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Abstract

We present a strengthened semidefinite programming, SDP, relax-
ation for the Max-Cut problem, MC, and for the general quadratic
boolean maximization problem. The well-known SDP relaxation can
be obtained via Lagrangian relaxation and results in an SDP with vari-
able X € 8", the space of n x n symmetric matrices, and n constraints,
diag (X) = e, where e is the vector of ones. The strengthened bound
is based on applying a lifting procedure to this well-known semidefi-
nite relaxation after adding the nonlinear constraints X2 —nX = 0
and X o X = E. The lifting procedure is again done via Lagrangian
relaxation and results in an SDP with variable Y € §1(»~D+1 where
t(r) = r(r+1)/2, and 2¢t(n—1)+1 constraints. It is shown that the new
bound obtained this way strictly improves the previous SDP bound,
both empirically and theoretically.
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1 Introduction

Semidefinite programming, SDP, has become a very intense area of research
in recent years; and, one main reason for this is its success in finding bounds
for the Max-Cut problem, MC, and for general quadratic boolean maximiza-
tion. The current bounds have proven to be very tight both theoretically
and in numerical tests, see e.g. [9, 20, 13, 12, 11].

In this paper we present a strengthened SDP relaxation for MC, i.e. an
SDP program that provides a strengthened bound, both empirically (see
Tables 1 and 2) and theoretically (see Theorem 3.1), for MC relative to the
current well-known SDP bound.

One approach to deriving the SDP relaxation is through the Lagrangian
dual, see e.g. [23, 21], i.e. one forms the Lagrangian dual of the quadratic
constrained quadratic model of MC. The dual of this Lagrangian dual yields
the SDP relaxation, MCSDP, i.e. a convex program that consists of matrix
inequality constraints. Thus we have lifted /linearized a nonlinear, noncon-
vex problem to the space of symmetric matrices. The result is a tractable
convex problem. The strengthened bound is obtained by adding redundant



constraints from the original MC to MCSDP and finding the dual of the
Lagrangian dual again, i.e. applying a second lifting. Empirical tests and
theory indicate a strict improvement in the strengthened bound.

The paper is organized as follows. The remaining part of this section
contains notation on the various operators and their adjoints as well as
the basics of MC. In Section 2 we derive the well-known semidefinite re-
laxation of MC, denoted MCSDP, using Lagrangian relaxation, see (2.1).
The strengthened relaxation MCPSDP3 is derived in Section 3, see (3.10).
The fact that one always gets a strict improvement is proved in Theorem
3.1. This follows from the surprising fact that the first row of the feasible
matrices in the strengthened relaxation MCPSDP3 yields a feasible matrix
for the relaxation MCSDP.

1.1 Background
1.1.1 Notation and Preliminaries

We work in the space of n X n symmetric matrices, S, with the trace inner
product (A, B) = trace AB, and dimension t{(n) = n(n+1)/2. We let Ao B
denote Hadamard (elementwise) product. For given Y € S+ the
t(n) vector z = Yj 1.4(n) denotes the first (zero-th) row of Y after the first
element. We let e denote the vector of ones and E = ee” the matrix of ones;
their dimensions will be clear from the context. We also let ¢; denote the
i*h unit vector and define the elementary matrices E;; = %(eie? +ejel).

Though it is true that a linear operator on a finite dimensional space can
be expressed as a matrix, we use operator notation and operator adjoints.
We find that this simplifies cumbersome notation in the long run.

