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Abstract

In this paper we study two strengthened semide�nite programming relaxations for the Max-Cut
problem. Our results hold for every instance of Max-Cut; in particular, we make no assump-
tions about the edge weights. We prove that the �rst relaxation provides a strengthening of the
Goemans–Williamson relaxation. The second relaxation is a further tightening of the �rst one
and we prove that its feasible set corresponds to a convex set that is larger than the cut polytope
but nonetheless is strictly contained in the intersection of the elliptope and the metric polytope.
Both relaxations are obtained using Lagrangian relaxation. Hence, our results also exemplify the
strength and 8exibility of Lagrangian relaxation for obtaining a variety of SDP relaxations with
di:erent properties.

We also address some practical issues in the solution of these SDP relaxations. Because
Slater’s constraint quali�cation fails for both of them, we project their feasible sets onto a lower
dimensional space in a way that does not a:ect the sparsity of these relaxations but guarantees
Slater’s condition. Some preliminary numerical results are included. ? 2002 Elsevier Science
B.V. All rights reserved.

Keywords: Max-Cut problem; Semide�nite programming relaxations; Lagrangian relaxation;
Cut polytope; Metric polytope

1. Introduction

The Max-Cut problem (MC) is a combinatorial optimization problem on undirected
graphs with weights on the edges. Given such a graph, the problem consists in �nding
a partition of the set of vertices into two parts that maximizes the sum of the weights
on the edges that have one end in each part of the partition. We consider the general
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case where the graph is complete and we require no restriction on the type of edge
weights. So, in particular, negative or zero edge weights are permitted.

The MC problem has applications in circuit layout design and statistical physics, see
e.g. [11,43]. Moreover, as a result of the celebrated work of Goemans and Williamson
[23], this problem has become the 8agship problem when studying applications of
semide�nite programming to combinatorial optimization [20–22,49,33,27,32,12,15,30],
etc. Furthermore, the MC problem is closely related to the so-called cut polytope, an
important structure in the area of integer programming. The book of Deza and Laurent
[17] presents many theoretical results about the cut polytope, and some connections to
general integer programming are elaborated in [31].

It is well-known that MC is an NP-complete problem [37] and that it remains
NP-complete for some restricted versions, see e.g. [19]. Nonetheless, some special cases
can be solved eKciently. If the graph is not contractible to K5, the complete graph on
�ve vertices, then Barahona [9] proved that the polyhedral relaxation obtained from the
triangle inequalities yields exactly the optimal value of MC. (The triangle inequalities
model the constraints that for any three mutually connected vertices in the graph, it is
only possible to cut either zero or two of the edges joining them.)

In this paper, we focus on the problem of obtaining tight (upper) bounds on the
optimal value of MC using semide�nite programming (SDP) relaxations. Polyhedral
and semide�nite relaxations for the MC problem can be obtained in di:erent ways.
All the procedures we mention are based on some form of lifting and projecting of
variables between spaces of varying dimensions. Lift-and-project procedures that �nd
polyhedral relaxations for {0; 1} programs have been studied by several authors, e.g.
Balas et al. [6–8], LovLasz and Schrijver [44] and Sherali and Adams [50,51].

To �nd semide�nite relaxations, LovLasz and Schrijver [44] de�ne a procedure, de-
noted N+, that can be iterated to obtain tighter and tighter semide�nite relaxations of
the convex hull of feasible integer points for {0; 1} programs. A key result is that
iterating the N+ procedure n times, where n is the number of integer variables in the
problem, yields exactly the convex hull of all the integer points. For Max-Cut, n equals
the number of vertices in the graph and this convex hull is usually referred to as the
cut polytope. Furthermore, optimizing the appropriate linear objective function over
this polytope yields exactly the optimal value of MC.

Another way to obtain semide�nite programming relaxations is via the application
of the theory of moments and its dual theory, the representation of strictly positive
polynomials over compact sets. The recent work of Lasserre [38] introduces a family of
semide�nite programming relaxations corresponding to liftings of polynomial boolean
problems into higher and higher dimensions. Lasserre presents necessary and suKcient
conditions under which the optimal value of MC is attained after a �nite number of
such liftings.

Yet another way to derive these relaxations is through Lagrangian duality, see e.g.
[52,48]. In this approach one takes the formulation MC0 (de�ned below) of Max-Cut
and forms its Lagrangian dual. The dual of the dual yields an SDP relaxation, denoted
by SDP1 in this paper. It is equivalent to the Shor relaxation [52] and the S-procedure
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of Yakubovitch [54,55]. One advantage of this approach over the two previously men-
tioned is that it is possible to choose the (possibly redundant) constraints that are
included in the primal problem formulation. This choice determines the structure and
properties of the resulting SDP relaxation.

Goemans and Williamson [22–24] have used the SDP1 relaxation in their algorithm
for �nding a cut whose weight is guaranteed to be within 14% of the weight of the
maximum cut. Recently, Feige and Schechtman [18] analyzed the SDP1 relaxation
with all the triangle inequalities included and constructed examples for which it is
only within 11% of the weight of the maximum cut. Further approximation results
for problems with general quadratic objective functions are presented in [46,56,47].
In particular, Nesterov [46,47] uses the SDP1 bound to provide estimates of �∗ for
arbitrary edge weights with constant relative accuracy.

The feasible set of the SDP1 relaxation is the set of correlation matrices, or elliptope,
and it has been well-studied in the literature, see e.g. [40,41] as well as the book of
Deza and Laurent [17] and the references therein. Since SDP1 is a relaxation of MC,
the analysis of Goemans and Williamson implies that the optimal value of SDP1 is
at most 14% above the optimal value of MC. It is important to note that this result
requires the assumption that there are no negative edge weights.

In this paper we study two strengthened SDP relaxations for MC. Our results hold for
every instance of MC; in particular, we make no assumptions about the edge weights.
The basic SDP1 relaxation may be obtained by applying Lagrangian relaxation and
thereby lifting the quadratic boolean formulation of MC from the space Rn into Sn,
the space of n×n symmetric matrices. These new relaxations are obtained by applying
a second lifting, i.e. by suitably formulating MC in the space Sn and then lifting the
problem into S[n(n+1)=2]+1.

We prove that the �rst relaxation, denoted SDP2, is a strengthening of the Goemans–
Williamson relaxation. The second relaxation, denoted SDP3, 3 is a further tightening
of SDP2. We prove that its feasible set corresponds, via a suitable projection back to
Sn, to a convex set Fn that is larger than the cut polytope but is strictly contained in
the intersection of the elliptope and the metric polytope. This illustrates the strength of
Lagrangian relaxation for obtaining di:erent SDP relaxations with di:erent properties.

We also address some practical issues in the solution of these SDP relaxations.
Because Slater’s constraint quali�cation fails for both SDP2 and SDP3, we can project
their feasible sets onto a lower dimensional space. This is done in a simple way that
does not a:ect the sparsity of these relaxations and ensures that Slater’s condition is
satis�ed after the projection. We include some numerical results.

This paper is structured as follows. In the remainder of this section we review the
de�nitions and notation to be used in this paper and we sketch the application of
Lagrangian relaxation to derive the basic relaxation SDP1. In Section 2, we derive
the SDP2 strengthened relaxation and prove several of its properties. In Section 3, we

3 A relaxation equivalent to SDP3 was presented by Michel Goemans at the fourth International Conference
on High Performance Optimization Techniques, June 1999, Rotterdam, Netherlands.
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derive the tighter relaxation SDP3 and prove that the projection of its feasible set into
Sn gives a strict subset of the intersection of the elliptope and the metric polytope.
Since neither of these two relaxations has a strictly feasible point, in Section 4, we
study the geometry of their feasible sets and �nd a projection onto the minimal face
of the positive semide�nite cone where we verify that Slater’s constraint quali�cation
holds. Finally, in Section 5, we report some numerical results obtained by solving the
projected relaxations.

1.1. Max-Cut formulations and relaxations

Following [45], we can formulate the MC problem as follows. Let the given graph
G have vertex set {1; : : : ; n} and let it be described by its weighted adjacency matrix
A(G). We tacitly assume that the graph in question is complete (if not, missing edges
can be given weight 0 to complete the graph) and that the edge set is not empty,
so A(G) �= 0. Let L denote the Laplacian matrix associated with the graph; hence
L:=Diag(A(G) · e) − A(G), where the linear operator Diag returns a diagonal matrix
with diagonal formed from the vector given as its argument, and e denotes the vector of
all ones. Let the vector v∈{±1}n represent any cut in the graph via the interpretation
that the sets {i: vi = + 1} and {i: vi = − 1} form a partition of the vertex set of the
graph. Then we can formulate MC as

(MC0) �∗ = max 1
4v

TLv
s:t: v2

i = 1; i= 1; : : : ; n;

where �∗ denotes the optimal value of MC. De�ne Q:=1
4L and consider the change of

variable X :=vvT; v∈{±1}n. Then vTQv= traceQX , and an equivalent formulation for
MC is

(MC1) �∗ = max traceQX
s:t: diag(X ) = e;

rank(X ) = 1;
X ¡ 0; X ∈Sn;

where diag(·) denotes the linear operator that returns a vector with the diagonal ele-
ments of its matrix argument, X ¡ 0 denotes that X is positive semide�nite and Sn de-
notes the space of n×n symmetric matrices. This space has dimension t(n):=n(n+1)=2
and is endowed with the trace inner product 〈A; B〉:=traceAB.

