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Abstract

We present a strengthened semidefinite programming, SDP, relax-
ation for the Max-Cut, MC, problem. The well known SDP relax-
ation can be obtained by Lagrangian relaxation and results in a SDP
with variable X € 8", the space of n x n symmetric matrices, and
n constraints. The strengthened bound is based on applying a lift-
ing procedure to this well known semidefinite relaxation while adding
nonlinear constraints. The lifting procedure is again done via La-
grangian relaxation. This results in an SDP with X € S* )+, where
t(n) = n(n + 1)/2, and 2¢(n) constraints. The new bound obtained
this way strictly improves the previous SDP bound.
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1 Introduction

Semidefinite programming, SDP, has become a very intense area of research
in recent years; and, one main reason for this is its success in finding bounds
for the Max-Cut problem, MC. The current bounds have proven to be very
tight both theoretically and in numerical tests, see e.g. [6, 11, 8, 7].

In this paper we present a strengthened SDP relaxation for MC, i.e. an
SDP program that provides a strengthened bound for MC relative to the
current well known SDP bound.

One approach to deriving the SDP relaxation is through the Lagrangian
dual, see e.g. [13, 12], i.e. one forms the Lagrangian dual of the quadratic
constrained quadratic model of MC. The dual of this Lagrangian dual yields
the SDP relaxation, MCSDP, i.e. a convex program that consists of matrix
inequality constraints. Thus we have lifted /linearized a nonlinear, noncon-
vex problem to the space of symmetric matrices. The result is a tractable
convex problem. The strengthened bound is obtained by adding redundant
constraints from the original MC to MCSDP and finding the dual of the
Lagrangian dual again, i.e. applying a second lifting. Empirical tests and
theory indicate a strict improvement in the strengthened bound.



1.1 Background
1.1.1 Notation

We work in the space of n X n symmetric matrices, S, with the trace inner
product (A, B) = trace AB, and dimension t{(n) = n(n+1)/2. We let Ao B
denote Hadamard (elementwise) product. For given Y € S*™*1 the t(n)
vector ¢ = Y} 1.4(,,) denotes the first (zero-th) row of Y after the first element.
We let e denote the vector of ones and E = ee” the matrix of ones. For
S € 8", the vector diag(S) € R"™ is the diagonal of S, while the adjoint
operator Diag (v) = diag*(v) is the diagonal matrix with diagonal formed
from the vector v € R™. We use both Diag (v) and Diagv if the meaning is
clear. (Similarly for diag and other operators.) Also, s = svec (S) € R,
is formed (columnwise) from S while ignoring the strictly lower triangular
part of S. Its inverse is the operator S = sMat (s). The adjoint of svec is the
operator hMat (v) which forms a symmetric matrix where the off-diagonal
terms are multiplied by a half, i.e. this satisfies

svec (S)Tv = trace S hMat (v), VS e 8™, v e R,

The adjoint of sMat is the operator dsvec (S) which works like svec except
that the off diagonal elements are multiplied by 2, i.e. this satisfies

dsvec (S)Tv = trace S sMat (v), VS € 8" v e R,

For notational convenience, we define the vectors sdiag (s) := diag (sMat (s))
and vsMat (s) := vec (sMat (s)), where vec is the vector formed from the
complete columns of the matrix; the adjoint of vsMat is then given by

vsMat *(v) = dsvec ((Mat (v) + Mat (v)T) /2) .
In this paper we will have relationships between the following matrices
and vectores X = vv? =~ sMat(z) € S", and ¥ ( ?’f ) (yo a:T) €

St(n)+1, Yo € x.

1.1.2 Max-Cut Problem

The max-cut problem is the problem of partitioning the node set of an edge-
weighted undirected graph into two parts so as to maximize the total weight
of edges cut by the partition. We tacitly assume that the graph in question
is complete (if not, nonexisting edges can be given weight 0 to complete the



graph). Mathematically, the problem can be formulated as follows (see e.g
[10]). Let the graph be given by its weighted adjacency matrix A. Define
the matrix L := Diag (Ae)— A, where e is the vector of all ones. (The matrix
L is called the Laplacian matriz associated with the graph.) If a cut S is
represented by a vector v where v; € {—1,1} depending on whether or not
t € .S, we get the following formulation for the max-cut problem.

*

(M) #

:= maximize %vTLv
s.t. ve{-1,1}"

Using X := vvT and vT Lv = trace LX, this is equivalent to

§* = maximize trace %LX
s.t. diag(X)=e
rank(X) =1
X > 0.

