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constraints from the original MC to MCSDP and �nding the dual of theLagrangian dual again, i.e. applying a second lifting. Empirical tests andtheory indicate a strict improvement in the strengthened bound.The paper is organized as follows. The remaining part of this sectioncontains notation on the various operators and their adjoints as well asthe basics of MC. In Section 2 we derive the well-known semide�nite re-laxation of MC, denoted MCSDP, using Lagrangian relaxation, see (2.1).The strengthened relaxation MCPSDP3 is derived in Section 3, see (3.10).The fact that one always gets a strict improvement is proved in Theorem3.1. This follows from the surprising fact that the �rst row of the feasiblematrices in the strengthened relaxation MCPSDP3 yields a feasible matrixfor the relaxation MCSDP.1.1 Background1.1.1 Notation and PreliminariesWe work in the space of n�n symmetric matrices, Sn ; with the trace innerproduct hA;Bi = traceAB; and dimension t(n) = n(n+ 1)=2:We let A �Bdenote Hadamard (elementwise) product. For given Y 2 St(n)+1; thet(n) vector x = Y0;1:t(n) denotes the �rst (zero-th) row of Y after the �rstelement. We let e denote the vector of ones and E = eeT the matrix of ones;their dimensions will be clear from the context. We also let ei denote theith unit vector and de�ne the elementary matrices Eij = 12(eieTj + ejeTi ).Though it is true that a linear operator on a �nite dimensional space canbe expressed as a matrix, we use operator notation and operator adjoints.We �nd that this simpli�es cumbersome notation in the long run.For S 2 Sn ; the vector diag (S) 2 <n is the diagonal of S, whilethe adjoint operator Diag (v) = diag �(v) is the diagonal matrix withdiagonal formed from the vector v 2 <n: We use both Diag (v) and Diag vif the meaning is clear. (Similarly for diag and other operators.) Also,the symmetric vectorizing operator s = svec (S) 2 <t(n); is formed(columnwise) from S while ignoring the strictly lower triangular part of S: Itsinverse is the symmetrizing matrix operator S = sMat(s): The adjointof svec is the operator hMat = svec � which forms a symmetric matrix wherethe o�-diagonal terms are multiplied by a half, i.e. this satis�essvec (S)Tx = traceS hMat (x); 8S 2 Sn ; x 2 <t(n):The adjoint of sMat is the operator dsvec which works like svec except that3



the o� diagonal elements are multiplied by 2, i.e. this satis�esdsvec (S)Tx = traceS sMat (x); 8S 2 Sn ; x 2 <t(n):For notational convenience, we de�ne the symmetrizing diagonal vec-tor sdiag (x) := diag (sMat (x)) and the vectorizing symmetric vectorvsMat (x) := vec (sMat(x)); where vec is the n2 dimensional vector formedfrom the complete columns of the matrix; the adjoint of vsMat is then givenby vsMat �(x) = dsvec �12 �Mat (x) + Mat(x)T�� :In summary, diag � = Diagsvec � = hMatsvec�1 = sMatdsvec � = sMatvsMat � = dsvec h12 �Mat (�) +Mat (�)T�i :In this paper we will use the relationships between the following matricesand vectors:X �= vvT �= sMat(x) 2 Sn; and Y �=  y0x !�y0 xT� 2 St(n)+1; y0 2 <:In particular, by abuse of notation, we will often use x and X interchange-ably when the meaning is clear.We will have need of several results on the operators. The followingLemma and Corollary follow directly from the de�nitions.Lemma 1.1 If A;B 2 Sn, thendiag (A(B � C)) = diag (B(A � C)) :Corollary 1.1 If A;B 2 Sn, thentrace (A(B � C)) = trace (B(A �C)) :For these and other results on Hadamard products, see e.g. [14, 15].4



1.1.2 Max-Cut ProblemThe max-cut problem is the problem of partitioning the node set of an edge-weighted undirected graph into two parts so as to maximize the total weightof edges cut by the partition. We tacitly assume that the graph in questionis complete (if not, nonexisting edges can be given weight 0 to complete thegraph). Mathematically, the problem can be formulated as follows (see e.g[19]). Let the graph be given by its weighted adjacency matrix A. De�nethe matrix L := Diag (Ae)� A (L is called the Laplacian matrix associatedwith the graph.) If a cut S is represented by a vector v where vi 2 f�1; 1gdepending on whether or not i 2 S, we get the following formulation for themax-cut problem: MC �� := maximize 14vTLvs.t. v 2 f�1; 1gn:Using X := vvT and vTLv = traceLX , this is equivalent to�� = maximize trace 14LXs.t. diag (X) = erank(X) = 1X � 0:It is well known that MC is an NP-hard problem, see e.g. [17]. Droppingthe rank condition and setting Q = 14L; yields the SDPrelaxation with theupper bound �� � ��, see MCSDP below. This relaxation of MC is nowwell known and studied in e.g. [7, 5, 8, 18]. Goemans and Williamson [8]have provided estimates for the quality of the SDP bound for MC. Theyhave shown that the optimal value of this relaxation is at most 14% abovethe value of the maximum cut, provided there are no negative edge weights.In fact, by randomly rounding a solution to the SDP relaxation, they �nda �-approximation algorithm, i.e. a solution with value at least � timesthe optimal value, where � = :878: However, It is NP-hard to �nd a �-approximation algorithm for Max-Cut with factor better than :9412; see[10]. Numerical tests are presented in e.g. [11, 13].Improvements for special cases of MC are presented in e.g. [22]. Furtherresults on problems with general quadratic objective functions are presentedin [20, 27], e.g. Nesterov [20] uses the SDP bound to provide estimates ofthe optimal value of MC, with arbitrary L = LT ; with constant relativeaccuracy. 5