For S € 8", the vector diag(S) € ®" is the diagonal of S, while
the adjoint operator Diag(v) = diag”(v) is the diagonal matrix with
diagonal formed from the vector v € R". We use both Diag(v) and Diagwv
if the meaning is clear. (Similarly for diag and other operators.) Also,
the symmetric vectorizing operator s = svec (S) € R is formed
(columnwise) from S while ignoring the strictly lower triangular part of S. Its
inverse is the symmetrizing matrix operator S = sMat (s). The adjoint
of svec is the operator hMat = svec™ which forms a symmetric matrix where
the off-diagonal terms are multiplied by a half, i.e. this satisfies

svec (S)Tz = trace S hMat (), VS € 8", e e R,

The adjoint of sMat is the operator dsvec which works like svec except that



the off diagonal elements are multiplied by 2, i.e. this satisfies
dsvec (S)Tz = trace S sMat (), VS € 8", e e R,

For notational convenience, we define the symmetrizing diagonal vec-
tor sdiag (z) := diag(sMat (z)) and the vectorizing symmetric vector
vsMat (z) := vec (sMat (z)), where vec is the n? dimensional vector formed
from the complete columns of the matrix; the adjoint of vsMat is then given

by )
vsMat "(z) = dsvec [5 (Mat (z) + Mat (z)7)

In summary,

diag®™ = Diag

svec* = hMat
svec ! = sMat
dsvec* = sMat

vsMat™ = dsvec {% (Mat (1) + Mat ()T)} .

In this paper we will use the relationships between the following matrices
and vectors:

X = pol 2 sMat (¢) € 8", and Y = ( ?’f ) (yo a:T) € ST gy € R,

In particular, by abuse of notation, we will often use # and X interchange-
ably when the meaning is clear.

We will have need of several results on the operators. The following
Lemma and Corollary follow directly from the definitions.

Lemma 1.1 If A, B € 8", then

diag (A(B o C)) = diag (B(A o C)).

Corollary 1.1 If A, B € 8™, then
trace (A(B o C)) = trace (B(Ao()).

|
For these and other results on Hadamard products, see e.g. [14, 15].



1.1.2 Max-Cut Problem

The max-cut problem is the problem of partitioning the node set of an edge-
weighted undirected graph into two parts so as to maximize the total weight
of edges cut by the partition. We tacitly assume that the graph in question
is complete (if not, nonexisting edges can be given weight 0 to complete the
graph). Mathematically, the problem can be formulated as follows (see e.g
[19]). Let the graph be given by its weighted adjacency matrix A. Define
the matrix L := Diag (Ae) — A (L is called the Laplacian matriz associated
with the graph.) If a cut S is represented by a vector v where v; € {-1,1}
depending on whether or not ¢ € S, we get the following formulation for the
max-cut problem:

*

Mc

:= maximize %vTLv
s.t. ve{-1,1}"

Using X := vvT and vTLv = trace LX, this is equivalent to

§* = maximize trace iLX
s.t. diag(X)=e
rank(X) =1
X > 0.

It is well known that MC is an NP-hard problem, see e.g. [17]. Dropping
the rank condition and setting @ = %L, yields the SDP relaxation with the
upper bound p* < v*, see MCSDP below. This relaxation of MC is now
well known and studied in e.g. [7, 5, 8, 18]. Goemans and Williamson [8]
have provided estimates for the quality of the SDP bound for MC. They
have shown that the optimal value of this relaxation is at most 14% above
the value of the maximum cut, provided there are no negative edge weights.
In fact, by randomly rounding a solution to the SDP relaxation, they find
a p-approximation algorithm, i.e. a solution with value at least p times
the optimal value, where p = .878. However, It is NP-hard to find a p-
approximation algorithm for Max-Cut with factor better than .9412, see
[10]. Numerical tests are presented in e.g. [11, 13].

Improvements for special cases of MC are presented in e.g. [22]. Further
results on problems with general quadratic objective functions are presented
in [20, 27], e.g. Nesterov [20] uses the SDP bound to provide estimates of
the optimal value of MC, with arbitrary L = LT, with constant relative
accuracy.



2 Lagrangian Relaxation

A quadratic model for MC with a general homogeneous quadratic objective
function is

§* = max vTQu
st. v?-1=0, i=1,...,n.

MC

Note that if the objective function has a linear term, then we can homoge-
nize using an additional variable similarly constrained (see the beginning of
section 3.1). Furthermore, we assume Q # 0 (wlog) in the sequel.