Dropping the rank condition and setting @ = iL, yields the SDP relaxation
with the upper bound p* < v*, see MCSDP below. This relaxation of MC
is now well-known and studied in e.g. [4, 3, 5, 9]. Goemans and Williamson
[5] have provided estimates for the quality of the SDP bound for MC. They
have shown that the optimal value of this relaxation is at most 14% above
the value of the maximum cut, provided there are no negative edge weights.
In fact, by randomly rounding a solution to the SDP relaxation, they find
a p-approximation algorithm, i.e. a solution with value at least p times the
optimal value, where p = .878. Numerical tests are presented in e.g. [7, 8].

Further results on problems with general quadratic objective functions
are presented in [11, 17], e.g. Nesterov [11] uses the SDP bound to provide
estimates of the optimal value of MC, with arbitrary L = LT, with constant
relative accuracy.

2 Lagrangian Relaxation

A quadratic model for MC with a general homogeneous quadratic objective
function is

§* = max vTQu
st. vZ-1=0, i=1,...,n.

MC

Note that if the objective function has a linear term, then we can homogenize
using an additional variable similarly constrained. (See below.)



2.1 SDP Relaxation of MC - First Lifting

The SDP relaxation comes from the Lagrangian dual of the Lagrangian dual
of MC, see e.g. [13, 12]. For completeness we include the details of such a
derivation. The Lagrangian dual to MC is

p* < v* = min maxvTQu — vT(Diag y)v+ ely.
Yy v
Since a quadratic is bounded above only if its Hessian, 2Q) — 2Diagy, is
negative semidefinite, this is equivalent to the following SDP

v*= min €Ty

s.t. Diagy > Q.

Slater’s (strict feasibility) constraint qualification holds for this problem.
Therefore its Lagrangian dual satisfies

g < v*:= max traceQX
MCSDP s.t. diag(X)=e
X = 0.

We get the same relaxation as above if we use the relationship or lifting
X = voT and vTQuv = trace QX.

The above relaxation is equivalent to the Shor relaxation [13] and the S-
procedure in Yakubovitch [15, 16]. For the case that the objective function
or the constraints contain a linear term, extra work must be done to include
the possibility of inconsistency of the stationarity conditions. Alternatively,
this can be done by homogenization and using strong duality of the trust
region subproblem, [14]. The latter technique is used below. ???connection
to linear reformulation Adams-Sherali???

3 Strengthened SDP Relaxation - Second Lifting

Suppose that we want to strengthen the above SDP relaxation. It is not
clear what constraints one can add to MC to accomplish this. However, we
start with the following lifted program; this is equivalent to program MC,
obtained by adding redundant constraints to MCSDP. This is motivated by
the work in [2, 1] where it is shown that adding redundant constraints that
use terms of the type X X7 can lead to strong duality. It is clear that MC
is equivalent to MCSDP if we add the rank 1 constraint on X. This rank 1
constraint with X > 0 can be replaced by the constraint X? — nX = 0. We



can then add the constraints X o X = F, even though these are redundant.
This yields our starting program.

4* = max trace QX
s.t. diag(X)=e

MC2 YoX - E (3.1)
X?2-nX =0,
The last constraint is motivated by X? = vvTvvT and vTv = n. Note

that the last constraint implies X > 0. Moreover, we can simultaneously
diagonalize X and X?2. Therefore the eigenvalues satisfy A2 — nA = 0, i.e.
the only eigenvalues are 0 and n. Since the diagonal constraint implies that
the trace is n, we conclude that X is rank one, i.e. MC?2 is equivalent to
MC using the factorization X = vv” and trace QX = vTQu. In addition,
MC is itself a Max-Cut problem but with addional nonlinear constraints,
t(n) variables, and with the same optimal objective value as MC.

In order to efficiently apply Lagrangian relaxation and not lose the in-
formation from the linear constraint we need to replace the constraint with
the norm constraint ||diag (X) — e||? = 0 and homogenize the problem. We
then lift this matrix problem into a higher dimensional matrix space. To
keep the dimension as low as possible, we take advantage of the fact that
X = sMat (z) is a symmetric matrix. We then express MC2 as

@ = max trace (Q sMat (z)) yo
s.t. sdiag (z)Tsdiag (z) — 2eTsdiag (z)yo +n =0
sMat (z) o sMat (z) = FE
sMat (z)? — nsMat (z)yo = 0
1-y2=0
z € R gy e R.

MC2 (3.2)

Note that this problem is equivalent to the previous formulation since we
can change X to —X if yg = —1. An alternative homogenization would be
to change the objective function to Ltrace (@QsMat (z)?). ???include in an
appendix??? It appears that (the eigenvalues of) Q should determine which
homogenization would be better, i.e. which would result in a better class of
Lagrange multipliers when taking the dual and therefore reduce the duality
gap.

