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A Strengthened Test for Optimality 1 

H ,  W O L K O W I C Z  2 

Communicated by A. V. Fiacco 

Abstract.  In this paper, we strengthen recent characterizations of 
optimality for the convex program 

(P) /x = inf{f(x):gk(x) <- 0, k = 1 . . . . .  m}, 

where the functions f and gk  k = 1 , . . . ,  m, are convex functions on 
R ~. The characterizations presented here are stronger, in the sense 
that the Lagrange multiplier relation holds over a larger set. This 
strengthens information about the stability of the solution with respect 
to perturbations in the right-hand side of the constraints. In particular, 
we show that, in the characterizations of optimality in Refs. 1-2, the 
set D2~-(x*), the intersection of the cones of directions of constancy 
of the equality constraints, can be replaced by the larger and simpler 
set Dh  (x*), the cone of directions of constancy of a single function h. 
We also discuss how to choose h to get the strongest characterization. 

Key Words. Characterization of optimality, Lagrange multipliers, 
faithfully convex functions, gradients, cones of directions of constancy, 
strongest optimality conditions. 

1. Introduction 

C o n s i d e r  the  convex program 

(P) /z = in f{ f (x):gk(x)  _< O, k ~ ~ = {1 . . . . .  m}}, 

w h e r e  f, gk : R  n --> R a re  d i f fe ren t iab le  convex  funct ions .  W i t h o u t  loss of  
genera l i ty ,  we a s sume  tha t  none  of the  funct ions  is cons tan t .  W e  will r equ i r e  
tha t  s o m e  of the  cons t ra in t s  gk b e  faithfully convex functions, i .e.,  convex  
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functions which are not a n n e  along any line segment, unless they are a n n e  
along the entire line extending the segment (e.g., Ref. 3). The class of 
faithfully convex functions is large and it includes all analytic convex 
functions as well as all strictly convex functions. Characterizations of 
optimality for Program (P) have been given in Refs. 1-2. These characteri- 
zations hold without any constraint qualification, and they implicitly include 
a Lagrange multiplier relation which holds on the convex set 

x* +D~o(x*), 

where D~= (x*) is the intersection of the cones of directions of constancy 
of the equality constraints at the optimum x*. It is of interest to have strong 
optimality conditions, in the sense that the Lagrange multiplier relation 
holds on as large a convex set as possible (e.g., Ref. 4). For example, if we 
have hk --> 0 satisfying 

f(x)+ ~ hkgk(x)-----/~, f o r a l l x ~ l l ,  (1) 
k ~ g  ~ 

then, if 11 is all of R n, our solution is stable with respect to (feasible) 
perturbations of the right-hand sides of the constraints (e.g., Ref. 5). 
Similarly, the larger the set lq is, the more we can guarantee that the 
solution is stable with respect to certain perturbations (e.g., Refs. 5-6). 

In this paper, we show that we can replace D ~ - ( x * )  by various larger 
cones. In particular, if 

ak >- O, for all k e ~ =, 

with ak > 0 if gk is not anne ,  then we can use the cone D h  (x*) when 

k h= ~ akg 

is faithfully convex; i.e., we can replace the intersection of the cones of 
constancy D~=(x*)  by the larger and simpler cone of constancy of the 
single function h. Note that the o~k are arbitrary (nonnegative) constants. 
Thus we can change the values of the constants ak and obtain a variety of 
different cones D h  (x*). This theory simplifies the algorithm for finding the 
set ~= ,  given in Ref. 1 (see Remark 3.2.). 

In addition, we show how to weaken the differentiability and faithfully 
convex assumptions; we discuss how to find the scalars ak which give the 
strongest optimality conditions, and compare our results with those in 
Ref. 7, which use the badly behaved set of constraints. 

Note that our results in Sections 2 and 3 hold when R n is replaced by 
a locally convex (Hausdorff) topological vector space. 
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2. Preliminaries 

W e  consider  the  convex  p r o g r a m  (P) p re sen ted  in Sect ion 1. W e  assume 
that  the feasible set 

F = {x e R "  :gk(x)<-  0, for  all k ~ ~ = {1 . . . . .  m}} 

is n o n e m p t y .  ~ ( x )  will deno t e  the  binding (active) constraints  at x. T h e  
equality set (e.g., Ref .  1) is 

= = {k e ~ : gk (x) = 0, for  all x c F}. 

W e  then  set  

~<(x) = ~(x)\~'=. 