2.1 SDP Relaxation of MC - First Lifting

The SDP relaxation comes from the Lagrangian dual of the Lagrangian dual
of MC, see e.g. [23, 21]. For completeness we include the details of such a
derivation. The Lagrangian dual to MC is
p* < v* :=min maxv? Qv — v’ (Diagy)v + eTy.
Yy v
Since the quadratic is bounded above only if its Hessian, 2Q) — 2Diagy, is
negative semidefinite, this is equivalent to the following SDP

v* =1 min €Ty

s.t. Diagy > Q.

Slater’s (strict feasibility) constraint qualification holds for this problem.
Therefore its Lagrangian dual satisfies

g < v*= max trace@QX
MCSDP s.t. diag(X)=e (2.1)
X = 0.

We get the same relaxation as above if we use the relationship or lifting
X = voT and vTQuv = trace QX.

The above relaxation is equivalent to the Shor relaxation [23] and the S-
procedure in Yakubovitch [25, 26]. For the case that the objective function
or the constraints contain a linear term, extra work must be done to include
the possibility of inconsistency of the stationarity conditions. Alternatively,
this can be done by homogenization and using strong duality of the trust
region subproblem [24]. The latter technique is used below.



3 Strengthened SDP Relaxation - Second Lifting

Suppose that we want to strengthen the above SDP relaxation. It is not
clear what constraints one can add to MC to accomplish this. For example,
one can add triangle inequalities, see e.g. [11, 22, 12, 13]. These triangle
inequalities define the metric polytope M,,, i.e. the inequalities for X feasible
for MCSDP are:

Xij+Xjp + Xig > -1 X5 — Xjp — Xipg > -1 VI <4,5,k<n.

These inequalities model the fact that for any three connected nodes of the
graph, either two or none of the edges are cut. The complexity of adding
these cuts is described in e.g. [22]. But it is not the case that adding a
certain subset of triangle inequalities will improve every instance of max-cut
and there are too many such inequalities to add all of them. In fact, it is
impossible to add valid linear constraints to improve the performance ratio,
[16].

To strengthen MCSDP, we start with the lifted program MC2 below.
It is equivalent to MC and is obtained by adding redundant constraints to
MCSDP. This is motivated by the work in [3, 2] where it is shown that
adding redundant constraints that involve terms of the type X X7 can lead
to strong duality. First we add to MCSDP the constraint X% — nX = 0.
This constraint is motivated by X2 = vvTvvT and vTv = n. Note that this
constraint implies X > 0, so this latter constraint becomes redundant and
may be removed. Moreover, we can simultaneously diagonalize X and X2,
therefore the eigenvalues of X must satisfy A2 — nA = 0, which implies the
only eigenvalues are 0 and n. Since the diagonal constraint implies that the
trace of X is n, we conclude that X is rank one. Thus MC2 is equivalent to
MC via the factorization X = vvT and trace QX = vTQu. We also add the
redundant constraints X o X = F to obtain MC2. Note that this constraint
(together with X > 0) also implies rank one, see Theorem 3.2.

Our starting program equivalent to MC is therefore

*

4* = max trace QX
s.t. diag(X)=e
XoX=F
X2 - nX =0.

MC2 (3.1)

Note that MC2 is itself a Max-Cut problem but with additional nonlinear
constraints, £(n) variables, and with the same optimal objective value as

MC.



3.1 Second lifting via Lagrangian duality

We follow the procedure in e.g. [21, 28] and obtain the SDP relaxation
by finding the Lagrangian dual of the Lagrangian dual. As a final step
we remove any redundant constraints. (This illustrates the advantage of the
double dual approach for finding SDP relaxations, i.e. redundant constraints
are automatically removed at the end.)