2 Lagrangian RelaxationA quadratic model for MC with a general homogeneous quadratic objectivefunction is MC �� = max vTQvs.t. v2i � 1 = 0; i = 1; : : : ; n:Note that if the objective function has a linear term, then we can homoge-nize using an additional variable similarly constrained (see the beginning ofsection 3.1). Furthermore, we assume Q 6= 0 (wlog) in the sequel.2.1 SDP Relaxation of MC - First LiftingThe SDP relaxation comes from the Lagrangian dual of the Lagrangian dualof MC, see e.g. [23, 21]. For completeness we include the details of such aderivation. The Lagrangian dual to MC is�� � �� := miny maxv vTQv � vT (Diag y)v + eT y:Since the quadratic is bounded above only if its Hessian, 2Q � 2Diag y; isnegative semide�nite, this is equivalent to the following SDP�� =: min eT ys.t. Diag y � Q:Slater's (strict feasibility) constraint quali�cation holds for this problem.Therefore its Lagrangian dual satis�esMCSDP �� � �� = max traceQXs.t. diag (X) = eX � 0: (2.1)We get the same relaxation as above if we use the relationship or liftingX = vvT and vTQv = traceQX:The above relaxation is equivalent to the Shor relaxation [23] and the S-procedure in Yakubovitch [25, 26]. For the case that the objective functionor the constraints contain a linear term, extra work must be done to includethe possibility of inconsistency of the stationarity conditions. Alternatively,this can be done by homogenization and using strong duality of the trustregion subproblem [24]. The latter technique is used below.6



3 Strengthened SDP Relaxation - Second LiftingSuppose that we want to strengthen the above SDP relaxation. It is notclear what constraints one can add to MC to accomplish this. For example,one can add triangle inequalities, see e.g. [11, 22, 12, 13]. These triangleinequalities de�ne the metric polytopeMn; i.e. the inequalities forX feasiblefor MCSDP are:Xij +Xjk +Xik � �1 Xij �Xjk �Xik � �1 81 � i; j; k � n:These inequalities model the fact that for any three connected nodes of thegraph, either two or none of the edges are cut. The complexity of addingthese cuts is described in e.g. [22]. But it is not the case that adding acertain subset of triangle inequalities will improve every instance of max-cutand there are too many such inequalities to add all of them. In fact, it isimpossible to add valid linear constraints to improve the performance ratio,[16].To strengthen MCSDP, we start with the lifted program MC2 below.It is equivalent to MC and is obtained by adding redundant constraints toMCSDP. This is motivated by the work in [3, 2] where it is shown thatadding redundant constraints that involve terms of the type XXT can leadto strong duality. First we add to MCSDP the constraint X2 � nX = 0.This constraint is motivated by X2 = vvTvvT and vT v = n: Note that thisconstraint implies X � 0, so this latter constraint becomes redundant andmay be removed. Moreover, we can simultaneously diagonalize X and X2;therefore the eigenvalues of X must satisfy �2 � n� = 0; which implies theonly eigenvalues are 0 and n. Since the diagonal constraint implies that thetrace of X is n, we conclude that X is rank one. Thus MC2 is equivalent toMC via the factorization X = vvT and traceQX = vTQv: We also add theredundant constraints X �X = E to obtain MC2. Note that this constraint(together with X � 0) also implies rank one, see Theorem 3.2.Our starting program equivalent to MC is thereforeMC2 �� = max traceQXs.t. diag (X) = eX �X = EX2 � nX = 0: (3.1)Note that MC2 is itself a Max-Cut problem but with additional nonlinearconstraints, t(n) variables, and with the same optimal objective value asMC. 7



3.1 Second lifting via Lagrangian dualityWe follow the procedure in e.g. [21, 28] and obtain the SDP relaxationby �nding the Lagrangian dual of the Lagrangian dual. As a �nal stepwe remove any redundant constraints. (This illustrates the advantage of thedouble dual approach for �nding SDP relaxations, i.e. redundant constraintsare automatically removed at the end.)In order to e�ciently apply Lagrangian relaxation and not lose the in-formation from the linear constraint we need to replace the constraint withthe norm constraint jjdiag (X)� ejj2 = 0 and homogenize the problem. Wethen lift this matrix problem into a higher dimensional matrix space. Tokeep the dimension as low as possible, we take advantage of the fact thatX = sMat (x) is a symmetric matrix. We then express MC2 asMC2 �� = max trace (Q sMat (x))y0s.t. sdiag (x)Tsdiag (x)� 2eT sdiag (x)y0 + n = 0sMat(x) � sMat(x) = EsMat (x)2 � n sMat (x)y0 = 01� y20 = 0x 2 <t(n); y0 2 <: (3.2)Note that this problem is equivalent to the previous formulation since wecan change X to �X if y0 = �1. An alternative homogenization would be tochange the objective function to 1ntrace �QsMat (x)2� : It appears that (theeigenvalues of) Q should determine which homogenization would be better,i.e. which would result in a larger class of Lagrange multipliers when takingthe dual and therefore reduce the duality gap. (This should be looked at inthe future.)We now take the Lagrangian dual of this strengthened formulation, i.e.we use Lagrange multipliers w 2 < and T; S 2 Sn and get�� � ��2 := minw;T;S maxx;y20=1 trace (QsMat (x))y0+ w(sdiag (x)T sdiag (x)� 2eT sdiag (x)y0 + n)+ traceT (E � sMat(x) � sMat (x))+ traceS((sMat(x))2 � n sMat (x)y0): (3.3)We can now move the variable y0 into the Lagrangian without increasingthe duality gap, since this is a trust region subproblem and the Lagrangian8



