to A(x+ (Z + Zt)) � bZ 2 Zm;for Zm to be derived below.We can reformulate the dual D to the form of P, i.e. de�ne the coneS = <m 
P ; (S+ = f0gm 
P)and the constraint operator G : <m 
 Sn ! SnG xV ! := Ax+ V; G�U =  A�UU ! :17



The dual D is equivalent to(ED) d� = min trace bUsubject to G�U �S+  c0 ! :We have the following equivalence to Lemma 4.1.Lemma 4.2 Suppose SfD � K � S+: The system� =  xAx ! �K+ 0; tracextc = 0 (4.5)is consistent only ifthe minimal cone SfD � (f�g? \K) � K: (4.6)Proof. Suppose that � is found from (4.5) and U 2 FD : Now*�;G�U �  c0 !+ = xt(A�U � c) + traceU(Ax)= �xtc+ traceU(Ax� Ax) = 0;since xtc = 0. We get G(FD) �  c0 ! � �?; i.e. the minimal cone SfD �f�g?: Finally, the fact that f�g? \K is a face of K follows from � 2 K+;i.e. f�g? is a supporting hyperplane containing Sf : 2The faces of S and S+ directly correspond to faces of P :Lemma 4.3 1. If D � S+; then F(D) = 0
K; where K � P :2. If D � S; then F(D) = <m 
K; where K � P :Proof. The statements follow from the de�nitions. 2We also need a result similar to Lemma 2.1.Lemma 4.4 Suppose that D is a convex cone and D � S: LetK := ( xW +W t ! : x 2 <m; U � WW t; for some  yU ! 2 D) :18



ThenK = ((F(D))c)?= ( xW +W t ! : " I W tW U # � 0; for some  yU ! 2 D) :Proof. The proof is very similar to the proof of Lemma 2.1. The di�er-ence is that we have to account for the cone S+ being the direct sum 0m
P :We include the details for completeness.Suppose that  xW +W t ! 2 K; i.e. U � WW t; for some  yU ! 2 D:Then there exists a matrix H such that W = UH , see (2.5). Therefore,traceWV = 0; for all  0V ! 2 (F(D))c � S+; i.e. xW +W t ! 2 ((F(D))c)?:To prove the converse, suppose that  xV ! 2 ((F(D))c)? and  yU ! 2D \ relintF(D): Let U be orthogonally diagonalized by Q = [Q1Q2]U = QtDiag (d1 0)Q; QtQ = I;with Q1; n� r; d1 > 0: Therefore,F(D) = ( xQ1BQt1 ! : B � 0; B 2 Sr; x 2 <m)and (F(D))c = ( 0Q2BQt2 ! : B � 0; B 2 Sn�r ; 0 2 f0gm) :Now  xV ! 2 ((F(D))c)?implies that 0 = traceV Q2BQt2 = traceQt2VQ2B; 8B � 0;19



i.e. Qt2V Q2 = 0:This implies that Q2Qt2V Q2Qt2 = 0 as well. Note that Q2Qt2 is the orthog-onal projection onto N (U): Therefore the nonzero eigenvalues of V corre-spond to eigenvectors in the eigenspace formed from the column space ofQ1. Since the same must be true for V V t; this implies that �U � V V t; forsome � > 0 large enough, i.e. V 2 K: 2Now de�ne the following sets:Dk = f(Vi; Zi)ki=1 : Axi + (Zi�1 + Zti�1) � 0; xtic = 0;Vi = Axi; Vi � ZiZti ; 8i = 1; : : : ; k; Z0 = 0gVk = fVk : (Vi; Zi)ki=1 2 DkgZk = fZk : (Vi; Zi)ki=1 2 DkgThe extended Lagrange-Slater dual of the dual D can now be stated.(ELSDD) d� = max trace ctxsubject to A(x+ (Z + Zt)) � bZ 2 ZmStep 1De�ne T0 := S+ and P0 := P and note that, since Z0 = 0;V1 := fAx : � =  xAx ! ; � �T+0 0; xtc = 0g= fV : V = Ax � 0; xtc = 0g:Choose V̂1 2 relintV1: (If V̂1 = 0; then the generalized Slater's condi-tion holds for ED and we STOP.) Further, letT1 := (Vf1 )c (= fV̂1g? \ T0 � T0):Therefore, T1 = f0gm 
P1;thus de�ning the face P1 � P0:20