In order to efficiently apply Lagrangian relaxation and not lose the in-
formation from the linear constraint we need to replace the constraint with
the norm constraint ||diag (X) — e||?> = 0 and homogenize the problem. We
then lift this matrix problem into a higher dimensional matrix space. To
keep the dimension as low as possible, we take advantage of the fact that
X = sMat (z) is a symmetric matrix. We then express MC2 as

*

@ = max trace (Q sMat (z)) yo
s.t. sdiag (z)Tsdiag (z) — 2eTsdiag (z)yo +n =0
sMat (z) o sMat (z) = FE
sMat (z)? — nsMat (z)yo = 0
1-y2=0
z € R0y e R,

MC2 (3.2)

Note that this problem is equivalent to the previous formulation since we
can change X to —X if yp = —1. An alternative homogenization would be to
change the objective function to Ltrace (QsMat (z)?) . It appears that (the
eigenvalues of ) @) should determine which homogenization would be better,
i.e. which would result in a larger class of Lagrange multipliers when taking
the dual and therefore reduce the duality gap. (This should be looked at in
the future.)

We now take the Lagrangian dual of this strengthened formulation, i.e.
we use Lagrange multipliers w € R and 7,5 € 8" and get

p* < vi:= min max trace (QsMat (z)) yo

w,T,S m7yg:1
+ w(sdiag (z)Tsdiag (z) — 2eTsdiag (z)yo + n) (3.3)
+ trace T (E — sMat (z) o sMat (z))

+ trace S((sMat (z))? — nsMat (z)yo).

We can now move the variable yy into the Lagrangian without increasing
the duality gap, since this is a trust region subproblem and the Lagrangian



relaxation of it is tight [24]. This yields

vy = tmiTnS max trace (QsMat (z)) yo
aw, 1,5 Y0
+ w(sdiag (z)Tsdiag (z) — 2eTsdiag (z)yo + n)
+ trace T (E — sMat (z) o sMat (z)) (3.4)
+ trace S((sMat (z))? — nsMat (z)yo)
+1(1 - %3)-

The inner maximization of the above relaxation is an unconstrained pure
quadratic maximization, i.e. the optimal value is infinity unless the Hessian
is negative semidefinite in which case # = 0,y9 = 0 is optimal. Thus we
need to calculate the Hessian.

Using trace QsMat (z) = zTdsvec (Q), and pulling out a 2 for conve-
nience later on, we get the constant part (no Lagrange multipliers) of the

Hessian: 0 14 (Q)T
. zdsvec
2H, =2 <%dsvec @ ; > . (3.5)

The nonconstant part of the Hessian is made up of a linear combination of
matrices, i.e. it is a linear operator on the Lagrange multipliers. To make
the quadratic forms in (3.4) easier to differentiate we note that

dsvec Diag diag sMat = sdiag*sdiag (= Diagsvec (I))
and rewrite the quadratic forms as follows:

sdiag (z)Tsdiag (z) = T (dsvecDiagdiagsMat)z;
eTsdiag(z) = (dsvecDiage)” z;

trace S(sMat (z))®? = (sMat(z),SsMat (z))

vsMat (z)Tvec (S sMat (z))

2T vsMat *vec (SsMat (z))

2T [vsMat *vec (SsMat )]z

2T [vsMat *vec SMat vsMat ] z

= 27 [(MatvsMat)* S (Mat vsMat )] z;

trace T(sMat (z) o sMat (z)) = =27 {dsvec (T osMat (z))}
= 2T (dsvec (T osMat)) z,

where the expression with S involves vsMat *vec instead of dsvec because
SsMat (z) may not be symmetric. (It is easy to verify that vsMat “vec



reduces to dsvec if S is symmetric.) However, the expression still is a con-
gruence of S. The last expression follows from Corollary 1.1. For notational
convenience, we let #(w, T, S, t) denote the negative of the nonconstant part
of the Hessian, and we split it into four linear operators with the factor 2:

27‘[(’11), T, 5, t) = 2H; (w) + 27‘[2( ) + 27‘[3 —|— 27‘[43!
_ oy < 0 dsvec Diage) >
' (dsvec Diage) —sdlag sdiag
) <0 0
0 dsvec (T osMat)
4 < 0 Zdsvec (S)7T >
%dslvec (S) (MatvsMat)* S (Mat vsMat )
v2e(g
(3.6)
The elements of the above matrices may need clarification. The matrix
sdiag *sdiag € S*") is diagonal with elements determined using

el (sdiag*sdiag)e; = sdiag (e;)Tsdiag /(e )
_ 1 ifi=j=t(k), for some k
N 0 otherwise.