relaxation of it is tight [24]. This yields��2 = mint;w;T;Smaxx;y0 trace (QsMat(x)) y0+ w(sdiag (x)T sdiag (x)� 2eT sdiag (x)y0 + n)+ traceT (E � sMat(x) � sMat (x))+ traceS((sMat(x))2 � n sMat(x)y0)+ t(1� y20): (3.4)The inner maximization of the above relaxation is an unconstrained purequadratic maximization, i.e. the optimal value is in�nity unless the Hessianis negative semide�nite in which case x = 0; y0 = 0 is optimal. Thus weneed to calculate the Hessian.Using traceQsMat(x) = xTdsvec (Q); and pulling out a 2 for conve-nience later on, we get the constant part (no Lagrange multipliers) of theHessian: 2Hc := 2� 0 12dsvec (Q)T12dsvec (Q) 0 � : (3.5)The nonconstant part of the Hessian is made up of a linear combination ofmatrices, i.e. it is a linear operator on the Lagrange multipliers. To makethe quadratic forms in (3.4) easier to di�erentiate we note thatdsvecDiagdiag sMat = sdiag �sdiag (= Diag svec (I))and rewrite the quadratic forms as follows:sdiag (x)T sdiag (x) = xT (dsvecDiagdiag sMat )x;eT sdiag (x) = (dsvecDiag e)T x;traceS(sMat(x))2 = hsMat(x) ; S sMat (x)i= vsMat(x)Tvec (S sMat(x))= xTvsMat �vec (SsMat(x))= xT [vsMat �vec (SsMat)]x= xT [vsMat �vecSMatvsMat ]x= xT [(Mat vsMat)� S (Mat vsMat)]x;traceT (sMat (x) � sMat(x)) = xT fdsvec (T � sMat(x))g= xT (dsvec (T � sMat))x;where the expression with S involves vsMat �vec instead of dsvec becauseSsMat(x) may not be symmetric. (It is easy to verify that vsMat �vec9



reduces to dsvec if S is symmetric.) However, the expression still is a con-gruence of S: The last expression follows from Corollary 1.1. For notationalconvenience, we let H(w; T; S; t) denote the negative of the nonconstant partof the Hessian, and we split it into four linear operators with the factor 2:2H(w; T; S; t) := 2H1(w) + 2H2(T ) + 2H3(S) + 2H4(t):= 2w� 0 (dsvecDiag e)T(dsvecDiag e) �sdiag �sdiag �+ 2�0 00 dsvec (T � sMat )�+ 2� 0 n2dsvec (S)Tn2dsvec (S) (Mat vsMat)� S (Mat vsMat)�+ 2t� 1 00 0� : (3.6)The elements of the above matrices may need clari�cation. The matrixsdiag �sdiag 2 St(n) is diagonal with elements determined usingeTi (sdiag �sdiag ) ej = sdiag (ei)T sdiag (ej)= ( 1 if i=j=t(k); for some k0 otherwise.Similarly, letting T =Pij tijEij , we havedsvec (T � sMat ) =Xij tijdsvec (Eij � sMat ) :Then the matrix dsvec (Eij � sMat) is found from usingeTk [dsvec (Eij � sMat (el))] :Similarly, we can �nd the elements of (Mat vsMat)� S (Mat vsMat) by can-celling vec and Mat and usingeTk vsMat �vec (SsMat(el)) :We can cancel the 2 in (3.6) and (3.5) and get the (equivalent to theLagrangian dual) semide�nite programMCDSDP2 ��2 = min nw + traceET + trace 0S + ts.t. H(w; T; S; t)� Hc: (3.7)If we take T su�ciently positive de�nite and t su�ciently large, then wecan guarantee Slater's constraint quali�cation. Therefore the dual of this10