Denote the feasible set of MC1, less the rank constraint, by

En:={X ∈Sn: diag(X ) = e; X ¡ 0}:
The set En is the elliptope studied in [40,41] and it is a convex relaxation of the
feasible set of problem MC1 since we dropped the rank constraint. With this notation,
let us de�ne the semide�nite programming problem SDP1:

(SDP1) �∗1 = max traceQX
s:t: X ∈En:
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This SDP relaxation is well-known and has been studied in e.g. [16,23,42]. Goemans
and Williamson [23] provided estimates for the quality of the SDP1 bound for MC.
They proved that the optimal value of this relaxation is at most 14% above the value
of the maximum cut, provided there are no negative edge weights. More precisely,

�∗¿ ��∗1 ;

where �:=min06�6� 2=��=(1 − cos �) ≈ 0:87856, and since 1=�6 1:14, we have that
�∗1 6 1:14�∗. Furthermore, by randomly rounding a solution to the SDP relaxation, they
obtain a 0:878-approximation algorithm, i.e. an algorithm that produces a cut with value
at least 0:878 times the optimal value. (Note that HQastad [26] proved that it is NP-hard
to �nd a �-approximation algorithm for Max-Cut with � greater than 0:9412.)

Other convex relaxations of the feasible set of MC1 have been proposed in the
literature. The smallest convex set containing all the matrices X which are feasible for
MC1 is their convex hull, called the cut polytope:

Cn:=Conv{X : X = vvT; v∈{±1}n}:
Optimizing traceQX over Cn would yield exactly �∗, but an eKcient description of the
cut polytope is not known. A well-known relaxation of the cut polytope is the metric
polytope Mn, de�ned as the set of all matrices satisfying the triangle inequalities:

Mn := {X ∈Sn: diag(X ) = e; and Xij + Xik + Xjk ¿− 1; Xij − Xik − Xjk ¿− 1;

−Xij + Xik − Xjk ¿− 1;−Xij − Xik + Xjk ¿− 1; ∀ 16 i¡ j¡k6 n}:
The triangle inequalities model the following constraints: for any three mutually con-
nected vertices in the graph, it is only possible to cut either zero or two of the edges
joining them. In fact, the triangle inequalities are suKcient to describe the cut polytope
for graphs with less than �ve vertices, i.e. Cn =Mn for n6 4; however, Cn  Mn for
n¿ 5, see for example [17]. Nonetheless, if the graph G is not contractible to K5, the
complete graph on 5 vertices, then Barahona [10] proved that the linear programming
problem

max traceQX
s:t: X ∈Mn

has optimal value equal to �∗.

1.2. SDP1 via Lagrangian relaxation — ;rst lifting

The SDP1 relaxation can be obtained by taking the Lagrangian dual of the
Lagrangian dual of the formulation MC0 [52,48]. The Lagrangian dual of MC0 is

�∗6 �∗1 :=min
y

max
v

vTQv− vT(Diag y)v + eTy:

The inner maximization has a hidden constraint, i.e. the quadratic is bounded above
only if its Hessian is negative semide�nite. This is equivalent to the following SDP:

�∗1 = min eTy
s:t: Diag y ¡ Q:
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Slater’s (strict feasibility) constraint quali�cation holds for this problem. Therefore, its
Lagrangian dual has the same optimal value and is precisely SDP1:

�∗ 6 �∗1 = max traceQX
s:t: diag(X ) = e;

X ¡ 0:

Whenever the objective function or the constraints in MC0 contain a linear term, neg-
ative semide�niteness of the Hessian is not suKcient for boundedness of the quadratic;
feasibility of the stationarity condition is also needed. Alternatively, one can homog-
enize and use strong duality of the trust region subproblem [53]. The latter technique
is used below.

2. First strengthened SDP relaxation

The derivation of SDP2 begins by adding to MC1 the redundant quadratic con-
straints
• X 2 − nX = 0 and
• X ◦X =E, where ◦ denotes the Hadamard (elementwise) product of matrices and E

denotes the matrix of all ones.
One motivation for adding these redundant constraints to the formulation MC1 is that
we will be using Lagrangian duality to obtain new SDP relaxations. To obtain tighter
bounds we therefore want the duality gap incurred in the process to be as small as
possible. The interest in these redundant quadratic constraints comes from the results in
[4,5] where the addition of redundant constraints of this type was shown to guarantee
strong duality for certain problems where duality gaps can exist.

The validity of the constraint X 2 − nX = 0 follows from the observation that X 2 =
vvTvvT and vTv= n for all v∈{±1}n. Since we can simultaneously diagonalize X
and X 2, the eigenvalues of X must satisfy �2 − n�= 0, which implies that the only
eigenvalues of X are 0 and n. This shows that the constraint X ¡ 0 becomes redundant
and may be removed. Moreover, since the diagonal constraint implies that the trace
of X is n, we conclude that X must be rank-one and the rank constraint can also
be removed. Finally, if v∈{±1}n then all the entries of X = vvT are ±1 and clearly
X ◦ X =E holds. (In fact, by Theorem 2.2, this last constraint together with X ¡ 0
also implies that X is rank-one).

The resulting problem MC2 is thus another formulation of MC:

(MC2) �∗ = max traceQX
s:t: diag(X ) = e;

X ◦ X =E;
X 2 − nX = 0:

We now present two di:erent derivations of the strengthened relaxation SDP2. The
�rst derivation follows the procedure in [48] which was illustrated in Section 1.2, while
the second derivation is a direct second lifting using the motivation that cuts correspond
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to rank-one matrices in the strengthened relaxation. Although the second derivation is
simpler and can be done independently, we also include the �rst one because it gives
insight on how the choice of (possibly redundant) constraints determines the SDP
relaxation we obtain from the Lagrangian dual. Furthermore, once the result of the
�rst derivation is obtained, the second derivation of the same SDP becomes obvious.
But it is not clear how to directly derive an SDP that has not yet been formulated.
(Note that the equivalence of the two derivations follows from Theorem 9 of [48] and
the discussion preceding the Theorem therein.)

2.1. Second lifting via Lagrangian duality

In this section we follow the “recipe” presented in [48]. This recipe can be summa-
rized as:
1. Add as many redundant quadratic constraints as possible;
2. Take the Lagrangian dual of the Lagrangian dual;
3. Remove redundant constraints and project the feasible set of the resulting SDP to

guarantee strict feasibility.
This section presents only the �rst two steps of this recipe plus the removal of redun-

dant constraints. The projection is applied in Section 4 where we study the geometry
of the feasible sets of our relaxations.

To eKciently apply Lagrangian relaxation and not lose the information from the
linear constraint, we need to replace the constraint with the norm constraint ||diag(X )−
e||2 = 0 and homogenize the problem. We then lift this matrix problem into a higher
dimensional matrix space.

To keep the dimension as low as possible, we take advantage of the symmetry of
X . Recall that t(i) = i(i + 1)=2 and de�ne sMat to be the linear operator that, given a
vector x∈Rt(n), returns a matrix X ∈Sn obtained by �lling in columnwise the upper
triangular part of X with the t(n) components of x and completing the strictly lower
triangle by symmetry. Thus, we rewrite MC2 as

(MC2) �∗ = max trace(Q sMat(x))y0

s:t: diag(sMat(x))Tdiag(sMat(x)) − 2eTdiag(sMat(x))y0 + n= 0;
E − sMat(x) ◦ sMat(x) = 0;
sMat(x)2 − n sMat(x)y0 = 0;
1 − y2

0 = 0;
x∈Rt(n); y0 ∈R:

Note that this problem is equivalent to the previous formulation since we can change
X to −X if y0 = − 1 is optimal.