Similarly, letting T' = 3, t;; E;;, we have

dsvec (T osMat) = Z ti;dsvec (E;; osMat).
]
Then the matrix dsvec (E;; o sMat) is found from using

e} [dsvec (E;; o sMat (e))] .

Similarly, we can find the elements of (Mat vsMat )" S (Mat vsMat ) by can-
celling vec and Mat and using

e} vsMat *vec (SsMat (e;)) .

We can cancel the 2 in (3.6) and (3.5) and get the (equivalent to the
Lagrangian dual) semidefinite program

min nw -+ trace ET 4+ trace0S + ¢

Vy
MCDSDP2 s.t. H(w, T, S,t) > H

(3.7)

If we take T sufficiently positive definite and ¢ sufficiently large, then we
can guarantee Slater’s constraint qualification. Therefore the dual of this

10



SDP has the same optimal value v5 and it provides the strengthened SDP
relaxation of MC:

v; = max trace H.Y
s.t. HiY)=n
H;(Y)=FE
MCPSDP2 Hi(Y) = 0 (3.8)
Hiy(Y)=1

Y = 0,Y € St

To help define the adjoint operators we partition Y as

. YOO J)T
vo (o ),
It is straightforward to check that
H;(Y) = sMatdiag (Y) and H;(Y) = Yoo,

so the constraints H5(Y) = E and H}(Y) = 1 are equivalent to diag (Y') = e.
Also, H;(Y') is twice the sum of the elements in the first row of Y corre-
sponding to the positions of the diagonal of sMat () minus the sum of the
same elements in the diagonal of Y, i.e.

H;(Y) = 2svec (I,)T@ — trace Diag (svec (I,))Y.

The constraint Hi(Y') = n effectively requires that Y, ,;y =1, Vi=1,...,n,
as shown in the proof of Lemma 3.1 below. Finally, to find H3(Y), recall
that by definition,

(H3(S),Y) = ndsvec(S)Tz — ((MatvsMat)* S (MatvsMat),Y).
Taking adjoints,

(S,H3(Y)) = traceSnsMat(z)— (S, (MatvsMat)Y (Mat vsMat)™)
= (S,nsMat (z) — (MatvsMat )Y (MatvsMat)™).

Note that (MatvsMat )™ = vsMat *vec is essentially (and in the symmet-
ric case reduces to) sMat™ except that it acts on possibly nonsymmetric
matrices. Hence,

H;(Y) = nsMat (z) — (Mat vsMat ) Y (Mat vsMat )" . (3.9)

Equivalently, H%(Y) consists of the sums in MCPSDP3 below. The con-
straint H3(Y) = 0 is key to showing that for Y feasible in MCPSDP2,

11



sMat (z) is always positive semidefinite (and in fact feasible for MCSDP).
This is proved in Lemma 3.2.

We now prove that the feasible set of MCPSDP2 has no strictly feasible
points.

Lemma 3.1 IfY is feasible for MCPSDP2, then Y is singular.

Proof. LetY be feasible for MCPSDP2. The constraints #5(Y) = E and
H;(Y) = 1 together imply that diag (Y) = e. The constraint Hj(Y) = n
can be written as

2svec (I,,)T — trace Diag (svec (I,,))Y =

T _
with ¥ = <i a;—, > Since diag (Y) = e, trace Diag(svec(I,))Y = n and
T2 = n, or equivalently Z Yo¢(iy = n. Now Y = 0 implies every

’L
principal minor of Y is nonnegative, so |Y0 t( | < 1 must hold (again because

diag (Y) = €). So ZYOt =n= Yy =Li=1...,n Hence each of

so svec ([,,)

the 2 x 2 pr1nc1pal mlnors obtained from the subsets of rows and columns
{0,t(%)},7=1,...,n equals zero. Hence Y is not positive definite. [ |