We can now de�ne the following equivalent program to ED and itsLagrangian dual.(RED1) d� = min trace bUs.t. A�U = cU �P1 0or G�U �T1  c0 ! :(DRED1) p�1 = max ctxsubject to Ax �(P1)+ bx 2 <mor G� =T+1 b; � �T+1 0:Note that p� � p�1 � d�: From Corollary 2.1 we conclude that(P1)+ = (P \ P1)+ = P + (P1)?so that (T1)+ = S + ((F(V1))c)? :Therefore Lemma 4.4 yields the following equivalent SDP to DRED1:(ELSDD1) p�1 = max ctxs.t. Ax+ (Z + Zt) � bAy � 0; cty = 0" I ZtZ Ay # � 0:Step 2We can now apply the same procedure to the program RED1.V2 := fAx : � =  xAx ! ; � �T+1 0; xtc = 0g= fV : V = Ax �P1 0; xtc = 0g:Choose V̂2 2 relintV2: (If V̂2 = 0; then the generalized Slater's condi-tion holds for DRP1 and we STOP.) LetT2 := (F(V2))c (= fV̂2g? \ T1 � T1):21



We get a new equivalent program to D and its Lagrangian dual.(RED2) d� = min trace bUs.t. A�U = cU �P2 0or G�U �T2  c0 ! :(DRED2) p�2 = max ctxsubject to Ax �(P2)+ bx 2 <mor G� =T+2 b; � �T+2 0:We now have p� � p�1 � p�2 � d�. From Corollary 2.1 we get(P2)+ = (P \ P2)+ = P + (P2)?so that (T2)+ = S + ((F(V2))c)?:Therefore Lemma 4.4 yields the following equivalent SDP to DRP2:(ELSDD2) p�2 = max ctxs.t. Ax+ (Z + Zt) � bA(y + (Z + Zt) � 0; cty = 0" I ZtZ Ay # � 0A(y1 + (Z1 + Zt1) � 0; cty = 0" I Zt1Z1 Ay1 # � 0:: : : Step k : : :5 HOMOGENIZATIONIn Section 3.1.1, it is illustrated that the ordinary linear programming prob-lem can have an in�nite number of dual programs for which strong dualityholds. This includes the standard Lagrangian dual. However, this is not thecase for SDP. First, the standard Lagrangian dual can result in a duality22



gap, see [34, Example 1]. Moreover, the duality gap may be 0, but the dualmay not be attained, see [34, Example 5].However, we have seen that the two equivalent duals DRP and ELSDboth provide a zero duality gap and dual attainment, i.e. strong duality.Since LP is a special case of SDP, we conclude that there are examples ofSDP where there are many duals for which strong duality holds. A naturalquestion to ask is whether there is any type of uniqueness for the strongduals? And, among the strong duals, what is the \strongest", i.e. which isthe \closest" to the standard Lagrangian dual?Therefore, we now look at general optimality conditions for P. We dothis using the homogenized semide�nite program(HP) 0 = max ctx+ t(�p�) (= ha; wi)subject to Ax + t(�b) + Z = 0 (Bw = 0)w 2 K = <m 
<+ 
P 0B@w = 0B@ xtZ 1CA1CAThe above de�nes the vector a, the linear operator B; and the convex coneK. Let FH denote the feasible set, i.e.FH = N (B)\K;where N denotes null space.Note that if t = 0 in a feasible solution of HP, then A(�w) = 0; 8� 2 <;and w = 0B@ x0Z 1CA : Therefore ctx > 0 implies that p� =1: While if t > 0 ina feasible solution of HP, then w = 0B@ 1tx11tZ 1CA is feasible which implies thatctx+ t(�p�) � 0: ThereforeBw = 0; w 2 K implies ha; wi � 0: (5.1)This shows that 0 is in fact the optimal value of HP and HP is an equivalentproblem to P.One advantage of HP is that we know a feasible solution, namely theorigin. Recall that the polar of a set CC+ = f� : h�; ci � 0; 8c 2 Cg:23



