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1.1 Background1.1.1 NotationWe work in the space of n�n symmetric matrices, Sn ; with the trace innerproduct hA;Bi = traceAB; and dimension t(n) = n(n+ 1)=2:We let A �Bdenote Hadamard (elementwise) product. For given Y 2 St(n)+1; the t(n)vector x = Y0;1:t(n) denotes the �rst (zero-th) row of Y after the �rst element.We let e denote the vector of ones and E = eeT the matrix of ones. ForS 2 Sn ; the vector diag (S) 2 <n is the diagonal of S, while the adjointoperator Diag (v) = diag �(v) is the diagonal matrix with diagonal formedfrom the vector v 2 <n: We use both Diag (v) and Diag v if the meaning isclear. (Similarly for diag and other operators.) Also, s = svec (S) 2 <t(n);is formed (columnwise) from S while ignoring the strictly lower triangularpart of S: Its inverse is the operator S = sMat (s): The adjoint of svec is theoperator hMat(v) which forms a symmetric matrix where the o�-diagonalterms are multiplied by a half, i.e. this satis�essvec (S)Tv = traceS hMat (v); 8S 2 Sn ; v 2 <t(n):The adjoint of sMat is the operator dsvec (S) which works like svec exceptthat the o� diagonal elements are multiplied by 2, i.e. this satis�esdsvec (S)Tv = traceS sMat (v); 8S 2 Sn ; v 2 <t(n):For notational convenience, we de�ne the vectors sdiag (s) := diag (sMat(s))and vsMat (s) := vec (sMat(s)); where vec is the vector formed from thecomplete columns of the matrix; the adjoint of vsMat is then given byvsMat �(v) = dsvec ��Mat(v) + Mat (v)T� =2� :In this paper we will have relationships between the following matricesand vectores X �= vvT �= sMat (x) 2 Sn; and Y �=  y0x !�y0 xT� 2St(n)+1; y0 2 <:1.1.2 Max-Cut ProblemThe max-cut problem is the problem of partitioning the node set of an edge-weighted undirected graph into two parts so as to maximize the total weightof edges cut by the partition. We tacitly assume that the graph in questionis complete (if not, nonexisting edges can be given weight 0 to complete the3



graph). Mathematically, the problem can be formulated as follows (see e.g[10]). Let the graph be given by its weighted adjacency matrix A. De�nethe matrix L := Diag (Ae)�A, where e is the vector of all ones. (The matrixL is called the Laplacian matrix associated with the graph.) If a cut S isrepresented by a vector v where vi 2 f�1; 1g depending on whether or noti 2 S, we get the following formulation for the max-cut problem.(MC) �� := maximize 14vTLvs.t. v 2 f�1; 1gn:Using X := vvT and vTLv = traceLX , this is equivalent to�� = maximize trace 14LXs.t. diag (X) = erank(X) = 1X � 0:Dropping the rank condition and setting Q = 14L; yields the SDPrelaxationwith the upper bound �� � ��, see MCSDP below. This relaxation of MCis now well-known and studied in e.g. [4, 3, 5, 9]. Goemans and Williamson[5] have provided estimates for the quality of the SDP bound for MC. Theyhave shown that the optimal value of this relaxation is at most 14% abovethe value of the maximum cut, provided there are no negative edge weights.In fact, by randomly rounding a solution to the SDP relaxation, they �nda �-approximation algorithm, i.e. a solution with value at least � times theoptimal value, where � = :878: Numerical tests are presented in e.g. [7, 8].Further results on problems with general quadratic objective functionsare presented in [11, 17], e.g. Nesterov [11] uses the SDP bound to provideestimates of the optimal value of MC, with arbitrary L = LT ; with constantrelative accuracy.2 Lagrangian RelaxationA quadratic model for MC with a general homogeneous quadratic objectivefunction is MC �� = max vTQvs.t. v2i � 1 = 0; i = 1; : : : ; n:Note that if the objective function has a linear term, then we can homogenizeusing an additional variable similarly constrained. (See below.)4