In section 4 we proceed to characterize the feasible set of MCPSDP2 in
a lower dimensional space where it has strictly feasible points. However, we
first discuss how to obtain the second lifting directly from MC2.
3.2 Alternative Derivation - Direct Second Lifting

We can see the SDP relaxation directly for MC2 using the relationship

Yy = ( Yo ) (yo a:T), X = sMat (z).

z

The advantage in this is that we can use the origin of X from MC to directly
express the constraints that the elements of X are +1 and diag(X) = e.
Thus we get

diag (Y) =e, and Yy;;=1,Vi=1,...,n

We can also express the t(n + 1) constraints from X2 — nX = 0. The con-
straints corresponding to equating the diagonal entries become redundant.

12



After they are removed, the result is the simplified SDP relaxation:

v; = max trace )Y
s.t. diag( ) =e

MCPSDP3 Z Yitio1)+kt(i-1)+k T . Z;I— Yi(k—1)4it(i-1)+k

+ Xh=jn Yee-n)ieth-1)+5 — WYou(i-1)4i =0
Vi,jst.1<i<j<n
Y »0,Y € 8t<n>+1
(3.10)
This problem has 2t(n) + 1 constraints (and the constraints are full rank).
Before proceeding, it is worth noting that MCPSDP2 and MCPSDP3
are equivalent problems, i.e. their feasible sets are the same. This follows
by using Theorem 9 of [21] and the discussion (preceeding the Theorem)
therein.

For simplicity of notation, we also rewrite the constraints in MCPSDP3.

For ¢, j such that 1 <7 < j < n, define the (symmetric) matrix Q;; as:

Qij = Z B 1)tk t(G—1)+k ‘|‘k22|_ Ey(k—1)+it(-1)+k T

> Byenyprisio-1ei — nFoio1)ai-
k=j+1
Then MCPSDP3 can be written as:

v; = max traceH.Y
s.t. diagY =e
MCPSDP3 trace Eg 4(; )Y 1,i=1,...,n (3.11)
trace Q;;Y Vi, je {1 Gnhi<j
Y = 0,Y € S,

The first two sets of constraints imply that the 2 x 2 leading principal
minor of any feasible Y for MCPSDP3 is all ones. Hence, every feasible Y
for MCPSDP3 is singular, which is expected in light of Lemma 3.1 (recall
that the feasible sets of MCPSDP2 and MCPSDP3 are equal).

For the remainder of this paper, we work with the formulation MCPSDP3
of our strengthened relaxation.

3.3 Properties of the Strengthened Relaxation

One surprising result is that the matrix obtained by applying sMat to the
first row of a feasible Y is positive semidefinite, even though this nonlinear

13



constraint was discarded in MC2.

Lemma 3.2 Suppose that Y 1is feasible in MCPSDPS3. Then
sMat (YOJ:t(n)) >0

and so is feasible in MCSDP.

Proof. For Y feasible for MCPSDP3, write

1 27
Y= <:L' Y > !
with @ = Yj 1.4(n). Note that Y is a principal submatrix of Y and therefore

Y > 0.
By (3.9), the constraint H3(Y) = 0 is equivalent to

1

sMat (z)
n

(Mat vsMat )Y (Mat vsMat )

and thus sMat () is a congruence of the positive semidefinite matrix Y.
The result follows. [ |

The added nonlinear constraint X2 — nX = 0 has the following inter-
esting and useful properties.

Lemma 3.3 Suppose that X, X are both feasible for MCSDP. Then

trace (X% — nX)(X? - nX) > 0. (3.12)
Suppose, in addition, that both

(X2 -nX)#0, (X?-nX)#0,
and both X,X € F, a face of P, with X ¢ relint F. Then

trace (X? — nX)(X? — nX) > 0. (3.13)
Proof. By pulling out a square root, we see that
trace (X% — nX)(X? - nX) = trace {VX (X — nI)\/)_(}{\/)T((X — nI)\/)T(}

This is an inner product of congruences of negative semidefinite matrices and
so an inner product of negative semidefinite matrices. The first inequality
follows by the fact that P is a self-polar cone, i.e.

P=Pt={Z:(Z,X)>0, VXcP}.