With this de�nition, the optimality conditions for HP are simply that thenegative of the gradient of the objective function is in the polar of the feasibleset, i.e. from (5.1) we concludea = 0B@ c�p0 1CA 2 �(N (B)\K)+: 0B@ optimalityconditionsfor HP 1CA (5.2)This yields the asymptotic optimality conditions (up to closure)0B@ c�p0 1CA 2 �(R(B�) +K+); (5.3)where the adjoint operatorB�U = 0B@ A�U�trace bUU 1CA ;and the polar cone K+ = f0g 
 <+ 
P :We have used the fact that the polar of the intersection of sets is the clo-sure of the sum of the polars of the sets and that P is self-polar, P = P+:Note that if the closure in (5.3) is not needed, then these optimality condi-tions, along with weak duality for P and D, p � trace bU; yield optimalityconditions for P, i.e. (5.3) with closure is equivalent to0B@ c�p0 1CA = 0B@ A�U�trace bUU 1CA �0B@ 0�V 1CA0B@ dual feasibilitystrong dualitydual feasibility 1CA ; (5.4)for some � � 0; V � 0: This yields the optimality conditions for P:A�U = c; U � 0 (dual feasibility)p = trace bU (strong duality)(Note that strong duality is equivalent to complementary slackness.) Wehave proved the following. 24



Theorem 5.1 p 2 < is the optimal value of P if and only if (5.3) holds.Moreover, suppose that (5.3) holds but0B@ c�p0 1CA =2 R(B�)�K+: (5.5)Then p is still the optimal value of P but either there is a duality gap or thedual D is unattained, i.e. strong duality fails for P and D. 2The above theorem provides a means of generating examples wherestrong duality fails, i.e. we need to �nd examples where the closure does nothold and then pick a vector that is in the closure but not the preclosure.There are many conditions, called constraint quali�cations, that guaran-tee the closure condition in (5.3). In fact, this closure has been referred toas a weakest constraint quali�cation, [21, 37]. As an example of a closurecondition, see e.g. [23, pp. 104-105], if C;D are closed convex sets andthe intersection of their recession cones is f0g; then D � C is closed. (Herethe recession cone of a convex set C is the set of all points x such thatx+D � D:) Therefore, for a subspace V and a convex cone K,V \K = f0g implies V +K is closed.In our case, several conditions for the closure (constraint quali�cations) aregiven in [13, Theorem 3.1]. For example, the cone generated by the setFH �K is the whole space; or Slater's condition9x̂ 2 F such that Ax̂ � b:One approach to guarantee the closure condition is to try and �nd sets,T , to add to attain the closure. Equivalently, �nd sets, C; C+ = T , tointersect with K to attain the closure since(N (B)\K)+ = (N (B)\ (K \ C))+ = R(B�) +K+ + C+: (5.6)There are some trivial choices for the set, e.g. C = N (B) \ K: Anotherchoice would be (N (B)\K)f :The above translates into choosing sets that contain the minimal conePf : Since we want a small set of dual multipliers, we would like to �ndlarge sets that contain Pf but for which the above closure conditions hold.25