SDP has the same optimal value ��2 and it provides the strengthened SDPrelaxation of MC:MCPSDP2 ��2 = max traceHcYs.t. H�1(Y ) = nH�2(Y ) = EH�3(Y ) = 0H�4(Y ) = 1Y � 0; Y 2 St(n)+1 (3.8)To help de�ne the adjoint operators we partition Y asY = �Y00 xTx �Y � :It is straightforward to check thatH�2(Y ) = sMatdiag ( �Y ) and H�4(Y ) = Y00;so the constraintsH�2(Y ) = E and H�4(Y ) = 1 are equivalent to diag (Y ) = e:Also, H�1(Y ) is twice the sum of the elements in the �rst row of Y corre-sponding to the positions of the diagonal of sMat (x) minus the sum of thesame elements in the diagonal of �Y , i.e.H�1(Y ) = 2svec (In)Tx� traceDiag (svec (In)) �Y :The constraintH�1(Y ) = n e�ectively requires that Y0;t(i) = 1; 8 i = 1; : : : ; n,as shown in the proof of Lemma 3.1 below. Finally, to �nd H�3(Y ), recallthat by de�nition,hH3(S); Y i = ndsvec (S)Tx� 
(MatvsMat )� S (MatvsMat ) ; �Y � :Taking adjoints,hS;H�3(Y )i = traceSnsMat(x)� 
S; (Mat vsMat) �Y (Mat vsMat )��= 
S; nsMat(x)� (MatvsMat ) �Y (MatvsMat )�� :Note that (Mat vsMat )� = vsMat �vec is essentially (and in the symmet-ric case reduces to) sMat � except that it acts on possibly nonsymmetricmatrices. Hence,H�3(Y ) = nsMat(x)� (Mat vsMat) �Y (Mat vsMat)� : (3.9)Equivalently, H�3(Y ) consists of the sums in MCPSDP3 below. The con-straint H�3(Y ) = 0 is key to showing that for Y feasible in MCPSDP2,11



sMat (x) is always positive semide�nite (and in fact feasible for MCSDP).This is proved in Lemma 3.2.We now prove that the feasible set of MCPSDP2 has no strictly feasiblepoints.Lemma 3.1 If Y is feasible for MCPSDP2, then Y is singular.Proof. Let Y be feasible for MCPSDP2. The constraintsH�2(Y ) = E andH�4(Y ) = 1 together imply that diag (Y ) = e. The constraint H�1(Y ) = ncan be written as2svec (In)Tx� traceDiag (svec (In)) �Y = n;with Y = � 1 xTx �Y �. Since diag (Y ) = e, traceDiag (svec (In)) �Y = n andso svec (In)Tx = n, or equivalently nPi=1Y0;t(i) = n. Now Y � 0 implies everyprincipal minor of Y is nonnegative, so jY0;t(i)j � 1 must hold (again becausediag (Y ) = e). So nPi=1Y0;t(i) = n ) Y0;t(i) = 1; i = 1; : : : ; n. Hence each ofthe 2 � 2 principal minors obtained from the subsets of rows and columnsf0; t(i)g; i= 1; : : : ; n equals zero. Hence Y is not positive de�nite.In section 4 we proceed to characterize the feasible set of MCPSDP2 ina lower dimensional space where it has strictly feasible points. However, we�rst discuss how to obtain the second lifting directly from MC2.3.2 Alternative Derivation - Direct Second LiftingWe can see the SDP relaxation directly for MC2 using the relationshipY �=  y0x !�y0 xT� ; X = sMat (x):The advantage in this is that we can use the origin of X from MC to directlyexpress the constraints that the elements of X are �1 and diag (X) = e.Thus we get diag (Y ) = e; and Y0;t(i) = 1; 8i = 1; : : : ; n:We can also express the t(n + 1) constraints from X2 � nX = 0: The con-straints corresponding to equating the diagonal entries become redundant.12



After they are removed, the result is the simpli�ed SDP relaxation:MCPSDP3 ��2 = max traceHcYs.t. diag (Y ) = eY0;t(i) = 1; 8i = 1; : : : ; niPk=1 Yt(i�1)+k;t(j�1)+k + jPk=i+1 Yt(k�1)+i;t(j�1)+k+Pnk=j+1 Yt(k�1)+i;t(k�1)+j � nY0;t(j�1)+i = 08i; j s:t:1 � i < j � nY � 0; Y 2 St(n)+1: (3.10)This problem has 2t(n) + 1 constraints (and the constraints are full rank).Before proceeding, it is worth noting that MCPSDP2 and MCPSDP3are equivalent problems, i.e. their feasible sets are the same. This followsby using Theorem 9 of [21] and the discussion (preceeding the Theorem)therein.For simplicity of notation, we also rewrite the constraints in MCPSDP3.For i; j such that 1 � i < j � n, de�ne the (symmetric) matrix Qij as:Qij := iPk=1Et(i�1)+k;t(j�1)+k + jPk=i+1Et(k�1)+i;t(j�1)+k+nPk=j+1Et(k�1)+i;t(k�1)+j � nE0;t(j�1)+i :Then MCPSDP3 can be written as:MCPSDP3 ��2 = max traceHcYs.t. diag Y = etraceE0;t(i)Y = 1; i = 1; : : : ; ntraceQijY = 0; 8 i; j 2 f1; : : : ; ng; i < jY � 0; Y 2 St(n)+1: (3.11)The �rst two sets of constraints imply that the 2 � 2 leading principalminor of any feasible Y for MCPSDP3 is all ones. Hence, every feasible Yfor MCPSDP3 is singular, which is expected in light of Lemma 3.1 (recallthat the feasible sets of MCPSDP2 and MCPSDP3 are equal).For the remainder of this paper, we work with the formulationMCPSDP3of our strengthened relaxation.3.3 Properties of the Strengthened RelaxationOne surprising result is that the matrix obtained by applying sMat to the�rst row of a feasible Y is positive semide�nite, even though this nonlinear13