14



(This can be shown using the square root of a positive semidefinite matrix,
commutativity of the trace, and congruence.)

To prove the second (strict) inequality, let U = [P|Q] be an orthogonal
matrix such that the columns of P span the range space of X, while the
columns of Q span the null space of X. A face can be characterized by either
the range space or the null space of any matrix in its relative interior, see
e.g. [4]. Therefore PPXP =D > 0and PTXP =D > 0, while QTXQ =0
and QTXQ = 0. This implies

UTXU:[IO) 8] UTXU:[IO) 8] (3.14)

Our hypothesis also implies that nJ — D > 0. Therefore,

trace (X% — nX)(X? — nX) = trace (D* — nD)(D? — nD) > 0.

We now prove that, unless there is no gap between MCSDP and MC, the
relaxation MCPSDP3 always provides a strict improvement over MCSDP,
as the following theorem shows.

Theorem 3.1 The optimal values satisfy

*

and vs =v' = v, =pu". (3.15)

» 1 JZ*T
=, %)

solves MCPSDP3. From Lemma 3.2, it is clear that sMat (z*) is feasible for
MCSDP. Therefore,

*
vy <v

Proof. Suppose that

v, = traceHY”™
(dsvec Q)T 2
trace @QsMat (z™)
< v

This establishes the inequality in (3.15).
Now assume that we also have

vy = v (3.16)

15



Then feasibility of X* := sMat (¢*) implies that it must, in fact, be optimal
for MCSDP. Recall that v5 is defined in (3.4). Also, we can assume that
X*2 — nX* # 0, or we are done. Therefore, we can sandwich the optimal
values and see that X* = sMat (¢*) is also optimal for the min-max problem

W= msin #(S), (3.17)
where
#(S) == S (Mt (;I)l)a‘:};sMat ()0 F(S,z) := trace (QsMat (z))
+ trace S((sMat (z))? — nsMat (z)),
(3.18)

i.e. since more Lagrange multipliers gives us a better bound, we get
V> Wt >

which then implies equality actually holds for all three values. For S optimal
in (3.17), now define the feasible set of the inner maximization problem as

G := {z : diag (sMat (z)) = e, sMat (z) > 0}
and the optimal set for the given S
R(S)={z e G:F(S,z)=¢(5)}.

It is clear that G is a convex compact set. Therefore, R(S) is also compact
by continuity of F. Moreover, R(S) is a subset of the optimal set of MCSDP,
a subset of a minimal face F of P, and, in fact, a feasible subset for MCSDP.
Let X € R(S) Nrelint F. We now get the strict inequality

trace (X2 — nX)(X?-nX) >0, Vzc R(9), (3.19)

from Lemma 3.3.
We now will apply [6, Theorem 2.1, page 188]. We see that the directional
derivative of #(S) in the direction ¢ = —(X? — nX) exists and is given by

o <8F(S,m) >
z€R(S) as I/

By (3.19) and compactness we see that this must be negative, i.e. the
directional derivative is negative which contradicts the fact that the two
optimal values are equal. [ ]
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We can also look at the added constraint X o X = E. Even though
it does not imply X > 0, it is interesting to note that adding only this
constraint to MCSDP yields a problem equivalent to MC. This follows from
the following theorem which characterizes all the {1, —1}-matrices in the
positive semidefinite cone: they are exactly the rank-one matrices formed by
the outer product of some {1, —1} n-vector with itself. (This theorem follows
as a Corollary to [15, Theorem 5.3.4]!. We include a simple independent
proof.)