We now take the Lagrangian dual of MC2. Introducing Lagrange multipliers w; t ∈R

and T; S ∈Sn, the dual is

�∗2 := min
t;w;T;S

max
x;y0

{trace(Q sMat(x))y0

+w(diag(sMat(x))T diag(sMat(x)) − 2eT diag(sMat(x))y0 + n)
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+ traceT (E − sMat(x) ◦ sMat(x))

+ trace S((sMat(x))2 − n sMat(x)y0) + t(1 − y2
0)}:

Note that moving the constraint y2
0 = 1 into the Lagrangian does not increase the duality

gap, since the Lagrangian relaxation of the trust-region subproblem is tight [53].
Applying the steps sketched in Section 1.2 for deriving SDP1, we take the dual of

this dual and obtain the SDP2 relaxation (see [2] for details). We shall make use of
the following linear operators:
• Diag(v) forms a diagonal matrix with the vector v on the diagonal;
• svec is the inverse of sMat, i.e. it forms a t(n)-vector columnwise from an n × n

symmetric matrix while ignoring the strictly lower triangular part of the matrix;
• dsvec acts like svec but multiplies by 2 the o:-diagonal entries of its (symmetric)

matrix argument;
• Mat forms an n× n matrix columnwise from an n2-vector;
• vec is the inverse of Mat;
• vsMat(x):=vec(sMat(x)).

First, the inner maximization of the Lagrangian dual of MC2 is an unconstrained
pure quadratic maximization, therefore, its optimal value is in�nity unless the Hessian is
negative semide�nite in which case x= 0; y0 = 0 is optimal. Thus we need to calculate
the Hessian.

Using traceQ sMat(x) = xTdsvec(Q), and pulling out a 2 for convenience, we get
the constant part (no Lagrange multipliers) of the Hessian:

2Hc:=2
(

0 1
2dsvec(Q)T

1
2dsvec(Q) 0

)
:

The nonconstant part of the Hessian is made up of a linear combination of matrices, i.e.
it is a linear operator on the Lagrange multipliers. Again for notational convenience,
we let H(w; T; S; t) denote the negative of the nonconstant part of the Hessian, and
we split it into four linear operators with the factor 2:

2H(w; T; S; t) := 2H1(w) + 2H2(T ) + 2H3(S) + 2H4(t)

:= 2w
(

0 (dsvecDiag e)T

(dsvecDiag e) −sdiag∗sdiag

)

+2
(

0 0
0 dsvec(T ◦ sMat)

)

+2
(

0 n
2dsvec(S)T

n
2dsvec(S) (Mat vsMat)∗S(Mat vsMat)

)

+2t
(

1 0
0 0

)
:
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Thus, after cancelling the factor of 2 on both sides of the constraint, we get the
semide�nite program

�∗2 = min nw + traceET + trace 0S + t
s:t: H(w; T; S; t) ¡ Hc:

If we take T suKciently positive de�nite and t suKciently large, then we can guarantee
Slater’s constraint quali�cation. Therefore, the dual of this SDP has the same optimal
value �∗2 and it provides the strengthened SDP relaxation of MC:

(SDP2) �∗2 = max traceHQY
s:t: H∗

1 (Y ) = n;

H∗
2 (Y ) =E;

H∗
3 (Y ) = 0;

H∗
4 (Y ) = 1;

Y ¡ 0; Y ∈St(n)+1;

where

HQ:=

(
0 1

2dsvec(Q)T

1
2dsvec(Q) 0

)
:

To express the linear operators H∗
i (Y ); i= 1; 2; 3; 4, let us index the rows of Y by

0; 1; : : : ; t(n) and partition it as

Y =
(

Y00 xT

x UY

)
;

where UY ∈St(n). Then

H∗
1 (Y ) = 2 svec(In)Tx − traceDiag(svec(In)) UY ;

H∗
2 (Y ) = sMat diag( UY );

H∗
3 (Y ) = n sMat(x) − (Mat vsMat) UY (Mat vsMat)∗;

H∗
4 (Y ) =Y00:

The constraints H∗
2 (Y ) =E and H∗

4 (Y ) = 1 are equivalent to diag(Y ) = e: Also,
H∗

1 (Y ) is twice the sum of the elements in the �rst row of Y corresponding to the
positions of the diagonal of sMat(x) minus the sum of the same elements in the
diagonal of UY . The constraint H∗

1 (Y ) = n implies that Y0; t(i) = 1 ∀i= 1; : : : ; n, and thus
diag(sMat(x)) = e holds.

The constraint H∗
3 (Y ) = 0 implies immediately that if Y is feasible for SDP2, then

sMat(x) is positive semide�nite (and in fact feasible for SDP1). This is proved in
Lemma 2.1.
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2.2. Direct second lifting

We can derive the SDP2 relaxation directly from MC2 using the rank-one relation-
ship

Y ∼=
(

y0

x

)
(y0 xT); X = sMat(x):

Using this approach we express the constraints that the elements of X are ±1 and
diag(X ) = e as

diag(Y ) = e and Y0; t(i) = 1; i= 1; : : : ; n:

We also express the t(n+1) constraints from X 2−nX = 0. The constraints corresponding
to equating the diagonal entries become redundant (see [2] for details). After they are
removed, the result is the SDP relaxation

(SDP2) �∗2 = max traceHQY
s:t: diag(Y ) = e;

Y0; t(i) = 1; i= 1; : : : ; n;

Y0;T (i; j) =
1
n

n∑
k=1

YT (i; k);T (k; j) ∀16 i¡ j6 n;

Y ¡ 0; Y ∈St(n)+1;

where

T (i; j):=
{

t(j − 1) + i if i6 j;
t(i − 1) + j otherwise:

(Recall that t(i) = i(i + 1)=2, so T (i; i) = t(i).)
The �rst two sets of constraints imply that the 2 × 2 leading principal minor of

any Y feasible for SDP2 is all ones. Hence, every feasible Y for SDP2 is singular.
In Section 4, we shall exploit this fact to project the feasible set of SDP2 onto a
lower dimensional face of the positive semide�nite cone and thus reduce the number
of variables in the SDP relaxation.

2.3. Properties of the ;rst strengthened relaxation

One surprising result is that the matrix obtained by applying sMat to the �rst row
of a feasible Y is positive semide�nite, even though this nonlinear constraint was
discarded in the construction of MC2 and there could be a duality gap between SDP2
and MC2.

Lemma 2.1. Suppose that Y is feasible for SDP2. Then

sMat(Y1:t(n);0) ¡ 0

and so is feasible for SDP1.
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Proof. Using the partition

Y =
(

1 xT

x UY

)
;

we see that UY is positive semide�nite. Rewriting the constraint H∗
3 (Y ) = 0 as

sMat(x) =
1
n
(Mat vsMat) UY (Mat vsMat)∗;

we see sMat(x) is a congruence of UY . The result follows.

Consequently, the relaxation SDP2 is a strengthening of SDP1.

Theorem 2.1. The optimal values of SDP1 and SDP2 satisfy

�∗2 6 �∗1 :

Proof. Suppose that

Y ∗ =
(

1 x∗T

x∗ UY
∗
)

solves SDP2. From Lemma 2.1, X ∗:=sMat(x∗) is feasible for SDP1, therefore

�∗2 = traceHQY ∗

= (dsvecQ)Tx∗

= traceQX ∗

6 �∗1 :

We can also look at the added constraint X ◦ X =E. Even though it does not im-
ply X ¡ 0, it is interesting to note that adding only this constraint to SDP1 yields
a problem equivalent to MC. This follows from the following theorem that gives a
characterization for all the {±1}-matrices in the positive semide�nite cone: they are
exactly the rank-one matrices formed by the outer product of some {±1} n-vector with
itself. (This theorem follows as a Corollary to [34, Theorem 5:3:4]. 4 We include a
simple independent proof.)

Theorem 2.2. Let X be an n× n symmetric matrix. Then

X ¡ 0; X ∈{±1}n×n if and only if X = xxT; for some x∈{±1}n:

Proof. Showing suKciency is straightforward: if X = xxT then for any y∈Rn, we have

yTXy= ||xTy||2¿ 0;

hence X is positive semide�nite.

4 Thanks to Yin Zhang for this reference.
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To prove necessity, �rst observe that if X is symmetric, X ∈{±1}n×n, and X ¡ 0,
then all the diagonal entries of X equal 1.

If n= 2, the possibilities for X are(
1 1
1 1

)
and

(
1 −1

−1 1

)

and it is easily checked that both are positive semide�nite and rank-one.
For n¿ 3, we argue by contradiction. Suppose X ∈{±1}n×n and X ¡ 0 but X is

not rank-one. Let X = (xij) and let xj denote the jth column of X . Then without loss
of generality (permuting columns if necessary) the �rst two columns of X are linearly
independent, therefore, x1 �= x2 and x1 �= − x2. Hence, again without loss of generality
(permuting rows if necessary), x11 = x12 = 1, and x31 = − x32 = − 1 or x31 = − x32 = 1.
Thus, the top left 3 × 3 principal submatrix of X is either

 1 1 −1
1 1 1

−1 1 1


 or


 1 1 1

1 1 −1
1 −1 1


 :

Since the determinants of these matrices are negative, we have a contradiction to X ¡
0. Hence, X is rank-one. Since diag(X ) = e, the result follows.