It is conjectured that every SDP can be divided into parts, a linear partand a nonlinear part. Multipliers for the linear part correspond to linearprogramming, i.e. we choose the standard set of multipliers. However, wecannot choose a smaller set than (Pf)+ for the nonlinear part.The following portion of the conjecture is easily established: Supposeboth problems P and D have feasible solutions (so that if there is a dualitygap then it is �nite). Consider the coneZ = fZ 2 P : Z = b�Ax; for some x 2 <mg:If Z \ int(P) 6= ; then we have an interior point and Lagrangian dual isgood (strong duality holds). Otherwise, Z � @P . In particular, there existsa permutation matrix P and a block diagonal matrix structure in Sn suchthat Z 2 Z implies that P Z PT is a block diagonal matrix which lies in thesubspace de�ned by the block diagonal structure. We pick P such that eachof the blocks has one of the following properties:Type I blocksSemide�nite programming problem arising from block i is an LP (thatis the block matrix is a diagonal matrix). In this case strong dualityholds for many duals including the Lagrangian dual.Type II blocksSemide�nite programming problem arising from block i is not an LPand condition (5.3) holds and (5.5) does not hold. In this case strongduality holds for many duals including the Lagrangian dual.Type III blocksSemide�nite programming problem arising from block i is not an LPand conditions (5.3) and (5.5) do hold. In this case, we can �nd linearobjective functions for which D is feasible but strong duality does nothold for the Lagrangian dual.In case the objective function is separable with respect to this partition,then the duality for Type I and Type II blocks is well understood. ForType III blocks we showed that as long as (5.3) and (5.5) hold, there will beobjective functions for which D is feasible, yet strong duality does not holdfor P and D. 26



6 CONCLUSIONIn this paper we have studied dual programs that guarantee strong dualityfor SDP. In particular, we have seen the relationship between the dual,DRP, of the regularized program, RP, and the extended Lagrange-Slaterdual ELSD. DRP uses the minimal cone Pf which, in general, cannot becomputed exactly (numerically). ELSD shows that a regularized dual canbe written down explicitly.The pair P and D are the usual pair of dual programs used in SDP.This yields primal-dual interior-point methods when both programs satisfythe Slater CQ, i.e. strict feasibility. However, there are classes of problemswhere the CQ fails, see e.g. [25]. In fact, for these problems, which arisefrom relaxations of 0,1 combinatorial optimization problems with linear con-straints, CQ fails for the primal while it is satis�ed for the dual. Therefore,in theory, there is no duality gap between P and D. However, is D the truedual of P in this case? It is true that perturbations in b will yield the dualvalue d� as the perturbations go to 0, if we can guarantee that we maintainthe semide�nite constraint exactly. If we could do this, then we could solveany SDP independent of any regularity condition, i.e. we would only haveto solve a perturbed dual to get the optimum value of the primal. However,the key here is that we cannot maintain the semide�nite constraint exactly,i.e. D is not a true dual of P in this case. It is the dual with respect toperturbations in the equality constraint Ax + Z = b but not if we allowperturbations in the constraint Z � 0 as well.Unlike LP, the solutions and optimal values of SDP may be doubly ex-ponential rational numbers or even irrational. Note that the optimal valuebeing doubly exponential means that the size (the number of bits required toexpress the value in binary) is an exponential function of the size of the inputproblem P. However, in some cases it may be possible to �nd, a priori, upperbounds on the sizes of some primal and dual optimal solutions. Alizadeh [1]suggests that it may even be possible to bound the feasible solution sets ofP and D a priori. Nevertheless this is impossible (even for an LP), if thefeasible region of P is bounded then the feasible region of D is unboundedand vice versa. Hence one cannot hope to solve an SDP to exact optimality,or for that matter �nd feasible solutions of semide�nite inequality systemsin polynomial time. However, a challenging open problem is to determine ifa given rational semide�nite system has a solution. This problem is calledthe Semide�nite Feasibility Problem (SDFP), and in [34] it was shown byusing ELSD that SDFP is not NP-Complete unless NP=Co-NP.27
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