Fo r  the re la t ion ~ ,  we define 

D ~  (x) = {d ~ R n : 3 6  > 0, with gk (x + ad)~g  k (x), for  all 0 < a <-- d}. 

If ~ is = , - -<,  < ,  or  > ,  we get the  cones of directions of constancy, 
nonincrease, decrease, and increase, respect ive ly  (e.g., Ref.  2). W e  let 

D~(x) = Dg~(x) ,  D R a ( x ) =  ['-'1 D~(x). 
k~D. 

W h e n  h is fai thfully convex,  then  

D h  = D h  (x) is a subspace  i ndependen t  of x ;  (2) 

and,  if x ~ F, then  

D•= (x) c~D;<(x)(x)  # Q~ (3) 

(e.g., Ref .  2). W e  let Vh(x)  deno t e  the gradient of h at x. Then ,  the 
tinearizing cone at x is 

C(x) = {d : Vgk(x )d  -< 0, for  all k e ~(x)} .  

For  a set K C R n, the nonnegative polar (apolar) cone of K is 

K + = {¢ ~ R "  : Ck -> 0, for  all k s K}, 

while the annihilator of K is 

K l = K + ~  - K  +. 

Then ,  if K,  L are closed convex  cones in R ~, 

K C L ~ L + C K  +, (K~L)+=cl(K++L+),  (4) 
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where cl denotes closure, and 

(K ~ L ) + = K +  + L  +, (5) 

if K is polyhedral and L is a subspace or also polyhedral (e.g., Ref. 8). 
Note that - C + ( x )  is equal to the cone generated (finitely) by the gradients 
of gk, k ~ ~(x) .  

The badly behaved set of constraints at x (Ref. 7) is 

~b(x)  = {k ~ 2 = : C(x)  c~D~ (x)\cl D~= (x)) # Q}. 

This is the set of constraints that cause trouble in the Kuhn-Tucker  theory. 
In Ref. 7, it was shown that, for x s F, 

~b(x)  = • (6) 

is a weakest constraint qualification at x. Note that affine functions are 
never badly behaved. In fact, this is true of all functions gk whose directions 
of constancy correspond exactly to the directions in which the directional 
derivatives are 0. 

The next two theorems present some known characterizations of 
optimality. 

Theorem 2.1. Suppose that x * e F  and ~ b ( x * ) C F t C ~  =. Then, 
the following are equivalent: 

(i) x* solves Program (P); 
(ii) the system 

Vf(x*) + ~ hkVgk(x*)~(D~=(x*) )  + , hk-->O, 
k~O~<(x *) 

is consistent; 
(iii) the system 

Vf(x*)+ 2 ;~kVgk(x*)c(D2,-(x*))  +, hk >--O, 
k ~ ( x * )  

is consistent; 
(iv) if both conv D a ( x * )  and C+(x )+(D~(x ) )  + are closed, then the 

system 

Vf(x*) + E A k ~ g k ( x * ) ' E ( D ~ ( x ) )  + , Ak ~>0 , 
ke~(x*)  

is consistent, where cony denotes convex hull. 
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Proof. That (ii) characterizes optimality was shown in Refs. 1-2. 
That (ii) is equivalent to both (iii) and (iv) was shown in Ref. 7. 

Theorem 2.2. Consider the system 

Vf(x*) + Z ~kVg k(x*) ~ G, ,~k-~ 0. (7) 

Then, the consistency of (7) characterizes optimality of Program (P) at x* 
(feasible) iff 

(D~(x,~ (x*)) + = C+(x *) + G. (8) 

Proof. The case of differentiable constraints is given in Ref. 4. The 
convex nondifferentiable case is treated in Ref. 7. [] 

The above result follows from the so-called Pshenichnii condition 
(see, e.g., Ref. 8, p. 87): 

x* (feasible) solves Program (P), if[ Vf(x*) e T+(F, x*), 

where T(F, x*) is the tangent cone of F at x*. In the convex case (e.g., 
Ref. 7), 

T(F, x*) = c l (cone(F-  x*)) = cl(D~(x.~(x )). 

Note that the stronger optimality condition, as seen by having larger sets 
fl  in (1), is equivalent to having smaller sets G in (7). For, if the infimum 
of Program (P) is attained at x*, then 

Y. ,~kgk(x)<--O, 
k~f~ 

(1) is equivalent to 

for all x ~ F ;  

/x = inf{f(x) + Y~ Akgk(x):x ~ f~}; 
kE~ 

and we get the complementary slackness condition 

Z A k g k ( x * )  = O, 
k ~  

or equivalently 

Thus, (1) is equivalent to 

= f(x*) = f(x*) + 

Ak =0 ,  if k~ ~(x*).  