3. Second strengthened SDP relaxation

The second strengthened relaxation is obtained by adding more redundant quadratic
constraints to MC2 and obtaining a new formulation MC3. The dual of MC3 will be an
even tighter relaxation since an increase in the number of Lagrange multipliers gives
us a better bound.

Recall the change of variable X = vvT. Since Xij = vivj and v2
k = 1 for k = 1; : : : ; n,

the constraints

Xij = vivj = viv2
kvj = vivk · vkvj =Xik · Xkj

also hold for every rank-one X corresponding to a cut. In fact, there is an interesting
connection between these constraints and the metric polytope. This connection is used
in the proof of Theorem 3.1.

Adding these constraints to MC2, we obtain the formulation MC3:

(MC3) �∗ = max traceQX
s:t: diag(X ) = e;

X ◦ X =E;
X 2 − nX = 0;
Xij =XikXkj ∀16 i; j; k6 n:

Taking the dual of the dual of MC3 (and removing redundant constraints in the resulting
SDP) yields the relaxation SDP3 de�ned below.
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Alternatively, we can motivate SDP3 by considering that the rank-one matrices
X = vvT; v∈{±1}n have all their entries equal to ±1. Hence, the corresponding ma-
trices Y feasible for SDP2 have all their entries in the �rst row and column equal to
±1. Now consider the following constraints from SDP2:

Y0;T (i; j) =
1
n

n∑
k=1

YT (i; k);T (k; j) ∀16 i¡ j6 n

for

Y =
(

1 xT

x UY

)
and x= svec(vvT):

The entry Y0;T (i; j) is in the �rst row of Y and therefore it is equal to 1 in magnitude.
The corresponding constraint states that it must be equal to the average of n entries
in the block UY . But each of these n entries has magnitude at most 1, so for equality to
hold, they must all have magnitude equal to 1, and in fact they must all equal Y0;T (i; j).

Either approach yields the relaxation SDP3:

(SDP3) �∗3 = max traceHQZ
s:t: diag(Z) = e;

Z0; t(i) = 1; i= 1; : : : ; n;
Z0;T (i; j) =ZT (i; k);T (k; j) ∀k; ∀16 i¡ j6 n;
Z ¡ 0; Z ∈St(n)+1:

3.1. Properties of the second strengthened relaxation

Let us de�ne the projection of the feasible set of SDP3 onto Sn as

Fn:={X ∈Sn: X = sMat(Z1:t(n);0); Z feasible for SDP3}:
Since the feasible set of SDP3 is convex and compact, and since Fn is its image
under a linear transformation, it follows that Fn is also convex and compact. Also, it
is straightforward to verify that Fn contains the cut polytope.

Lemma 3.1. Cn ⊆ Fn.

Since every Z feasible for SDP3 is feasible for SDP2, by Lemma 2.1 we have:

Corollary 3.1. Fn ⊆ En.

By Lemma 3.1, we observe that �∗6 �∗3 6 �∗2 6 �∗1 . We now prove an additional
property of SDP3 that is not inherited from SDP2, namely that the matrices in Fn also
satisfy all the triangle inequalities.

Theorem 3.1. Fn ⊆ Mn.
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Proof. Suppose X ∈Fn, then X = sMat(Z1:t(n);0) for some Z feasible for SDP3. Since
Z0; t(i) = 1 ∀i, it follows that diag(X ) = e holds.

Given i; j; k such that 16 i¡ j¡k6 n, let Zi; j; k denote the 4×4 principal minor of
Z corresponding to the indices 0; T (i; j); T (i; k); T (j; k). Let a=Xij =Z0;T (i; j); b=Xik =
Z0;T (i; k); c=Xjk =Z0;T ( j; k). Then

Zi; j; k =




1 a b c
a 1 c b
b c 1 a
c b a 1




since diag(Z) = e and

Z0;T (i; j) =ZT (i; k);T (k; j); Z0;T (i; k) =ZT (i; j);T ( j; k); Z0;T ( j; k) =ZT ( j; i);T (i; k):

Now

Zi; j; k ¡ 0⇔

 1 c b

c 1 a
b a 1


−


 a

b
c


 (a b c) ¡ 0

⇔

 1 − a2 c − ab b− ac

c − ab 1 − b2 a− bc
b− ac a− bc 1 − c2


¡ 0

⇒ eT


 1 − a2 c − ab b− ac

c − ab 1 − b2 a− bc
b− ac a− bc 1 − c2


 e¿ 0:

Hence,

Zi; j; k ¡ 0⇒ 3 − (a + b + c)2 + 2(a + b + c)¿ 0

⇔ 12 − 21− 36 0; where 1:=a + b + c

⇔ (1− 3)(1 + 1)6 0

⇔−16 16 3

⇒ a + b + c¿− 1:

Therefore, Xij + Xik + Xjk ¿− 1 holds for X .
Since multiplication of row and column i of Zi; j; k by −1 will not a:ect the positive

semide�niteness of Zi; j; k , multiplying the two rows and two columns of Zi; j; k with
indices T (i; k) and T (j; k) and applying the same argument to the resulting matrix, we
obtain Xij − Xik − Xjk ¿ − 1. Similarly, the inequalities −Xij + Xik − Xjk ¿ − 1 and
−Xij − Xik + Xjk ¿− 1 also hold.

We have thus proved the following:

Corollary 3.2. Cn ⊆ Fn ⊆ En ∩Mn.
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In Section 3.1.2, we will prove that the inclusions are in fact strict for n¿ 5. How-
ever, because we do not have an explicit description of Fn, �rst we need to address
the issue of testing for membership in Fn. This is the focus of the next section.

3.1.1. Testing for membership in Fn

The set Fn is de�ned as the image of the feasible set of SDP3 under the linear
mapping sMat applied to the �rst row of every feasible matrix in SDP3. It is not
clear how to give an explicit description of Fn, but given X ∈Sn, the question of
determining whether X ∈Fn can be expressed as:

Given X ∈Sn satisfying diag(X ) = e, does there exist a matrix Z feasible for SDP3
such that sMat(Z1:t(n);0) =X ?

In this question, only a subset of the elements of Z are speci�ed, namely the diagonal,
the �rst row and column and the elements �xed by the rank-two constraints. The
remaining elements are considered “free” and we ask whether it is possible to choose
them in such a way that the resulting matrix Z is positive semide�nite. This problem
is an instance of the positive semide�nite matrix completion problem, which has been
extensively studied (see e.g. [25,39,35]).

We can associate with the partial matrix Z a �nite undirected graph GZ = (VZ ; EZ)
as follows: let the vertex set be VZ :={0; 1; : : : ; t(n)} and let the edge set EZ contain the
edge (i; j) if and only if the entry Zi; j is �xed. Then GZ is said to be chordal if every
cycle of length ¿ 4 has a chord, i.e. an edge between two non-consecutive vertices.
Grone et al. [25] showed that if the diagonal entries of Z are speci�ed and the principal
minors composed of �xed entries are all non-negative, then, if the graph GZ is chordal,
a positive semide�nite completion necessarily exists. In our case, however, it is easy
to see that the graph GZ is not chordal for n¿ 4. It suKces to consider the cycle of
length 4 depicted in Fig. 1; since (T (i; j); T (k; l)) �∈ EZ and (T (i; k); T (j; l)) �∈ EZ , we
see that the cycle has no chords. So we must follow a di:erent approach.

Johnson et al. [36] present an interior-point method for �nding an approximate
completion, if a completion exists. We use this approach to test membership in Fn.
Speci�cally, we proceed as follows: Given X ∈Sn with diag(X ) = e, let x= svec(X )
and let A∈St(n)+1 be some matrix which satis�es sMat(A1:t(n);0) =X and furthermore
satis�es all the constraints of SDP3, except (possibly) for the positive semide�niteness

T(i,j) T(i,k)

T(k,l)T(j,l)

Fig. 1. A cycle of length 4 with no chord in the graph GZ of Z .
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constraint. De�ne H ∈St(n)+1 to be the {0; 1}-matrix satisfying Hij = 0 if Aij is “free”,
and Hij = 1 otherwise.