constraint was discarded in MC2.Lemma 3.2 Suppose that Y is feasible in MCPSDP3. ThensMat �Y0;1:t(n)� � 0and so is feasible in MCSDP.Proof. For Y feasible for MCPSDP3, writeY = � 1 xTx �Y � ;with x = Y0;1:t(n). Note that �Y is a principal submatrix of Y and therefore�Y � 0.By (3.9), the constraint H�3(Y ) = 0 is equivalent tosMat (x) = 1n (Mat vsMat) �Y (Mat vsMat)�and thus sMat (x) is a congruence of the positive semide�nite matrix �Y .The result follows.The added nonlinear constraint X2 � nX = 0 has the following inter-esting and useful properties.Lemma 3.3 Suppose that X; �X are both feasible for MCSDP. Thentrace (X2 � nX)( �X2� n �X) � 0: (3.12)Suppose, in addition, that both(X2 � nX) 6= 0; ( �X2 � n �X) 6= 0;and both X; �X 2 F ; a face of P ; with �X 2 relintF : Thentrace (X2 � nX)( �X2� n �X) > 0: (3.13)Proof. By pulling out a square root, we see thattrace (X2�nX)( �X2� n �X) = trace fpX(X � nI)pXgfp �X( �X � nI)p �Xg:This is an inner product of congruences of negative semide�nite matrices andso an inner product of negative semide�nite matrices. The �rst inequalityfollows by the fact that P is a self-polar cone, i.e.P = P + := fZ : hZ;Xi � 0; 8X 2 P g :14



(This can be shown using the square root of a positive semide�nite matrix,commutativity of the trace, and congruence.)To prove the second (strict) inequality, let U = [P jQ] be an orthogonalmatrix such that the columns of P span the range space of �X; while thecolumns of Q span the null space of �X: A face can be characterized by eitherthe range space or the null space of any matrix in its relative interior, seee.g. [4]. Therefore PT �XP = �D � 0 and PTXP = D � 0; while QT �XQ = 0and QTXQ = 0: This impliesUT �XU = " �D 00 0 # ; UTXU = " D 00 0 # : (3.14)Our hypothesis also implies that nI � �D � 0: Therefore,trace (X2 � nX)( �X2� n �X) = trace (D2 � nD)( �D2 � n �D) > 0:We now prove that, unless there is no gap between MCSDP and MC, therelaxation MCPSDP3 always provides a strict improvement over MCSDP,as the following theorem shows.Theorem 3.1 The optimal values satisfy��2 � �� and ��2 = �� ) ��2 = ��: (3.15)Proof. Suppose that Y � = � 1 x�Tx� �Y � �solves MCPSDP3. From Lemma 3.2, it is clear that sMat(x�) is feasible forMCSDP. Therefore, ��2 = traceHcY �= (dsvecQ)Tx�= traceQsMat(x�)� ��:This establishes the inequality in (3.15).Now assume that we also have��2 = ��: (3.16)15



Then feasibility of X� := sMat (x�) implies that it must, in fact, be optimalfor MCSDP. Recall that ��2 is de�ned in (3.4). Also, we can assume thatX�2 � nX� 6= 0; or we are done. Therefore, we can sandwich the optimalvalues and see thatX� = sMat (x�) is also optimal for the min-max problem!� = minS �(S); (3.17)where�(S) := maxdiag (sMat (x))=e;sMat (x)�0 F (S; x) := trace (QsMat (x))+ traceS((sMat(x))2 � n sMat(x));(3.18)i.e. since more Lagrange multipliers gives us a better bound, we get�� � !� � ��2 ;which then implies equality actually holds for all three values. For S optimalin (3.17), now de�ne the feasible set of the inner maximization problem asG := fx : diag (sMat(x)) = e; sMat (x) � 0gand the optimal set for the given SR(S) = fx 2 G : F (S; x) = �(S)g :It is clear that G is a convex compact set. Therefore, R(S) is also compactby continuity of F: Moreover, R(S) is a subset of the optimal set of MCSDP,a subset of a minimal face F of P ; and, in fact, a feasible subset for MCSDP.Let �X 2 R(S)\ relintF :We now get the strict inequalitytrace (X2� nX)( �X2� n �X) > 0; 8x 2 R(S); (3.19)from Lemma 3.3.We now will apply [6, Theorem 2.1, page 188]. We see that the directionalderivative of �(S) in the direction g = �( �X2 � n �X) exists and is given bymaxx2R(S)�@F (S; x)@S ; g� :By (3.19) and compactness we see that this must be negative, i.e. thedirectional derivative is negative which contradicts the fact that the twooptimal values are equal. 16