Y, Akgk(x *) = inf{f(x) +Y. Akgk(x):x ~ f~}. 
k ~  
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By the Pshenichnii condition, this is equivalent to (7), with 

G = (xq- x*) +. 

By (4), this implies that larger sets ~ yield smaller sets G. 

3. Strengthened Test for Optimality 

In Refs. 7, 9, we showed that D ~  = (x*) may be replaced by D ~  = (x*), 
D~ (x*), < * or D 5  ( x ) ,  where 

and certain closure conditions hold. We now see that we can replace 
D2, ~, (x*) by the larger and simpler set Dh  (x*), where 

k 
h =  Z akg 

k e ~ ,  = 

and the ak are any nonnegative scalars, with ~k > 0, if gk is not anne .  

Theorem 3.1. Suppose that 

~k->0, 

with ak > 0 if gk is not anne ,  and 

h =  

for all k • ~ =, 

k 
Z akg 

k e ~  = 

is faithfully convex. Then x* (feasible) is optimal for Program (P) iff the 
system 

Vf(x*) + ~, hkVgk(x *) • (D~ (x*)) +, Ak --> O, (9) 
k e ~ ( x * )  

is consistent. 

Proof. Since the point x * •  F is fixed throughout, we will omit it in 
this proof when the meaning is clear. For example, D ~ denotes D ~(x*)(x*). 
Now, by Theorem 2.2, we need only show that 

G = (D~)+ satisfies (8). (10) 

Let us first show that 

c l D ~  = D h  ~ C. (11) 
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We have (e.g., Ref. 2) 

D ~  = D ~ -  ~ D ~ <  C D h  r~ C, (12) 

by definition of h and C, and since 

d ~ D ~  

implies that the directional derivative 

Vgkd <-- O, for all k e ~. 

The inclusion 

c l D ~  C D h  c~C 

now follows, since the right-hand side is closed. Conversely, suppose that 

d c D h  ~ C, (13) 

and q / i s  a neighborhood of the origin in X. To show the reverse inclusion, 
we need to show that 

By (3), choose 

and, for 0 < A -< 1, let 

Now, 

(°ll + d ) ~ D ~  # (g. (14) 

d e D ~ =  < " ~ D ~ < ,  (15) 

d~ = a d + ( 1 - , ~ ) d .  

da ~ D h  c~ C, for all 0 < h -< 1, 

since D h  ~ C is convex and [by (15), the definition of h, see (12)] 

deD~=c~D~< < =D~c~D~=c~D~<< CD~C. 

Moreover,  let us show that 

d ~ D ~ = ,  for all O < A -  1. 

Since 

D~ = =D~- 

(Ref. 10), we need only show that 

Suppose that this fails for a fixed 0 < A --< 1, i.e., 

dx ~ D ~, for some I e ~ =. 

(16) 

(17) 
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Since da ~ C, we have that 

da ~ D~ ~, 

for all k ~ ~ ( x )  for which gk is affine. Therefore,  at > 0. Moreover,  since 
dx c D h  and h is faithfully convex, we see that 

-a~gt(x* +adx) = Z akgk(x* +adx), ot oR. 
ke~=\U} 

But, since a nonnegative linear combination of convex functions is convex, 
the above implies that both 

ollgt(x* +ad~) and --algl(x* +ad~) 

are convex functions of a ; therefore, 

gt(x*+adA) 

is affine on the line x*+ad~, a oR. But then 

d~ eDf 

implies that 

Vgld~ > 0, 

which contradicts the fact that d~ e C. Thus, (17) holds. 
In addition, we have 

d~D~<,  for all 0 < h _ <  1, (18) 

since (e.g., Ref. 2) 

d c D~< = {d: ~Tgkd < 0, for all k c ~<} 

=int{d: Vgkd<-O, for all k c ~<}, 

where int denotes interior and 

d e C C {d: Vgkd <-- O, for all k e ~<}. 

By (12), we see that (17) and (18) imply that 

d~ e D~,  for all 0 < ,~ -< 1. 

Thus, by choosing h sufficiently small, we get (14). This completes the 
proof of (11). To show (10), we now need only apply (5). 