For example, if X = (Xij) is 3 × 3, one possible choice of A is

A=




1 1 X12 1 X13 X23 1
1 1 0 0 0 0 0
X12 0 1 0 X23 X13 0
1 0 0 1 0 0 0
X13 0 X23 0 1 X12 0
X23 0 X13 0 X12 1 0
1 0 0 0 0 0 1




;

where the “free” entries are �lled with zeros. The corresponding matrix H is

H =




1 1 1 1 1 1 1
1 1 0 0 0 0 0
1 0 1 0 1 1 0
1 0 0 1 0 0 0
1 0 1 0 1 1 0
1 0 1 0 1 1 0
1 0 0 0 0 0 1




:

To check whether A has a positive semide�nite completion, we consider the problem

c∗ = min ||H ◦ (A− B)||2F
s:t: B¡ 0

and its dual

d∗ = max ||H ◦ (A− B)||2F − trace4B

s:t: 2H ◦ H ◦ (B− A) =4

4¡ 0;

where || · ||F denotes the Frobenius matrix norm (see [36] for more details). Clearly
if c∗ = 0, then the corresponding primal optimal solution B∗ is an exact positive
semide�nite completion of A. On the other hand, if we �nd a pair ( UB; U4) such that
||H ◦ (A − UB)||2F − trace U4 UB¿ 0, then because c∗¿d∗ (by weak duality), it follows
that c∗ ¿ 0 and hence A has no positive semide�nite completion.

Using this approach, we can �nd examples which prove that the inclusions in Corol-
lary 3.2 are in fact strict for n= 5, and hence for all n¿ 5.

3.1.2. Examples proving strict inclusions
In this section we prove that the inclusions in Corollary 3.2 are strict.
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Example 3.1. Consider the matrix

X =




1 − 1
4 − 1

4 − 1
4 − 1

4
− 1

4 1 − 1
4 − 1

4 − 1
4

− 1
4 − 1

4 1 − 1
4 − 1

4
− 1

4 − 1
4 − 1

4 1 − 1
4

− 1
4 − 1

4 − 1
4 − 1

4 1


 :

It is known that X �∈ C5 [42]. Applying the algorithm described in the previous
section, we found a 16 × 16 matrix B∗ which is feasible for SDP3 and such that
sMat(B∗

0;1:15) =X . The matrix B∗ is de�ned as

B∗
T (i; j);0 =

{
1 if i= j;
− 1

4 otherwise;

B∗
T (i; j);T (k; l) =




1 if (i; j) = (k; l);
3
8 if (i; j) and (k; l) are disjoint;
− 1

4 otherwise:

Hence, X ∈F5.

Example 3.2. Consider the matrix

X =




1 −0:65 −0:65 −0:65 0:93
−0:65 1 0:3 0:3 −0:65
−0:65 0:3 1 0:3 −0:65
−0:65 0:3 0:3 1 −0:65

0:93 −0:65 −0:65 −0:65 1


 :

It is easy to check that X ∈E5 ∩M5. Applying the algorithm described in the previous
section, we found feasible matrices UB and U4 for which the dual objective value is equal
to 2:81 × 10−4 ¿ 0. Hence, c∗ ¿ 0 and there is no matrix B feasible for SDP3 such
that sMat(B0;1:15) =X . Hence, X �∈ F5. The matrices UB and U4 can be found in the
Technical Report [3] available on the Web site
http:==orion.math.uwaterloo.ca=~hwolkowi=henry=reports=ABSTRACTS.html

Hence, we have proved that

Theorem 3.2. Cn  Fn  En ∩Mn for n¿ 5.

4. Geometry of the strengthened relaxations

We now study the geometrical structure of the feasible sets of our relaxations. In
this section we focus solely on the relaxation SDP3 but all the results can be extended
easily to SDP2.

Let Z be the set of Z ∈St(n)+1 that are feasible for SDP3. Since Z has no strictly
feasible points, we seek to express Z in a lower dimensional space. We now show
that this can be done without losing the sparsity of the constraints.
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From the direct second lifting Section 2.2, we know that the 2n−1 matrices

Zv:=
(

1
xv

)(
1
xv

)T

; xv:=svec(vvT); v∈V:={±1}n

all belong to Z. Furthermore, since these are all the points we are interested in, we
want to project the feasible set onto F, the minimal face of the positive semide�nite
cone (in St(n)+1) s.t. Zv ∈F ∀v∈V.

Consider the barycenter of the set of points Zv:

Ẑ :=2−n
∑
v∈V

Zv:

By de�nition of F; Ẑ ∈ relintF. Since F is a proper face, we can �nd a mapping
from a lower dimensional positive semide�nite cone to F. We construct this mapping
using the results of the next theorem, which describes some of the structure of Ẑ .

Let Pi;j denote the (t(n) + 1) × (t(n) + 1) permutation matrix equal to the identity
matrix with the ith and jth columns permuted. We de�ne the (permutation) matrix P
as the following product of permutation matrices:

P:=P2; t(2)P3; t(3) : : : Pn; t(n):

Theorem 4.1. The following statements hold for the barycenter Ẑ :
1. Ẑ is a {0; 1}-matrix and

Ẑ ij =




1 if i= t(k); j = t(l); k; l∈{1; : : : ; n}; k �= l;
1 if i= j∈{0; 1; : : : ; t(n)};
0 elsewhere:

2. The rank of Ẑ is t(n−1)+1 and the eigenvalues are (n+1; 1; 0) with multiplicities
(1; t(n− 1); n); respectively.

3. The null space and range space of Ẑ are

N(Ẑ) =R

(
P
[
V
0

] )

and

R(Ẑ) =R

(
P
[
e 0
0 It(n−1)

] )
;

respectively; where V ∈R(n+1)×n is any matrix s.t. [ e V ] is an orthogonal matrix.

Proof. 1. Let v∈V and consider Zv. The elements of xv have the form (xv)j = v�v8,
where j = t(8 − 1) + � for �; 8∈{1; : : : ; n}; � �= 8, and furthermore

(xv)j =
{

1 if v� = v8;
−1 otherwise:
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First consider the case when �= 8= k; here j = t(k) and it is clear that (xv)t(k) = 1;
k = 1; : : : ; n. This holds independently of the choice of v so we may conclude that(

1
xv

)
t(k)

= 1; k = 0; : : : ; n ∀v∈V: (4.1)

Now suppose � �= 8; then v� = v8 for exactly 2n−1 elements of V and v� �= v8 for the
other 2n−1 choices of v. Hence,∑

v∈V

(xv)j = 0 ∀j �∈ {t(0); : : : ; t(n)}: (4.2)

Eqs. (4.1) and (4.2) together imply that the 0th column of Ẑ equals
∑n

k=0 et(k), i.e.

Ẑ i;0 =
{

1 if i∈{t(0); : : : ; t(n)};
0 otherwise:

By symmetry of Ẑ ; Ẑ0; j = Ẑ j;0, so it remains to examine Ẑ i; j for i; j = 1; : : : ; t(n).
The remaining t(n) columns of Ẑ are

Ẑ :; j = 2−n
∑
v∈V

(xv)j

(
1
xv

)

for j = 1; : : : ; t(n). If i= j then Ẑ i; i = 2−n∑
v∈V (xv)2

i = 1, so we now suppose i �= j.
If i= t(k) and j = t(l) for some k; l∈{1; : : : ; n}; k �= l, then

Ẑ i; j = 2−n
∑
v∈V

(xv)t(k)(xv)t(l) = 1

using (4.1).
If i �= t(k); ∀k but j = t(l), then

Ẑ i; j = 2−n
∑
v∈V

(xv)i = 1

using (4.1) and (4.2). The case i= t(k) but j �= t(l) ∀l is handled similarly.
Finally, if i �= t(k) ∀k; and j �= t(l) ∀l; then we need only observe that ((xv)i ; (xv)j) =

(1; 1) in exactly 2n−2 elements of V, and the same count also holds for each of the
combinations (1;−1); (−1; 1); (−1;−1). Thus,

∑
v∈V (xv)i(xv)j = 0. Hence Ẑ i; j = 0.

2. De�ne

ẐP:=PTẐP =
[
E 0
0 It(n)−n

]
∈S(t(n)+1)×(t(n)+1):

Since this is a similarity transformation, Ẑ and ẐP have exactly the same eigenvalues
and it suKces to prove the result for ẐP . Also, ẐP is block diagonal, so its eigenvalues
are those of the blocks. The lower block has the eigenvalue 1 with multiplicity t(n)−
n= t(n− 1) (we have the set of standard eigenvectors en+1; : : : ; et(n)). The upper block
is clearly rank-1; since

ẐP

(
e
0

)
= (n + 1)

(
e
0

)
;
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n + 1 is its only non-zero eigenvalue. For V as in the statement of the theorem,
ẐP(V

0 ) = 0: So the columns of V (extended with zeros) give a set of eigenvectors for
the zero eigenvalue, which has multiplicity n.