2.1 SDP Relaxation of MC - First LiftingThe SDP relaxation comes from the Lagrangian dual of the Lagrangian dualof MC, see e.g. [13, 12]. For completeness we include the details of such aderivation. The Lagrangian dual to MC is�� � �� := miny maxv vTQv � vT (Diag y)v + eT y:Since a quadratic is bounded above only if its Hessian, 2Q � 2Diag y; isnegative semide�nite, this is equivalent to the following SDP�� = min eTys.t. Diag y � Q:Slater's (strict feasibility) constraint quali�cation holds for this problem.Therefore its Lagrangian dual satis�esMCSDP �� � �� := max traceQXs.t. diag (X) = eX � 0:We get the same relaxation as above if we use the relationship or liftingX = vvT and vTQv = traceQX:The above relaxation is equivalent to the Shor relaxation [13] and the S-procedure in Yakubovitch [15, 16]. For the case that the objective functionor the constraints contain a linear term, extra work must be done to includethe possibility of inconsistency of the stationarity conditions. Alternatively,this can be done by homogenization and using strong duality of the trustregion subproblem, [14]. The latter technique is used below. ???connectionto linear reformulation Adams-Sherali???3 Strengthened SDP Relaxation - Second LiftingSuppose that we want to strengthen the above SDP relaxation. It is notclear what constraints one can add to MC to accomplish this. However, westart with the following lifted program; this is equivalent to program MC,obtained by adding redundant constraints to MCSDP. This is motivated bythe work in [2, 1] where it is shown that adding redundant constraints thatuse terms of the type XXT can lead to strong duality. It is clear that MCis equivalent to MCSDP if we add the rank 1 constraint on X: This rank 1constraint with X � 0 can be replaced by the constraint X2 � nX = 0: We5



can then add the constraints X �X = E; even though these are redundant.This yields our starting program.MC2 �� = max traceQXs.t. diag (X) = eX �X = EX2 � nX = 0; (3.1)The last constraint is motivated by X2 = vvTvvT and vT v = n: Notethat the last constraint implies X � 0: Moreover, we can simultaneouslydiagonalize X and X2: Therefore the eigenvalues satisfy �2 � n� = 0; i.e.the only eigenvalues are 0 and n. Since the diagonal constraint implies thatthe trace is n, we conclude that X is rank one, i.e. MC2 is equivalent toMC using the factorization X = vvT and traceQX = vTQv: In addition,MC is itself a Max-Cut problem but with addional nonlinear constraints,t(n) variables, and with the same optimal objective value as MC.In order to e�ciently apply Lagrangian relaxation and not lose the in-formation from the linear constraint we need to replace the constraint withthe norm constraint jjdiag (X)� ejj2 = 0 and homogenize the problem. Wethen lift this matrix problem into a higher dimensional matrix space. Tokeep the dimension as low as possible, we take advantage of the fact thatX = sMat (x) is a symmetric matrix. We then express MC2 asMC2 �� = max trace (Q sMat (x))y0s.t. sdiag (x)Tsdiag (x)� 2eT sdiag (x)y0 + n = 0sMat(x) � sMat(x) = EsMat (x)2 � n sMat (x)y0 = 01� y20 = 0x 2 <t(n); y0 2 <: (3.2)Note that this problem is equivalent to the previous formulation since wecan change X to �X if y0 = �1. An alternative homogenization would beto change the objective function to 1n trace �QsMat (x)2� : ???include in anappendix??? It appears that (the eigenvalues of) Q should determine whichhomogenization would be better, i.e. which would result in a better class ofLagrange multipliers when taking the dual and therefore reduce the dualitygap.We now take the Lagrangian dual of this strengthened formulation, i.e.6