Note that ~ = =  O iff Slater's condition is satisfied, i.e., there exists 
c X with 

g k (~) < 0, for all k = 1 . . . . .  m. 
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Thus, 

D~= (x*) = R  n 

iff Slater's condition holds (unless the constraints gk, k ~ ~= ,  are identically 
0). Therefore,  the optimality criteria given in Refs. 1-2 (see our Theorem 
2.1) reduce to the classical Kuhn-Tucker  conditions [G = 0 in (7)] if[ Slater's 
condition holds. The conditions in the above Theorem 3.1 are tighter and 
reduce to the Kuhn-Tucker  conditions, for example whenever the gen- 
eralized Slater's condition holds, i.e., there exists £ c F with 

gk(x) < 0, for all k, except possibly those for which gk is affine. 

This holds, since we can choose o~k = 0 when gk is affine. Let  us illustrate 
this with the following simple example. 

Example 3.1. Let  

gl(x)=xl -x2  and 

Then, 

and 

Let  

Then, 

g2(x) = -g~(x). 

= = {1, 2} 

D ~  = (x) = {d ~ R2: d l =  d2}. 

2 

a l = a 2  =1  and h= ~ akg k. 
k = l  

Dh(X)=R 2, 

since h = 0, and (9) reduces to the classical Kuhn-Tucker  conditions. Note 
that Theorem 2.1(iv) will always reduce to the classical case if x* is a 
regular point, since 

is a weakest constraint qualification, see Ref. 7. If we add 

g 3 ( x )  = ~0, i f  Xl ,  X2 ~" 0 ,  
2 2 

L x 1 + x2, otherwise, 

and let the objective function 

f(x) =xl+x2,  
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then 

= = {1, 2, 3}, 

the Kuhn-Tucker conditions fail at the optimum x* = 0, while 

D~= (0)={d ~ R2: d l =  d2---0}, 

Dh  (0) ={d ER2: dl, d2>- 0}, 

where we have chosen again 

a k = l  and h =  ~ akg k. 
k e ~ ' =  

Remark 3.1. In the above example, the constraint g3 is not faithfully 
convex. In fact, the faithfully convex assumption (and the differentiability 
assumption) can be replaced by the following weaker assumption: 

convDh (x*) and -B(x*)+(Dh (x*)) ÷ (19) 

are dosed, where B(x*) is the cone ofsubgradients at x*, i.e., the convex 
cone generated by the subdifferentials Ogk(x*), with k ~ ~(x*).  

The cone B(x*) replaces the cone C(x*) in (8). The above closure 
assumptions are necessary, when applying (5) in the proof, and replace the 
potyhedrality assumptions which hold in the faithfully convex differentiable 
case. The rest of the proof holds with minor modifications. It can also be 
shown that ak may be equal to O, if 

k f~ ~)b (x *), 

Note that 

h = ~ akg k, 
kef~ 

where It C ~, is faithfully convex if gk, k ~ It, is faithfully convex; i.e., a 
nonnegative linear combination of faithfully convex functions is faithfully 
convex. This can be seen by applying the argument used to prove (17). 

Let us now show that the closure assumptions in (19) are necessary, 
by violating condition (8) when 

O = ( D ;  (x*)) +. 

Example 3.2. Consider Program (P) with the three constraints, 
defined on x = (xi) s R3: gl(x) = x~, g2(x) = -Xl, g3(x) = (inf~K Ilx - z[t) 2, 
where K is the self-polar ice-cream cone 

K ={x ~R3: xt, x2->0, 2xlx2~xa3}. 
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Let  

Then,  

and 

If we choose  

then 

Fur the rmore ,  

x * = 0 .  

x* ~F={x: Xl-~X3=O, x2~.O} 

~ =  = ~  ={1,  2, 3}. 

ak = 1, for all k ~ ~ =, 

h = g3; D h  (x*) = (Dh  (X*)) + = K. 

- B ( x * )  = C+ (x *) = span 

No te  that  the directional  derivatives of g3 at x* are all 0 and 

og~(x *) = {o}, 

i.e., 

Let  us show that 

Choose  

k~= l i ~ K  

Then,  

Vg3(x*) = O. 

-B(x*) + (Dh (x*) )  + is n o t  c l o sed .  

and (i i) I i = ~ - B ( x * ) ,  

k i + l i - +  ~ - B ( x * ) + K .  