3. The result follows by the similarity of Ẑ and ẐP and the proof of the previous
part of the theorem.

Now de�ne the matrix

W := P
[
e 0
0 It(n−1)

]
∈R(t(n)+1)×(t(n−1)+1)

with e∈Rn+1. Then R(Ẑ) =R(W ) and W provides a mapping from St(n)+1 to the
minimal face F: if Z ∈F; Z =WZPW T for ZP ∈St(n−1)+1, and we require ZP ¡ 0
to stay in the positive semide�nite cone of the lower dimensional space.

The projected version of SDP3 is thus

�∗3 = max trace(W THQW )ZP

s:t: trace(W TEiiW )ZP = 1; i= 0; : : : ; t(n);
trace(W TE0; t(i)W )ZP = 1; i= 1; : : : ; n;
trace(W T(E0;T (i; j) − ET (i; k);T (k; j))W )ZP = 0∀k ∀16 i¡ j6 n;
ZP ¡ 0; ZP ∈St(n−1)+1;

where Eij:=1
2 (eie

T
j + ejeT

i ).
It remains to remove all the redundant constraints in this problem.
Let wi denote the ith column of W T. The construction of W implies wT

0 =wT
t(i) = eT

0

∀i∈{1; : : : ; n}; and the remaining columns of W :

{wT
T (i; j): i; j∈{1; : : : ; n}; i ¡ j}= {eT

1 ; e
T
2 ; : : : ; e

T
t(n−1)}

form a linearly independent set. (Together with wT
0 , they form a basis for Rt(n−1)+1:)

Now, since W TEiiW =wiwT
i and W TE0; t(i)W = 1

2(w0wT
t(i) + wT

t(i)w
T
0 ), we have

W TEt(i); t(i)W =w0wT
0 =W TE00W ∀i∈{1; : : : ; n}

and

W TE0; t(i)W =w0wT
0 =W TE00W ∀i∈{1; : : : ; n}:

Furthermore,

W T(E0;T (i; j) − ET (i; k);T (k; j))W

= 1
2{w0wT

T (i; j) + wT (i; j)wT
0 − wT (i; k)wT

T (k; j) − wT (k; j)wT
T (i; k)};

therefore if k = i or j then wT (i; k) =w0 or wT (k; j) =w0, respectively, so W T(E0;T (i; j) −
ET (i; k);T (k; j))W = 0 and the corresponding constraint is redundant. Removing all these
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redundant constraints, we obtain SDP3P:

(SDP3P)�∗3 = max trace(W THQW )ZP

s:t: trace(W TEiiW )ZP = 1;

i∈{0; 1; : : : ; t(n)} \ {t(1); : : : ; t(n)}
trace(W T(E0;T (i; j) − ET (i; k);T (k; j))W )ZP = 0;

∀k �∈ {i; j}; ∀16 i¡ j6 n

ZP ¡ 0; ZP ∈St(n−1)+1:

It is straightforward to check that all the remaining constraints are linearly indepen-
dent. Moreover, we prove that Slater’s constraint quali�cation holds for SDP3P. This
implies that the optimal values of SDP3P and its dual are equal and we can use a
primal-dual interior-point algorithm.

First we simplify our notation. We have the following primal-dual pair:

(SDP3P) max traceCZ

s:t: diag Z = e;

traceAijkZ = 0 ∀(i; j; k)∈J;

Z ¡ 0; Z ∈St(n−1)+1;

(DSDP3P) min
t(n−1)+1∑

i=1

xi

s:t: S = Diag(x) +
∑

(i; j; k)∈J

yijkAijk − C;

S ¡ 0;

x∈Rt(n−1)+1; y∈R(n−2)·t(n−1);

where

J:={(i; j; k): i; j∈{1; : : : ; n}; i ¡ j; k �∈ {i; j}};

Aijk :=W T(E0;T (i; j) − ET (i; k);T (k; j))W ∀(i; j; k)∈J

and

C:=W THQW:

Lemma 4.1. Slater’s constraint quali;cation holds for SDP3P.

Proof. We consider the matrix Z̃ :=It(n−1)+1. Since Z̃ � 0, we only need to verify that
it satis�es the equality constraints.

Clearly, diag Z̃ = e. Now observe that

WW T = P
[
e 0
0 It(n−1)

] [
eT 0
0 It(n−1)

]
PT

= P
[
E 0
0 It(n−1)

]
PT
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= PẐPPT

= Ẑ ;

where ẐP is the matrix de�ned in the proof of Theorem 4.1.
Using this observation, the second set of equality constraints for Z̃ may be written as

trace(E0;T (i; j) − ET (i; k);T (k; j))Ẑ = 0 ∀(i; j; k)∈J

and these equalities hold because

trace(E0;T (i; j) − ET (i; k);T (k; j))Ẑ = 0 ⇔ Ẑ0;T (i; j) = ẐT (i; k);T (k; j)

and by Theorem 4.1(1) both entries of Ẑ involved are zero.

It is straightforward to prove that the same is true for the dual problem.

Lemma 4.2. Slater’s constraint quali;cation holds for DSDP3P.

Proof. Choosing ỹ ijk :=0 ∀(i; j; k)∈J and x̃i:=||dsvec(Q)||1+1 ∀i= 1; : : : ; t(n−1)+1,
the corresponding dual (slack) variable is

S̃ = (||dsvec(Q)||1 + 1)It(n−1)+1 − C

which is strictly diagonally dominant and has all its diagonal entries positive. Hence
S̃ is positive de�nite.

All the results in this section extend to the relaxation SDP2. The corresponding
projected problem is

(SDP2P) �∗2 = max traceCYP

s:t: diag YP = e;
trace(W TRijW )YP = 0 ∀16 i¡ j6 n;
YP ¡ 0; YP ∈St(n−1)+1;

where

Rij:=nE0;T (i; j) −
n∑

k=1

ET (i; k);T (k; j):

5. Numerical comparison of the relaxations

The relaxations SDP1, SDP2P and SDP3P were compared for several interesting
problems using the software package SDPPack (version 0.9 Beta) [1]. For completeness
we also solved the metric polytope relaxation:

max traceQX
s:t: X ∈Mn:

This relaxation is easily formulated as an LP and we solved it using the Matlab solver
LINPROG. The results are summarized in Table 1. A relative error equal to zero means
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Table 1
Numerical comparison of all MC relaxations for selected test problems

Graph �∗ SDP1 bound SDP2P bound Mn bound En ∩ Mn bound SDP3P bound

C5 4 4.5225 4.2889 4.0000 4.0000 4.0000
�= 0:8845 �= 0:9326 �= 1:0000 �= 1:0000 �= 1:0000
R.E.: 13.06% R.E.: 7.22% R.E.: 0% R.E.: 0% R.E.: 0%

K5 \ e 6 6.2500 6.1160 6.0000 6.0000 6.0000
�= 0:9600 �= 0:9810 �= 1:0000 �= 1:0000 �= 1:0000
R.E.: 4.17% R.E.: 1.93% R.E.: 0% R.E.: 0% R.E.: 0%

K5 6 6.2500 6.2500 6.6667 6.2500 6.2500
�= 0:9600 �= 0:9600 �= 0:9000 �= 0:9600 �= 0:9600
R.E.: 4.17% R.E.: 4.17% R.E.: 11.11% R.E.: 4.17% R.E.: 4.17%

Given 9.28 9.6040 9.4056 9.3867 9.2961 9.2800
by A(G) �= 0:9663 �= 0:9866 �= 0:9886 �= 0:9983 �= 1:0000
(n= 5) R.E.: 3.49% R.E.: 1.35% R.E.: 1.15% R.E.: 0.17% R.E.: 0%

AW2
9 12 13.5 12.9827 12.8571 12.6114 12.4967

�= 0:8889 �= 0:9243 �= 0:9333 �= 0:9515 �= 0:9603
R.E.: 12.50% R.E.: 8.19% R.E.: 7.14% R.E.: 5.10% R.E.: 4.14%

Pet. 12 12.5 12.3781 12.0000 12.0000 12.0000
(n= 10) �= 0:9600 �= 0:9695 �= 1:0000 �= 1:0000 �= 1:0000

R.E.: 4.17% R.E.: 3.15% R.E.: 0% R.E.: 0% R.E.: 0%

Given in 88 90.3919 89.5733 89.3333 88.0029 88.0000
[3] �= 0:9735 �= 0:9824 �= 0:9851 �= 1:0000 �= 1:0000
(n= 12) R.E.: 2.72% R.E.: 1.79% R.E.: 1.52% R.E.: 3:3E − 5 R.E.: 9:9E − 7

that the relative error was below 10−11. The value � equals the value of the optimal cut
divided by the bound, and R.E. denotes the relative error with respect to the optimal cut.