We now take the Lagrangian dual of this strengthened formulation, i.e.



we use Lagrange multipliers w € R,7,5 € 8™ and get
p* < vy := min max trace (QsMat (z)) yo
w,T,S g 2=1
+ w(sdiag (2)Tsdiag (z) — 2eTsdiag (2)yo + n) (3.3)
+ trace T (E — sMat (z) o sMat (z))
+ trace S((sMat (z))? — nsMat (z)yo).

We can now move the variable yy into the Lagrangian without increasing
the duality gap, i.e. this is a trust region subproblem and the Lagrangian
relaxation of it is tight, [14]. This yields

vy = tmiTnS max trace (QsMat (z)) yo
aw, 1,5 Y0
+ w(sdiag (z)Tsdiag (z) — 2eTsdiag (z)yo + n)
+ trace T (E — sMat (z) o sMat (z)) (3.4)
+ trace S((sMat (z))? — nsMat (z)yo)
+ (1 - y5)-

The inner maximization of the above relaxation is an unconstrained pure
quadratic maximization, i.e. the optimal value is infinity unless the Hessian
is negative semidefinite is which case = 0 is optimal. Thus we need to
calculate the Hessian.

Using trace QsMat (z) = z7dsvec (Q), and adding a 2 for convenience,
we get the constant part (no Lagrange multipliers) of the Hessian:

. 0 Ldsvec (Q)T
2Hc._2<%dsvec(Q) pdovec > (3.5)

The nonconstant part of the Hessian is made up of a linear combination of
matrices, i.e. it is a linear operator on the Lagrange multipliers. To make
the quadratic forms in (refeq:maxcutlagr2) easier to differentiate we note
that dsvec Diag diagsMat = sdiag “sdiag = Diagsvec (I); and rewrite the
quadratic forms as follows:
sdiag (z)Tsdiag () = 2T (dsvec DiagdiagsMat ) z;
eTsdiag(z) = (dsvecDiage)’ 2;

trace S(sMat (z))®> = tracesMat (z) SsMat (z)
= z7dsvec (SsMat (z))
= 27T (dsvec SsMat) z;

trace T(sMat () o sMat (2)) = 27 {dsvec (T o sMat (z))}
= 27T (dsvec (T o sMat)) z.



For notational convenience, we use the negative of the Hessian and split it
into four linear operators with the factor 2:

Vi = 2H(w,T,S,t)
= 2H; (w) + 2H, (T) + 27‘[3( ) + 27‘[4(t)
27‘[(’11), T, 5, t) = 2H; (w) + QHQ(T) + 27‘[3( ) + 27‘[4 )
< 0 (dsvec Diage) >
= 2 (

dsvec Diage) —sdlag sdiag
0

4o 0 (3.6)
0 dsvec (T osMat)
0 Ldsvec ()7 >

T2{ 1 -dsvec (S) —dsvec SsMat
10
] )

The elements of the above matrices may need clarification. The matrix
sdiag *sdiag € S*") is diagonal with elements determined using

el (sdiag*sdiag)e; = sdiag (e;)Tsdiag/(e;)
B { 1 if i=j=t(k)

0 otherwise.

Similarly, we find that, for ' = }_,.t;; F;;, where the matrices E;; are the
elementary matrices ele] + eje ef, we have

dsvec (T osMat) = Z ti;dsvec (E;; osMat).

7]

Then the matrix dsvec (E;; o sMat ) is found from using el [dsvec (E;; o sMat ) (e;)].
Similarly, we can find the elements of dsvec SsMat .

We can cancel the 2 in (3.6) and (3.5) and get the (equivalent to the
Lagrangian dual) semidefinite program

v = min nw 4 trace ET + trace0S + ¢
MCDSDP2 s.t. H(w, T, S,t) > H. (3.7)

If we take T sufficiently positive definite and ¢ sufficiently large, then we
can guarantee Slater’s constraint qualification. Therefore the dual of this
SDP has the same optimal value v5 and it provides the strengthened SDP



relaxation of MC:

v; = max traceH.Y
st. Hi(Y)=n
H5(Y)=FE
MCPSDP2 2 3.8
Hi(Y) = &)
Hi(Y) =
Y »0.

Thus we need to calculate the adjoint operators and also remove redundant
constraints in MCDSDP2. To evaluate the adjoint operators we write

1 2T
Y= <:L' }7.>

The adjoint operators can be quickly described. H;(Y) is twice the sum
of the elements in the first row of Y corresponding to the positions of the
diagonal of sMat (#) minus the sum of the same elements in the diago-
nal of Y. If these elements were all 1, then clearly the result would be n.