Note  that  all the constraints are differentiable at x*. 

i = 1 , 2  . . . . .  
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Example 3.3. 
defined on R 2 

Then, 

Consider Program 

2, 
g l ( x )  = Lo ' 

g2(x ) = x ~ -  1, 

g3(x) = -g2(x).  

x*=(1 ,0)  ~ 

is the only feasible point, 

(D~(x*) )+=R 2, 

and 

span{(10) / 

Thus, D 7  (x*) is convex, but not closed. If we let 

again, then 

and 

=, given in Ref. 1. After solving the system 

O= Y ~kVgk(x), 
k~Y'(x) 

one need only find D h  (x), where 

h =  

rather than finding 

olkg k, 

D~g~(x). 

The remaining steps are similarly simplified. We show, in the next section, 
that the constants ak have a special significance (see Corollary 4.1). 

011= 0~2 = 0~3 = 1 

1 h = g  

(Dh (X*)) + = B(x*) = {x e R2:x2 = 0}~ (D~ (x*)) ÷. 

Remark 3.2. The above theorem simplifies the algorithm for finding 

ak - 0, 

(P) with the three constraints, 

2 2 i fx l  + x 2 - 1 - > 0 ,  
otherwise, 

D ~ (x*) = {d ~ g 2: d l <  0} u {0}. 
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Remark 3.3. Characterizations of optimality for the abstract convex 
nondifferentiable program with cone constraints are given in Refs. 9-11.  
Deriving stronger and strongest optimality criteria for this problem is 
studied in Ref. 11. 

4. Strongest Optimality Conditions 

Since the cone of directions of constancy of a faithfully convex function 
is a subspace independent of x, we see that finding the strongest optimality 
criteria corresponds, in our case, to solving the problem: 

(M) maximize (dimension D~) ,  

sub jec t to  h = ~ Ockgk, ak~O, 
k ~  ~ 

with oEk > 0, if gk is riot affine, 

where we assume that the constraints gk, k ~ ~= ,  are faithfully convex 
functions on R n. In Ref. 3, it was shown that every faithfully convex function 
gk has the representation 

gk(x) = pk(Akx + b k) + ckx + ilk, (20) 

where Ak is a 7k x n matrix, b k is a vector in R "k, c k is a vector in (Rn) *, 
k . p is a strictly convex function defined on R ~k, and tk  is a real scalar. We 

then get that 

where W(- ) denotes null space. 

Theorem 4.1. Suppose that the constraints gk  k ~ ~=, are faithfully 
convex. Then, finding the constants o~k in Theorem 3.1, which yield the 
strongest optimality conditions, is equivalent to solving the system 

k E ~  ~ k e ~  = 

with ak > 0, if gk is not affine, (22) 

where ~ (A~) denotes the range space of the transpose of the matrix Ak, 
and c k and A k are obtained from the representation (20). 

Proof.  By (4) and (5) (with 3_ replacing +), we get 

E ak(Ck) *e E ~(A~,), 
k ~ @  = k ~  
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iff 

Since finding the strongest optimality criteria corresponds to solving Prob- 
lem (M), it is now sufficient to show that, for given ak, 

Dh  = W, (23) 

where 

W =  ~ W(Ak)c~W( ~ akCk). 
k ~ =  k ~  a= 

That Dh  D W is clear from (20) and (21). To prove the converse, suppose 
that 

x ~ F  and d ~ D h .  

If I c ~=  and gt is not affine, then 

h ( x ) = 0  

and 

-o~tgt(x+old)= ~ akgk(x+ad), f o r a l l a e R .  
k ~ =  

As in the proof of Theorem 3.1, this shows that gt is affine on the line 
x - ad, a ~ R. Since p is strictly convex, we see that 

Thus, 

d ~ W(At). 

d ~ ('~ W(Ak), 
k e g ~  ~ 

where we let Ak = 0, if gk is affine; therefore, by (20), 

O=h(x + a d ) - h ( x ) =  }~ akck(ad), 
k e ~  = 

which implies that 

a ~R,  

This completes the proof of (23). E3 
Note that, if the system (22) has no solution, then the dimension of 

Dh  remains the same for all choices of scalars ak in Problem (M) (see 
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Remark 4.1 below). When the representations (20) are not readily available, 
we can apply the following corollary. 

Corollary 4.1. Suppose that 2 ~ F  and that the constraints gk, k 
~=,  are faithfully convex. If the scalars ak >-- O, with ak > 0 if gk is not affine, 
satisfy 

O~kVgk (2) = 0, (24) 

then they yield the strongest optimality conditions in Theorem 3. t .  