The test problems in Table 1 are as follows:
1. The �rst line of results corresponds to solving the three SDP relaxations for a 5-cycle

with unit edge-weights.
2. The second line corresponds to the complete graph on 5 vertices with unit edge-

weights on all edges except one, which is assigned weight zero.
3. The third line corresponds to the complete graph on 5 vertices with unit edge-

weights. In this example, none of the four SDP relaxations attains the MC optimal
value, and in fact they are not numerically distinguishable. Only the polyhedral
relaxation Mn gives a noticeably weaker bound.

4. The fourth line corresponds to the graph de�ned by the weighted adjacency matrix

A(G) =




0 1:52 1:52 1:52 0:16
1:52 0 1:60 1:60 1:52
1:52 1:60 0 1:60 1:52
1:52 1:60 1:60 0 1:52
0:16 1:52 1:52 1:52 0


 :
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Fig. 2. Antiweb AW2
9.

This problem is interesting because it shows a signi�cant di:erence between SDP3P

and all the other relaxations; in this case, SDP3P is the only relaxation that attains
the MC optimal value.

5. The �fth line corresponds to the graph in Fig. 2 with unit edge weights. 5 This
graph is the antiweb AW2

9 and it is interesting that on this example, unlike for the
K5 with unit edge weights, SDP3P performs better than the SDP1 relaxation with
all the triangle inequalities included.

6. The last two lines correspond to slightly larger graphs. The �rst one has 10 vertices;
it is the Petersen graph with unit edge-weights. The second one is a graph with 12
vertices that gives slightly di:erent results for each relaxation; its weighted adjacency
matrix can be found in [3].
The numerical results of Table 1 cover only small problems. This is because solving

the relaxations SDP2P and SDP3P using SDPpack becomes extremely time-consuming
and requires large amounts of memory even for moderate values of n. To verify the
behaviour of the relaxations on larger problems, we considered two other SDP pack-
ages. One was CSDP (version 2.3), a C implementation of an interior-point method
developed by Borchers [13,14] and accessible via the NEOS Server for Optimization
at http:==www-neos.mcs.anl.gov. The second package was SBmethod, a C++ im-
plementation of the spectral bundle method developed by Helmberg [32,29,28]. Using
these packages, we obtained the results presented in Table 2.

The bound SDP1 is known to be excellent both theoretically (�¿ 0:878 [23]) and
empirically (� ∼= 0:97, see e.g. [33]). Nonetheless, our numerical experiments to date
suggest that SDP2P and SDP3P consistently yield a strict improvement over SDP1, and
that on randomly generated test problems (with non-negative integer weights),

the SDP3P relaxation often yields the optimal value of MC:

It is also important to note that the constraints of both relaxations are sparse and
their sparsity increases rapidly with n. This special structure has not yet been exploited.

Finally, we note that the direct lifting approach in Section 2.2 shows that the
strengthened relaxations SDP2 and SDP3 also provide bounds for quartic Max-Cut

5 Thanks to Franz Rendl for suggesting this example.
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Table 2
Numerical comparison of SDP1, SDP2P and SDP3P on randomly generated graphs with non-negative edge
weights

Number of vertices �∗ SDP1 bound SDP2P bound SDP3P bound

10 648 666.428 656.8020 648.000
�= 0:9723 �= 0:9866 �= 1:0000
R.E.: 2.84% R.E.: 1.36% R.E.: 0%

11 1060 1084.345 1072.352 1060.000
�= 0:9775 �= 0:9885 �= 1:0000
R.E.: 2.30% R.E.: 1.17% R.E.: 0%

15 2290 2317.354 2301.634 2290.000
�= 0:9882 �= 0:9949 �= 1:0000
R.E.: 1.19% R.E.: 0.51% R.E.: 0%

16 2270 2318.867 2300.354 2270.000
�= 0:9789 �= 0:9868 �= 1:0000
R.E.: 2.15% R.E.: 1.34% R.E.: 0%

25 380 385.4737 383.6503 380.000
�= 0:9858 �= 0:9905 �= 1:0000
R.E.: 1.44% R.E.: 0.96% R.E.: 0%

30 1705.5 1751.600 1743.205 1705.578
�= 0:9737 �= 0:9784 �= 1:0000
R.E.: 2.70% R.E.: 2.21% R.E.: 4:6E − 5

33 1888.5 1932.968 1926.119 1888.564
�= 0:9770 �= 0:9805 �= 1:0000
R.E.: 2.35% R.E.: 1.99% R.E.: 3:4E − 5

36 27108.55 28305.28 27944.30 27108.81
�= 0:9577 �= 0:9701 �= 1:0000
R.E.: 4.41% R.E.: 3.08% R.E.: 9:8E − 6

problems, i.e. problems of the form:

max
∑

16i¡j¡k¡l6n

HT (i; j);T (k; l) vivjvkvl +
∑

16i¡j6n

H0;T (i; j) vivj

s:t: v2
i = 1; i= 1; : : : ; n:

Further research on such problems may prove the computational e:ort involved in
solving the relaxations to be worthwhile.

6. Conclusion

We have presented two strengthened semide�nite programming relaxations for the
Max-Cut problem and proved several interesting properties of these relaxations. In
particular, we proved that the tighter of these two relaxations corresponds to a relaxation
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of the cut polytope that is strictly contained in the intersection of the elliptope and
the metric polytope. Our results illustrate the strength and 8exibility of Lagrangian
relaxation for obtaining a variety of SDP relaxations with di:erent properties.

We also addressed some practical issues in the solution of these SDP relaxations.
Preliminary numerical results show a strict improvement over the Goemans–Williamson
relaxation, and show the tighter relaxation often yielding the optimal value of Max-Cut
for randomly generated test problems. Although these relaxations have many variables
and linear constraints, current research e:orts promise to yield eKcient methods for
solving them.

Acknowledgements

We thank Michel X. Goemans for helpful comments that led to the proof of Theorem
3:1. We also thank an anonymous referee for pointing us to useful references and
helping with the presentation of the material in this paper.

References

[1] F. Alizadeh, J.-P. Haeberly, M.V. Nayakkankuppam, M.L. Overton, S. Schmieta, SDP pack user’s
guide—version 0.9 Beta, Technical Report TR1997-737, Courant Institute of Mathematical Sciences,
NYU, New York, NY, June 1997.

[2] M.F. Anjos, H. Wolkowicz, A strengthened SDP relaxation via a second lifting for the Max-Cut
problem, Technical Research Report, CORR 99-55, University of Waterloo, Waterloo, Ont., 1999, 28p.

[3] M.F. Anjos, H. Wolkowicz, A tight semide�nite relaxation of the cut polytope, Technical Research
Report, CORR 2000-19, University of Waterloo, Waterloo, Ont., 2000, 24p.

[4] K.M. Anstreicher, X. Chen, H. Wolkowicz, Y. Yuan, Strong duality for a trust-region type relaxation
of the quadratic assignment problems, Linear Algebra Appl. 301 (1–3) (1999) 121–136.

[5] K.M. Anstreicher, H. Wolkowicz, On Lagrangian relaxation of quadratic matrix constraints, SIAM J.
Matrix Anal. Appl. 22 (1) (2000) 41–55.

[6] E. Balas, A modi�ed lift-and-project procedure, Math. Programming Ser. B 79(1–3) 19–31, 1997,
Lectures on Mathematical Programming, ismp97, Lausanne, 1997.

[7] E. Balas, S. Ceria, G. Cornuejols, A lift-and-project cutting plane algorithm for mixed 0-1 programs,
Math. Programming 58 (1993) 295–324.

[8] E. Balas, S. Ceria, G. CornuLejols, Solving mixed 0-1 programs by a lift-and-project method, in:
Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, Austin, TX, 1993,
ACM, New York, 1993, pp. 232–242.

[9] F. Barahona, The max-cut problem on graphs not contractible to K5, Oper. Res. Lett. 2 (3) (1983)
107–111.

[10] F. Barahona, On cuts and matchings in planar graphs, Math. Programming Ser. A 60 (1) (1993) 53–68.
[11] F. Barahona, M. Gr\otschel, M. J\unger, G. Reinelt, An application of combinatorial optimization to

statistical physics and circuit layout design, Oper. Res. 36 (1988) 493–513.
[12] S.J. Benson, Y. Ye, X. Zhang, Solving large-scale sparse semide�nite programs for combinatorial

optimization, SIAM J. Optim. 10(2) (2000) 443–461 (electronic).
[13] B. Borchers, CSDP, a C library for semide�nite programming, Optim. Methods Software (Interior point

methods) 11=12 (1–4) (1999) 613–623.
[14] B. Borchers, SDPLIB 1.2, a library of semide�nite programming test problems, Optim. Methods

Software (Interior point methods) 11 (1) (1999) 683–690.
[15] S. Burer, R.D.C. Monteiro, An eKcient algorithm for solving the MAXCUT SDP relaxation, Technical

Report, Georgia Tech., Atlanta, GA, 1999.