H5(Y) = sMatdiag (Y). H5(Y) consists of the sums in MCPSDP2 below.
This describes the linearization of X? — nX. H;(Y) is just the top left ele-
ment of Y.

3.1 Redundant Constraints - Direct Second Lifting

We can see the SDP relaxation directly for MC2 using the relationship

Yy = ( ?’f ) (yo a:T), X = sMat (z).

The advantage in this is that we can use the origin of X from MC, e.g.
diag (X) = e and the elements of X are £1. Thus we get

diag (Y) =e, and Yy;;=1,Vi=1,...,n.



We can also express the ¢(n+1) constraints from X2—nX = 0. Several of the
constraints become redundant. The result is the simplified SDP relaxation:

v; = max traceH.Y
s.t. diag(Y)=e
YO,t(i):]" VZ:]_,,TZ
7 J
MCPSDP2 kzl Yii1)tht(i-1)+k T . Z;rl Yiko1)4it(i—1)+i
+ Xkt Ye(i—1)+it(k—1)+5 — MYor(-1)4i = 0
Vi<i<j<n
Y - 0,Y € §tw+L
(3.9)
This problem has 2¢(n) — 1 constraints. ???7full row rank - onto 7?77 The
dual is 7777
One surprising result is that the projection of the first row of a feasible Y
results in X > 0, even though this constraint was discarded in the relaxation.

Lemma 3.1 Suppose that Y 1is feasible in MCPSDP2. Then
sMat (YOJ:t(n)) > 0.
Proof. Let @ =Y .4(n). The X? = nX constraint can be viewed as
nsMat (z) = sMat (z)sMat (2) = sMat (z)sMat (2)7 = sMat (z)zTsMat *.

Since we identify zz” with the lower right block of Y, we see that this is a
congruence of a positive semidefinite matrix and so must be positive semidef-
inite itself. Alternatively, using H3, and the fact that dsvec(-)sMat is a
self-adjoint operator, we get ndsvec *(z) = dsvec YsMat = (dsvec YsMat )* ,
where Y is the bottom right block of Y, i.e. we again have a congruence of
a positive semidefinite matrix.

O

Corollary 3.1 The optimal values satisfy
v =v = v =v =k,

Proof. Suppose that v; = v* and

10



solves MCSDP2. It is clear that sMat (z*) is feasible for MCSDP. Moreover,
from the structure of the objective function of MCSDP2, we see that v =
trace QsMat (z*), i.e. it must be optimal as well. If sMat(z*) > 0, then
we are done, since the objective function of MCSDP is linear, i.e. we get a
contradiction to v5 = v*. Therefore we can assume that X* = sMat (z*) is
singular and optimal for MCSDP.

We can modify MCSDP by making the objective quadratic, i.e. adding
Yo, and not changing the optimality of X*. We can now perturb the objective
function to get a contradiction.

O

4 Numerical Tests

Both bounds were tested on a variety of problems. The matrix X in this
section is obtained by applying sMat to the last @ elements of the first
column of the matrix Y obtained from solving MCPSDP2 (i.e. only the
first element of that column is ignored). In all the test problems we used,
the resulting matrix X was always found to be positive semidefinite. Some
typical results follow.

In the following we include the numerical rank of X, i.e. the number of
eigenvalues that appear to be nonzero.

These results show the strengthened bound MCPSDP?2 yielding a strict
improvement over MCSDP every time. Since L was integer valued, we see

that, in all but the last instance, the optimal solution was actually found.

5 Conclusion

We have presented an SDP that provides a strengthened bound for MC
relative to the current well know SDP bound for SDP. Though the time to
solve this new SDP is large compared to the time for solving the current
SDP, it is hoped that exploiting structure will improve this situation and
that this new bound will be competitive both in time and in quality. In
addition, attempts to get proveable quality estimates need to be done.
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n | Weight of | MCSDP bound MCPSDP2 bound Numerical
optimal cut | (% rel. error) (% rel. error) rank of X

5 1 4.5225 (13.06%) 4.2890 (7.22%) 2

7 56 56.4055 (0.72%) 56.0954 (0.17%) 3

8 30 30.2015 (0.67%) | 30.0000 (0.0000000075%) 1

9 53 53.9361 (1.61%) 53.1182 (0.20%) 3

10 64 64.08 (0.1268%) 64 (-2.228¢-08%) 3

12 83 90.3919 (2.72%) 89.5733 (1.79%) 4

Table 1: The first line of results corresponds to solving both MC relax-
ations for a 5-cycle with unit edge-weights; the others come from randomly

generated weighted graphs.
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