We can also look at the added constraint X � X = E: Even thoughit does not imply X � 0, it is interesting to note that adding only thisconstraint to MCSDP yields a problem equivalent to MC. This follows fromthe following theorem which characterizes all the f1;�1g-matrices in thepositive semide�nite cone: they are exactly the rank-one matrices formed bythe outer product of some f1;�1g n-vector with itself. (This theorem followsas a Corollary to [15, Theorem 5.3.4]1. We include a simple independentproof.)Theorem 3.2 Let X be an n � n symmetric matrix. ThenX � 0; X 2 f1;�1gn�n if and only if X = xxT ; for some x 2 f1;�1gn:Proof. Showing su�ciency is straightforward: if X = xxT then for anyy 2 <n, we have yTXy = kxTyk2 � 0;hence X is positive semide�nite.To prove necessity, �rst observe that if X is symmetric,X 2 f1;�1gn�n,and X � 0, then all the diagonal entries of X equal 1.If n = 2, the possibilities for X are 1 11 1 ! and  1 �1�1 1 !and it is easily checked that both are positive semide�nite and rank one.For n � 3, we argue by contradiction. Suppose X 2 f1;�1gn�n andX � 0 but X is not rank-one. Let X = (xij) and let xi denote the ith columnof X . Then wlog (permuting columns if necessary) the �rst two columns ofX are linearly independent, therefore x1 6= x2 and x1 6= �x2. Hence wlog(permuting rows if necessary) x11 = x12 = 1, and x31 = �x32 = �1 orx31 = �x32 = 1.Thus the top left 3� 3 principal submatrix of X is either0B@ 1 1 �11 1 1�1 1 1 1CA or 0B@ 1 1 11 1 �11 �1 1 1CA :Since the determinants of these matrices are negative, we have a contradic-tion to X � 0: Hence X is rank-one. Since diag (X) = e, the result follows.1The authors thank Yin Zhang, Rice University, for this reference.17



4 Geometry of the Feasible SetWe now study the geometrical structure of the feasible set of our relaxation.Let Y be the set of Y 2 St(n)+1 that are feasible for MCPSDP3. FromLemma 3.1, we have observed that Y has no strictly feasible points; so weseek to express Y in a lower dimensional space.From the discussion on the direct second lifting, we know that the 2npoints Yv :=  1xv ! 1xv !T ; xv := svec (vvT); v 2 V := f�1; 1gnall belong to Y . Furthermore, since these are all the points we are interestedin, we want to optimize over F , the minimal face of the positive semide�nitecone (in St(n)+1) s.t. Yv 2 F ; 8v 2 V .Consider the barycenter of the set of points Yv :Ŷ := 2�n Xv2V Yv :By de�nition of F , Ŷ 2 relintF . Since F is a proper face, we can �nda mapping from a lower dimensional positive semide�nite cone to F . Weconstruct this mapping using the results of the next theorem, which describessome of the structure of Ŷ .Let Pi;j denote the (t(n) + 1)� (t(n) + 1) permutation matrix equal tothe identity matrix with the ith and jth columns permuted. We de�ne the(permutation) matrix P as:P := nYj=0Pj;t(j) (= nYj=2Pj;t(j)):Theorem 4.1 1. Ŷ is a f0; 1g-matrix andŶij = 8><>: 1; if i = t(k); j = t(l); k; l 2 f1; : : : ; ng; k 6= l1; if i = j 2 f0; 1; : : : ; t(n)g0; elsewhere:2. rank (Ŷ ) = t(n� 1)+ 1 and the eigenvalues of Ŷ are (n+ 1; 1; 0) withmultiplicities (1; t(n� 1); n); respectively.18



3. N (Ŷ ) = R P " V0 # !and R(Ŷ ) = R P " e 00 It(n�1) # ! ;where V 2 <(n+1)�n is any matrix s.t. h e V i is an orthogonalmatrix.Proof.1. Let v 2 V and consider Yv. The elements of xv have the form (xv)j =v�v�, where j = t(�� 1)+� for �; � 2 f1; : : : ; ng; � 6= �, and further-more (xv)j = ( 1; if v� = v��1; otherwise:First consider the case when � = � = k; here j = t(k) and it is clearthat (xv)t(k) = 1; k = 1; : : : ; n. This holds independently of the choiceof v so we may conclude that 1xv !t(k) = 1; k = 0; : : : ; n; 8 v 2 V : (4.1)Now suppose � 6= �; then v� = v� for exactly 2n�1 elements of V andv� 6= v� for the other 2n�1 choices of v. Hence,Xv2V (xv)j = 0; 8 j 62 ft(0); : : : ; t(n)g: (4.2)Equations (4.1) and (4.2) together imply that the 0th column of Ŷequals Pnk=0 et(k), i.e.Ŷi;0 = ( 1; if i 2 ft(0); : : : ; t(n)g0; otherwise:By symmetry of Ŷ , Ŷ0;j = Ŷj;0, so it only remains to examine Ŷi;j fori; j = 1; : : : ; t(n). 19