M.F. Anjos, H. Wolkowicz /Discrete Applied Mathematics 119 (2002) 79–106 105

[16] C. Delorme, S. Poljak, Laplacian eigenvalues and the maximum cut problem, Math. Programming 62
(3) (1993) 557–574.

[17] M.M. Deza, M. Laurent, Geometry of Cuts and Metrics, Springer, Berlin, 1997.
[18] U. Feige, G. Schechtman, On the optimality of the random hyperplane rounding technique for MAX

CUT, Technical Report, Weizmann Institute, Rehovot, Israel, 2000.
[19] M.R. Garey, D.S. Johnson, Computers and Intractabilty: A Guide to the Theory of NP-Completeness,

Freeman, San Francisco, 1979.
[20] M.X. Goemans, Semide�nite programming in combinatorial optimization, Math. Programming 79 (1997)

143–162.
[21] M.X. Goemans, Semide�nite programming and combinatorial optimization, Documenta Math. ICM 1998

(1998) 657–666 (Invited talk at the International Congress of Mathematicians, Berlin, 1998).
[22] M.X. Goemans, F. Rendl, Combinatorial optimization, in: H. Wolkowicz, R. Saigal, L. Vandenberghe

(Eds.), Handbook of Semide�nite Programming: Theory, Algorithms, and Applications, Kluwer
Academic Publishers, Boston, MA, 2000.

[23] M.X. Goemans, D.P. Williamson, .878-approximation algorithms for MAX CUT and MAX 2SAT, in:
ACM Symposium on Theory of Computing (STOC), MontrLeal, QuLebec, 1994.

[24] M.X. Goemans, D.P. Williamson, Improved approximation algorithms for maximum cut and satis�ability
problems using semide�nite programming, J. Assoc. Comput. Mach. 42 (6) (1995) 1115–1145.

[25] B. Grone, C.R. Johnson, E. Marques de Sa, H. Wolkowicz, Positive de�nite completions of partial
Hermitian matrices, Linear Algebra Appl. 58 (1984) 109–124.

[26] J. Hastad, Some optimal inapproximability results, in: Proceedings of the 29th ACM Symposium on
Theory and Computation, 1997.

[27] C. Helmberg, An interior-point method for semide�nite programming and max-cut bounds, PhD Thesis,
Graz University of Technology, Austria, 1994.

[28] C. Helmberg, SBmethod—A C++ implementation of the spectral bundle method, ZIB preprint 00-35,
Konrad-Zuse-Zentrum f\ur Informationstechnik Berlin, Takustra^e 7, 14196, Berlin, Germany, October
2000.

[29] C. Helmberg, K.C. Kiwiel, A spectral bundle method with bounds, ZIP preprint sc-99-37,
Konrad-Zuse-Zentrum f\ur Informationstechnik Berlin, Takustra^e 7, 14195, Berlin, Germany, November
1999.

[30] C. Helmberg, F. Oustry, Bundle methods to minimize the maximum eigenvalue function, in: H.
Wolkowicz, R. Saigal, L. Vandenberghe (Eds.), Handbook of Semide�nite Programming: Theory,
Algorithms, and Applications, Kluwer Academic Publishers, Boston, MA, 2000.

[31] C. Helmberg, S. Poljak, F, Rendl, H. Wolkowicz, Combining semide�nite and polyhedral relaxations
for integer programs, in: Integer Programming and Combinatorial Optimization (Copenhagen, 1995),
Springer, Berlin, 1995, pp. 124–134.

[32] C. Helmberg, F. Rendl, A spectral bundle method for semide�nite programming, SIAM J. Optim. 10
(3) (2000) 673–696.

[33] C. Helmberg, F. Rendl, R.J. Vanderbei, H. Wolkowicz, An interior-point method for semide�nite
programming, SIAM J. Optim. 6 (2) (1996) 342–361.

[34] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1994
(corrected reprint of the 1991 original).

[35] C.R. Johnson, Matrix completion problems: a survey, Proc. Symp. Appl. Math. 40 (1990) 171–198.
[36] C.R. Johnson, B. Kroschel, H. Wolkowciz, An interior-point method for approximate positive

semide�nite completions, Comput. Optim. Appl. 9 (2) (1998) 175–190.
[37] R.M. Karp, Reducibility among combinatorial problems, in: R.E. Miller, J.W. Thatcher (Eds.),

Complexity of Computer Computation, Plenum Press, New York, 1972, pp. 85–103.
[38] J.B. Lasserre, Optimality conditions and LMI relaxations for 0-1 programs, LAAS Research Report,

LAAS-CNRS, Toulouse, France, 2000.
[39] M. Laurent, A tour d’horizon on positive semide�nite and Euclidean distance matrix completion

problems, in: Topics in Semide�nite and Interior-Point Methods, The Fields Institute for Research in
Mathematical Sciences, Communications Series, Vol. 18, American Mathematical Society, Providence,
RI, 1998, pp. 51–76.

[40] M. Laurent, S. Poljak, On a positive semide�nite relaxation of the cut polytope, Linear Algebra Appl.
223=224 (1995) 439–461.



106 M.F. Anjos, H. Wolkowicz /Discrete Applied Mathematics 119 (2002) 79–106

[41] M. Laurent, S. Poljak, On the facial structure of the correlation matrices, SIAM J. Matrix Anal. Appl.
17 (3) (1996) 530–547.

[42] M. Laurent, S. Poljak, F. Rendl, Connections between semide�nite relaxations of the max-cut and stable
set problems, Math. Programming 77 (1997) 225–246.

[43] T. Lengauer, Combinatorial Algorithms for Integrated Circuit Layout, Wiley, Chichester, 1990 (with a
foreword by Bryan Preas).

[44] L. LovLasz, A. Schrijver, Cones of matrices and set-functions and 0-1 optimization, SIAM J. Optim. 1
(2) (1991) 166–190.

[45] B. Mohar, S. Poljak, Eigenvalues in combinatorial optimization, in: Combinatorial Graph-Theoretical
Problems in Linear algebra, IMA, Vol. 50, Springer, Berlin, 1993.

[46] Y.E. Nesterov, Quality of semide�nite relaxation for nonconvex quadratic optimization, Technical
Report, CORE, Universite Catholique de Louvain, Belgium, 1997.

[47] Y.E. Nesterov, H. Wolkowicz, Y. Ye, Semide�nite programming relaxations of nonconvex quadratic
optimization, in: H. Wolkowicz, R. Saigal, L. Vandenberghe (Eds.), Handbook of Semide�nite
Programming: Theory, Algorithms and Applications, Kluwer Academic Publishers, Boston, MA, 2000,
p. 34.

[48] S. Poljak, F, Rendl, H. Wolkowicz, A recipe for semide�nite relaxation for (0,1)-quadratic programming,
J. Global Optim. 7 (1) (1995) 51–73.

[49] F. Rendl, Semide�nite programming and combinatorial optimization, Appl. Numer. Math. 29 (1999)
255–281.

[50] H.D. Sherali, W.P. Adams, A hierarchy of relaxations between the continuous and convex hull
representations for zero-one programming problems, SIAM J. Discrete Math. 3 (3) (1990) 411–430.

[51] H.D. Sherali, W.P. Adams, A hierarchy of relaxations and convex hull characterizations for
mixed-integer zero-one programming problems, Discrete Appl. Math. 52 (1) (1994) 83–106.

[52] N.Z. Shor, Quadratic optimization problems, Izv. Akad. Nauk SSSR Tekhn. Kibernet. 222 (1) (1987)
128–139, 222.

[53] R. Stern, H. Wolkowicz, Inde�nite trust region subproblems and nonsymmetric eigenvalue perturbations,
SIAM J. Optim. 5 (2) (1995) 286–313.

[54] V.A. Yakubovich, The S-procedure and duality theorems for non-convex problems of quadratic
programming, Vestnik Leningrad Univ. 1973 (1) (1973) 81–87.

[55] V.A. Yakubovich, Nonconvex optimization problem: the in�nite-horizon linear-quadratic control
problem with quadratic constraints, Systems Control Lett. 19 (1) (1992) 13–22.

[56] Y. Ye, Approximating quadratic programming with bound and quadratic constraints, Math. Programming
84 (1999) 219–226.