Proof. 

iff 

From the representation (20), we see that 

Y~ O~kVgk(i) = 0 

Ogk c k  ~ - -  E 
kerfs= k~@ = 

which implies that 

Then, 

Example 4.1. 

akVpk(Ak2 + bk)Ak, 

Y. Olk(Ck)'e Y~ ~ (A~) .  
k e ~ =  k E ~  = 

Consider Program (P) with the three constraints 

gl(x) =Xl 2 + 2XlX3 + X 2 + Xl + 2X2+ X3, 

gZ(x) = X~ -- 2XlX3 + X32 + 3Xl + X2 + 2X3, 

g3(x) = 4Xl 2 --4XlX3 +X 2 --5Xl--5X2--4X3. 

[] 

= (0, 0, 0) '  

is in F, and it is easy to check that 

2Vg 1(2) + Vg2(2) + Vg3(2) = 0, 

that is, 

3 

Y~ ~kVgk(X) = 0, 
k = l  

with O~ 1 = 2, 0~2 = a3 = 1. 

By the Dubovitskii-Milyutin theorem of the alternative (see, e.g., Ref. 12), 
this implies that 

= = {1, 2, 3}. 
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In fact, the constants ak are the constants found in the first step of the 
algorithm which finds 9 a= (see Ref. 1). By the above theorem, these con- 
stants have a special significance, i.e., we now define 

h = Y. a~gk=2g l+g2+g  3. 
k ~  = 

It is easy to check that the strongest optimality conditions is given by 

D h  = {d ~ R 3 : d 1  = d3 = 0}, (25) 

Example 4.2. 

while 

unless 

D ; = = { 0 } .  

In the above example, we get that 

D~ =D; = ={0}, 

Y, akVgk(;D = 0, 

in which case (25) holds. This gives us just two possible choices for our 
optimality conditions. The following example shows that we may have a 
large variety of choices. Consider Program (P) with the constraints 

gl(x) = 2 2 X 1 + X 4  d" 2xax4 + 4xa + X 2  "1- 3X3 + 3X4, 

g 2 ( x )  = 2 2 x:t +x4--2x lx4- -x l+x2+x3--7x4 ,  

g3(x) = --7Xl -- 3X2 --7X3 q-X4. 

Then, 

is in F and 

Since 

V g ~ ( ~ )  = 1 ,  

= (o,  o,  o,  o)  ' 

we conclude that 

Vg~(.~) = 1 , V g 3 ( ~ )  = . 

2Vg 1(.~) + Vg2()~) -.~ Vg3(3~) = O, 

= = {1, 2, 3}. 
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The strongest optimality condition is given by 

h =2gl+g2+g 3, 

which yields 

while 

Dh  = {d ~ R 4 :  dl = d4 = 0}, 

D ~ = = {0}. 

This can be seen by examining the representations 

gl(x) = p1([1, 0, 0, 1]x + 1 )+c lx  - 1, 

g2(x) = p2([1, 0, 0 , - 1 ] x  + 4 ) + c 2 x - 4 ,  

where 

pl(z)=p2(z)=z 2, c 1 = ( 2 , 1 , 3 , 1 ) ,  c 2 = ( - 5 , 1 , 1 , - 3 ) .  

Note that, if we choose ag arbitrarily in Theorem 3.1, we still obtain 
stronger optimality conditions than when we use D ; = ,  since 

D h = W ( [ I 1  0 0 _l l])C~W( ~, akck)~D;=={O}. 
0 0 k ~ -  

It iS also interesting to note that choosing 

0t3=0 

does not yield the strongest conditions. In addition, applying Theorem 
2.1(iv) does not yield the strongest conditions. 

Remark 4.1. In conclusion, we see that, when the c o n s t r a i n t s  gk, 
k ~ ~ =, are faithfully convex, then we have many choices for the cone G 
in (7) other than D ~  =. We can apply Theorem 2.1(iv) and use D~,  for 
~b (X*)C ~t~ C ~ =, In particular, we may choose 

lq = ~=\{k: gk is affine}. 

Or we may apply Theorem 3.1 and use Dh,  where 

k h= ~, akg 

and 

ak -- O, with ak > 0 if gk is not affine. 
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Now, using (20), we have 

D ~  = = ~ W(Ak) ~ W(ck), 
k ~  = k~g~- 

while the larger subspace is 

D~ = f-~ dV'(Ak)~dV'( ~ OlkCk). 
k ~  ~ k c ~  = 

If we are able to choose the ~k appropriately, i.e., so that the vector 

k 
Ol k C  

k ~ ,  = 

is linearly dependent  on the rows of the matrices Ak [see (22)], then we 
can increase the dimension of D~  (by at most one) and get 

D~ = ("] W(Ak). 
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