The remaining t(n) columns of Ŷ are:Ŷ:;j = 2�n Xv2V (xv)j  1xv ! ;for j = 1; : : : ; t(n). If i = j then Ŷi;i = 2�nPv2V (xv)2i = 1, so we nowsuppose i 6= j.If i = t(k) and j = t(l) for some k; l 2 f1; : : : ; ng; k 6= l, thenŶi;j = 2�n Xv2V (xv)t(k)(xv)t(l) = 1;using (4.1).If i 6= t(k); 8k but j = t(l), thenŶi;j = 2�n Xv2V (xv)i = 1;using (4.1) and (4.2). The case i = t(k) but j 6= t(l); 8l is handledsimilarly.Finally, if i 6= t(k); 8k; and j 6= t(l); 8l; then we need only observethat ((xv)i; (xv)j) = (1; 1) in exactly 2n�2 elements of V , and the samecount also holds for each of the combinations (1;�1); (�1; 1); (�1;�1).Thus, Pv2V (xv)i(xv)j = 0. Hence Ŷi;j = 0.2. De�ne ŶP := PT Ŷ P = " E 00 It(n)�n # 2 S(t(n)+1)�(t(n)+1):Since this is a similarity transformation, Ŷ and ŶP have exactly thesame eigenvalues, so it su�ces to prove the result for ŶP . Also, ŶP isblock diagonal, so its eigenvalues are those of the blocks. The lowerblock has the eigenvalue 1 with multiplicity t(n) � n = t(n � 1) (wehave the set of eigenvectors en+1; : : : ; et(n)). The upper block is clearlyrank-1; since ŶP  e0 ! = (n+ 1) e0 ! ;n+ 1 is its only nonzero eigenvalue. For V as in the statement of thetheorem, ŶP  V0 ! = 0: So the columns of V (extended with zeros)give a set of eigenvectors for the zero eigenvalue, which has multiplicityn. 20



3. The result follows by the similarity of Ŷ and ŶP and the proof of theprevious part of the theorem.Now de�ne the matrixW := P " e 00 It(n�1) # 2 <(t(n)+1)�(t(n�1)+1);with e 2 <n+1. Then R(Ŷ ) = R(W ) and we can use W to provide amapping from St(n�1)+1 to the minimal face F : if Y 2 F , Y = WZWT forZ 2 St(n�1)+1, and we require Z � 0 to stay in the positive semide�nitecone of the smaller space.The projected version of MCPSDP3 is thus:��2 = max trace (WTHcW )Zs.t. trace (WTEiiW )Z = 1; i = 0; : : : ; t(n)trace (WTE0;t(i)W )Z = 1; i = 1; : : : ; ntrace (WTQijW )Z = 0; 8 i; j 2 f1; : : : ; ng; i < jZ � 0; Z 2 St(n�1)+1:We now remove all the redundant constraints in this program.Let wi denote the ith column of WT . The construction of W implieswT0 = wTt(i) = eT0 ; 8i 2 f1; : : : ; ng; and the remaining columns of W :fwTt(j�1)+i : i; j 2 f1; : : : ; ng; i < jg = feT1 ; eT2 ; : : : ; eTt(n�1)gform a linearly independent set. (Together with wT0 , they form a basis for<t(n�1)+1:)Since WTEiiW = wiwTi and WTE0;t(i)W = 12(w0wTt(i) + wTt(i)wT0 ), wehave WTEt(i);t(i)W = w0wT0 = WTE00W; 8 i 2 f1; : : : ; ngand WTE0;t(i)W = w0wT0 = WTE00W; 8 i 2 f1; : : : ; ng:These observations allow us to remove 2n redundant constraints andobtain the projected SDP:MCPSDP3P ��2 = max trace (WTHcW )Zs.t. trace (WTEiiW )Z = 1; i 2 f0; 1; : : : ; t(n)gnft(1); : : : ; t(n)gtrace (WTQijW )Z = 0; 8 i; j 2 f1; : : : ; ng; i < jZ � 0; Z 2 St(n�1)+1:21



To verify that there is no more redundancy in the constraints, observethat the �rst set of equality constraints is now equivalent to the (linear)constraint diag (Z) = e, that diag (WTQijW ) = 0; 8 i; j above, and thatthe �rst column of each matrix WTQijW is equal to �n2 wt(j�1)+i. Sincethese columns are all linearly independent, we conclude all the constraintsare indeed linearly independent.5 Solving the strengthened relaxationWe now solve the projected strengthened relaxation MCPSDP3P. First wesimplify our notation. We have the following primal-dual pair:(P) p� = max trace (WTHcW )Zs.t. diagZ = etrace (WTQijW )Z = 0; 8 (i; j)2 JZ � 0; Z 2 St(n�1)+1(D) d� = min Pi2I xis.t. S = Diag (x) + P(i;j)2J yijWTQijW �WTHcWS � 0; x 2 <t(n�1)+1; y 2 <t(n�1);where I := f1; : : : ; t(n� 1) + 1gJ := f(i; j) : i; j 2 f1; : : : ; ng; i < jg:We begin by establishing that Slater's constraint quali�cation holds forthe primal problem (P). This guarantees p� = d�, i.e. there is no dualitygap.Lemma 5.1 Slater's constraint quali�cation holds for (P).Proof. We consider the matrix ~Z := It(n�1)+1. Since ~Z � 0, we onlyneed to verify that it satis�es the equality constraints.Clearly, traceEii ~Z = 1; 8 i 2 I: Now observe thatWWT = P " e 00 It(n�1) # " eT 00 It(n�1) # PT= P " E 00 It(n�1) # PT= P ŶP PT= Ŷ ; 22