we use Lagrange multipliers w 2 <; T; S 2 Sn and get�� � ��2 := minw;T;S maxx;y20=1 trace (QsMat (x))y0+ w(sdiag (x)T sdiag (x)� 2eT sdiag (x)y0 + n)+ traceT (E � sMat(x) � sMat (x))+ traceS((sMat(x))2 � n sMat (x)y0): (3.3)We can now move the variable y0 into the Lagrangian without increasingthe duality gap, i.e. this is a trust region subproblem and the Lagrangianrelaxation of it is tight, [14]. This yields��2 = mint;w;T;Smaxx;y0 trace (QsMat(x)) y0+ w(sdiag (x)T sdiag (x)� 2eT sdiag (x)y0 + n)+ traceT (E � sMat(x) � sMat (x))+ traceS((sMat(x))2 � n sMat(x)y0)+ t(1� y20): (3.4)The inner maximization of the above relaxation is an unconstrained purequadratic maximization, i.e. the optimal value is in�nity unless the Hessianis negative semide�nite is which case x = 0 is optimal. Thus we need tocalculate the Hessian.Using traceQsMat(x) = xTdsvec (Q); and adding a 2 for convenience,we get the constant part (no Lagrange multipliers) of the Hessian:2Hc := 2� 0 12dsvec (Q)T12dsvec (Q) 0 � : (3.5)The nonconstant part of the Hessian is made up of a linear combination ofmatrices, i.e. it is a linear operator on the Lagrange multipliers. To makethe quadratic forms in (refeq:maxcutlagr2) easier to di�erentiate we notethat dsvecDiagdiag sMat = sdiag �sdiag = Diag svec (I); and rewrite thequadratic forms as follows:sdiag (x)T sdiag (x) = xT (dsvecDiagdiag sMat )x;eT sdiag (x) = (dsvecDiag e)T x;traceS(sMat(x))2 = trace sMat (x)S sMat(x)= xTdsvec (SsMat(x))= xT (dsvecSsMat)x;traceT (sMat(x) � sMat (x)) = xT fdsvec (T � sMat(x))g= xT (dsvec (T � sMat))x:7



For notational convenience, we use the negative of the Hessian and split itinto four linear operators with the factor 2:r2 = 2H(w; T; S; t):= 2H1(w) + 2H2(T ) + 2H3(S) + 2H4(t)2H(w; T; S; t) := 2H1(w) + 2H2(T ) + 2H3(S) + 2H4(t):= 2w� 0 (dsvecDiag e)T(dsvecDiag e) �sdiag �sdiag �+ 2�0 00 dsvec (T � sMat )�+ 2� 0 1ndsvec (S)T1ndsvec (S) �dsvecSsMat �+ 2t�1 00 0� : (3.6)The elements of the above matrices may need clari�cation. The matrixsdiag �sdiag 2 St(n) is diagonal with elements determined usingeTi (sdiag �sdiag ) ej = sdiag (ei)T sdiag (ej)= ( 1 if i=j=t(k)0 otherwise.Similarly, we �nd that, for T = Pij tijEij ; where the matrices Eij are theelementary matrices eieTj + ejeTi ; we havedsvec (T � sMat ) =Xij tijdsvec (Eij � sMat ) :Then the matrix dsvec (Eij � sMat) is found from using eTk [dsvec (Eij � sMat ) (el)] :Similarly, we can �nd the elements of dsvecSsMat :We can cancel the 2 in (3.6) and (3.5) and get the (equivalent to theLagrangian dual) semide�nite programMCDSDP2 ��2 = min nw + traceET + trace 0S + ts.t. H(w; T; S; t)� Hc (3.7)If we take T su�ciently positive de�nite and t su�ciently large, then wecan guarantee Slater's constraint quali�cation. Therefore the dual of thisSDP has the same optimal value ��2 and it provides the strengthened SDP8



relaxation of MC: MCPSDP2 ��2 = max traceHcYs.t. H�1(Y ) = nH�2(Y ) = EH�3(Y ) = 0H�4(Y ) = 1Y � 0: (3.8)Thus we need to calculate the adjoint operators and also remove redundantconstraints in MCDSDP2. To evaluate the adjoint operators we writeY = � 1 xTx �Y :�The adjoint operators can be quickly described. H�1(Y ) is twice the sumof the elements in the �rst row of Y corresponding to the positions of thediagonal of sMat (x) minus the sum of the same elements in the diago-nal of Y: If these elements were all 1, then clearly the result would be n:H�2(Y ) = sMatdiag ( �Y ): H�3(Y ) consists of the sums in MCPSDP2 below.This describes the linearization of X2 � nX: H�4(Y ) is just the top left ele-ment of Y:3.1 Redundant Constraints - Direct Second LiftingWe can see the SDP relaxation directly for MC2 using the relationshipY �=  y0x !�y0 xT� ; X = sMat (x):The advantage in this is that we can use the origin of X from MC, e.g.diag (X) = e and the elements of X are �1: Thus we getdiag (Y ) = e; and Y0;t(i) = 1; 8i = 1; : : : ; n:
9