where ŶP is the matrix de�ned in the proof of Theorem 4.1.Using this observation, the second set of equality constraints for ~Z maybe written as traceQij Ŷ = 0; 8 (i; j)2 J ;and it is now straightforward to verify that these equalities hold:traceQij Ŷ = 0 , iXk=1 Ŷt(i�1)+k;t(j�1)+k + jXk=i+1 Ŷt(k�1)+i;t(j�1)+k+ nXk=j+1 Ŷt(k�1)+i;t(k�1)+j � nŶ0;t(j�1)+i = 0and the right-hand side holds because for each choice of (i; j) 2 J , byTheorem 4.1(1), the entries of Ŷ involved are all zero.It is straightforward to prove that the same is true for the dual problem.Lemma 5.2 Slater's constraint quali�cation holds for (D).Proof. Since Pi2IEii = It(n�1)+1; if we choose ~yij := 0 8 (i; j) 2 J and~xi := kdsvec (Q)k1 + 1 8 i 2 I, the corresponding dual (slack) matrix is~S = (kdsvec (Q)k1 + 1)It(n�1)+1 �WTHcWand clearly ~S is strictly diagonal dominant and has all its diagonal entriespositive. It follows that ~S is positive de�nite.5.1 Primal-dual interior-point algorithmThe relaxations MCSDP and MCPSDP3P were compared on a variety ofproblems using the software package SDPPACK (version 0.9 Beta) [1]. Inthe case of MCPSDP3P, the matrix X in this section is obtained byX = sMat((WZ�WT )0;1:t(n));where Z� is optimal for MCPSDP3P. In all the test problems we used,the resulting matrix X was always found to be positive semide�nite. Wealso examined the numerical rank of X , i.e. the number of eigenvalues thatappear to be nonzero. See Table 1 for some typical results. We also testedboth bounds on random quadratic boolean problems (i.e. with negativeweights allowed). Results are presented in Table 2.23



n Weight of MCSDP bound MCPSDP3P bound Numericaloptimal cut (% rel. error) (% rel. error) rank of X5 4 4.5225 (13.06%) 4.2890 (7.22%) 2� = 0.8845 � = 0.932610 12 12.5 (4.17%) 12.3781 (3.15%) 4� = 0.9600 � = 0.96957 56 56.4055 (0.72%) 56.0954 (0.17%) 3� = 0.9928 � = 0.99838 30 30.2015 (0.67%) 30.0000 (7.5e-09%) 1� = 0.9933 � = 1.00009 58 58.9361 (1.61%) 58.1182 (0.20%) 3� = 0.9841 � = 0.998010 64 64.0811 (0.1268%) 64 (0%) 1� = 0.9987 � = 1.000012 88 90.3919 (2.72%) 89.5733 (1.79%) 4� = 0.9735 � = 0.982414 114 115.1679 (1.02%) 114.5758 (0.51%) 3� = 0.9899 � = 0.995016 158 160.0201 (1.28%) 159.1054 (0.70%) 4� = 0.9874 � = 0.9931Table 1: The �rst line of results corresponds to solving both MC relaxationsfor a 5-cycle with unit edge-weights. The second line corresponds to thePetersen graph with unit edge-weights. All the other results come fromrandomly generated weighted graphs. For each bound, the rel. error isde�ned as the di�erence between the bound and the value of optimal cutdivided by the value of the optimal cut, and � equals the value of the optimalcut divided by the bound.Our results show the strengthened bound MCPSDP3P yielding a strictimprovement over MCSDP every time.Because the matrix variable Y in MCPSDP3P has O(n4) scalar vari-ables, solving the relaxation using an interior-point method becomes veryslow and requires a large amount of memory, even for moderate n. However,it is important to note that the strengthened relaxation MCPSDP3P has aspecial sparsity structure. Future work will aim at exploiting this structureto develop a specialized algorithm that addresses the above mentioned lim-itations and allows to e�ciently solve the relaxation for large instances ofMC. 24



n Weight of MCSDP bound MCPSDP3P bound Numericaloptimal cut (% rel. error) (% rel. error) rank of X9 10 13.1744 (31.74%) 11.4416 (14.42%) 3� = 0.7590 � = 0.874010 54 58.5410 (8.41%) 56.1157 (3.92%) 4� = 0.9224 � = 0.962312 120 125.8493 (4.87%) 122.7504 (2.29%) 4� = 0.9535 � = 0.977614 104 118.4940 (13.94%) 113.1409 (8.79%) 5� = 0.8777 � = 0.919216 182 191.6495 (5.30%) 187.7041 (3.13%) 5� = 0.9497 � = 0.9696Table 2: Results for randomly generated quadratic boolean problems. Foreach bound, the rel. error is de�ned as the di�erence between the boundand the value of optimal cut divided by the value of the optimal cut, and �equals the value of the optimal cut divided by the bound.6 ConclusionWe have presented an SDP relaxation that provides a strengthened boundfor MC relative to the current well-known SDP bound for MC. Thoughthe computation time required to solve this new SDP relaxation is largecompared to the time for solving the well-known SDP relaxation, it is hopedthat a specialized algorithm exploiting structure will improve this situationand that this new bound will be competitive both in time and in quality. Inaddition, provable quality estimates need to be shown.References[1] F. ALIZADEH, J.-P. HAEBERLY, M. V. NAYAKKANKUPPAM,M.L. OVERTON, and S. SCHMIETA. SDPpack user's guide { ver-sion 0.9 Beta. Technical Report TR1997{737, Courant Institute ofMathematical Sciences, NYU, New York, NY, June 1997.[2] K.M. ANSTREICHER, X. CHEN, H. WOLKOWICZ, and Y. YUAN.Strong duality for a trust-region type relaxation of QAP. Linear AlgebraAppl., to appear, 1999. 25
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