We can also express the t(n+1) constraints fromX2�nX = 0: Several of theconstraints become redundant. The result is the simpli�ed SDP relaxation:MCPSDP2 ��2 = max traceHcYs.t. diag (Y ) = eY0;t(i) = 1; 8i = 1; : : : ; niPk=1 Yt(i�1)+k;t(j�1)+k + jPk=i+1 Yt(k�1)+i;t(j�1)+i+Pnk=j+1 Yt(i�1)+i;t(k�1)+j � nY0;t(j�1)+i = 081 � i < j � nY � 0; Y 2 St(n)+1: (3.9)This problem has 2t(n) � 1 constraints. ????full row rank - onto ???? Thedual is ????One surprising result is that the projection of the �rst row of a feasible Yresults inX � 0; even though this constraint was discarded in the relaxation.Lemma 3.1 Suppose that Y is feasible in MCPSDP2. ThensMat �Y0;1:t(n)� � 0:Proof. Let x = Y0;2:t(n). The X2 = nX constraint can be viewed asnsMat(x) = sMat (x)sMat(x) = sMat(x)sMat(x)T = sMat(x)xT sMat �:Since we identify xxT with the lower right block of Y , we see that this is acongruence of a positive semide�nite matrix and so must be positive semidef-inite itself. Alternatively, using H�3; and the fact that dsvec (�)sMat is aself-adjoint operator, we get ndsvec �(x) = dsvec �Y sMat = �dsvec �Y sMat �� ;where �Y is the bottom right block of Y; i.e. we again have a congruence ofa positive semide�nite matrix. 2Corollary 3.1 The optimal values satisfy��2 = �� ) ��2 = �� = ��:Proof. Suppose that ��2 = �� andY � = � 1 (x�)Tx� �Y � �10



solves MCSDP2. It is clear that sMat (x�) is feasible for MCSDP. Moreover,from the structure of the objective function of MCSDP2, we see that ��2 =traceQsMat (x�); i.e. it must be optimal as well. If sMat(x�) � 0, thenwe are done, since the objective function of MCSDP is linear, i.e. we get acontradiction to ��2 = ��. Therefore we can assume that X� = sMat(x�) issingular and optimal for MCSDP.We can modify MCSDP by making the objective quadratic, i.e. addingy0, and not changing the optimality ofX�:We can now perturb the objectivefunction to get a contradiction. 24 Numerical TestsBoth bounds were tested on a variety of problems. The matrix X in thissection is obtained by applying sMat to the last n(n+1)2 elements of the �rstcolumn of the matrix Y obtained from solving MCPSDP2 (i.e. only the�rst element of that column is ignored). In all the test problems we used,the resulting matrix X was always found to be positive semide�nite. Sometypical results follow.In the following we include the numerical rank of X , i.e. the number ofeigenvalues that appear to be nonzero.These results show the strengthened bound MCPSDP2 yielding a strictimprovement over MCSDP every time. Since L was integer valued, we seethat, in all but the last instance, the optimal solution was actually found.5 ConclusionWe have presented an SDP that provides a strengthened bound for MCrelative to the current well know SDP bound for SDP. Though the time tosolve this new SDP is large compared to the time for solving the currentSDP, it is hoped that exploiting structure will improve this situation andthat this new bound will be competitive both in time and in quality. Inaddition, attempts to get proveable quality estimates need to be done.References[1] K.M. ANSTREICHER, X. CHEN, H. WOLKOWICZ, and Y. YUAN.Strong duality for a trust-region type relaxation of qap. Research re-port, corr 98-31, University of Waterloo, Waterloo, Ontario, 1998.11
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n Weight of MCSDP bound MCPSDP2 bound Numericaloptimal cut (% rel. error) (% rel. error) rank of X5 4 4.5225 (13.06%) 4.2890 (7.22%) 27 56 56.4055 (0.72%) 56.0954 (0.17%) 38 30 30.2015 (0.67%) 30.0000 (0.0000000075%) 19 58 58.9361 (1.61%) 58.1182 (0.20%) 310 64 64.08 (0.1268%) 64 (-2.228e-08%) 312 88 90.3919 (2.72%) 89.5733 (1.79%) 4Table 1: The �rst line of results corresponds to solving both MC relax-ations for a 5-cycle with unit edge-weights; the others come from randomlygenerated weighted graphs.
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