Theorem 3.2 Let X be an n X n symmetric matriz. Then
X =0,X e {1,-1}""  ifand only if X =zzT, for some z € {1,—1}"

Proof. Showing sufficiency is straightforward: if X = z27 then for any
y € R™, we have
y" Xy =|l2"y|I* > 0,
hence X is positive semidefinite.
To prove necessity, first observe that if X is symmetric, X € {1, —1}"*",
and X > 0, then all the diagonal entries of X equal 1.
If n = 2, the possibilities for X are

(1) = (2]

and it is easily checked that both are positive semidefinite and rank one.
For n > 3, we argue by contradiction. Suppose X € {1,—1}"*" and
X > 0but X is not rank-one. Let X = (2;;) and let z; denote the ith column
of X. Then wlog (permuting columns if necessary) the first two columns of
X are linearly independent, therefore #; # 25 and z; # —z,. Hence wlog

(permuting rows if necessary) #1; = 12 = 1, and 231 = —23, = —1 or
31 — —IL39 = 1.
Thus the top left 3 x 3 principal submatrix of X is either
11 -1 1 1 1
11 1 or 1 1 -1
-1 1 1 1 -1 1

Since the determinants of these matrices are negative, we have a contradic-
tion to X > 0. Hence X is rank-one. Since diag (X) = e, the result follows.
|

!The authors thank Yin Zhang, Rice University, for this reference.
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4 Geometry of the Feasible Set

We now study the geometrical structure of the feasible set of our relaxation.
Let )Y be the set of Y € S+l that are feasible for MCPSDP3. From
Lemma 3.1, we have observed that Y has no strictly feasible points; so we
seek to express Y in a lower dimensional space.

From the discussion on the direct second lifting, we know that the 2™
points

T
Y, ::( ! )( ! ) 2, = svec (vvl),v € V := {-1,1}"

Ly Ly

all belong to Y. Furthermore, since these are all the points we are interested
in, we want to optimize over F, the minimal face of the positive semidefinite
cone (in S*™H) st. Y, € F, Vo e V.

Consider the barycenter of the set of points Y,:

Yy i =27" Z Y,.
vEY

By definition of F, Y € relint . Since F is a proper face, we can find
a mapping from a lower dimensional positive semidefinite cone to F. We
construct this mapping using the results of the next theorem, which describes
some of the structure of Y.

Let P, ; denote the (t(n) + 1) x (¢(n) + 1) permutation matrix equal to
the identity matrix with the it and jth columns permuted. We define the
(permutation) matrix P as:

Theorem 4.1 1. Y is a {0,1}-matric and

1, if ¢=tk),j=tl),klec{l,....;n},k#I
Yi;=< 1, if i=j5€{0,1,...,t(n)}
0, elsewhere.

2. rank (V) = t(n — 1)+ 1 and the eigenvalues of Y are (n+1,1,0) with
multiplicities (1,t(n — 1), n), respectively.
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and

R(?):R(P [8 ft<f—1>] )

where V€ RUFTDX 4s any matriz s.t. { e V } is an orthogonal
matriz.

Proof.

1. Let v € V and consider Y,,. The elements of z, have the form (sz)j =
vaUg, where j = t(f— 1)+ afor o, 8 € {1,...,n},a # B, and further-

more
_ 1, if v, =g
(20); = { —1, otherwise.

First consider the case when o = 8 = k; here j = ¢(k) and it is clear
that (mv)t(k) =1,k=1,...,n. This holds independently of the choice
of v so we may conclude that

( ! ) =1,k=0,...,n, YveV. (4.1)
t(k)

Now suppose a # f3; then v, = vg for exactly 2"~ ! elements of V and
vo # vg for the other 2"~ choices of v. Hence,

D (z0); =0,Y5 & {t(0),...,t(n)}. (4.2)

veEY

Equations (4.1) and (4.2) together imply that the oth column of ¥
equals >3 ey(r), i-e.

m:{ 1, if e {t(0),...,t(n)}

0, otherwise.

By symmetry of Y, }A’OJ = }A"j’o, so it only remains to examine }A’M for
i,7=1,...,t(n).
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The remaining #(n) columns of ¥ are:

. . 1
veY v
for j=1,...,t(n). If i = j then Y;; = 27" ¥,y (2,); = 1, so we now
suppose i # j.
If i = t(k) and j = t(I) for some k,l € {1,...,n}, k #1, then
Yi;j=2"")" (@) iy (o)) = 1,

veY
using (4.1).
If ¢ # t(k), Vk but j = (), then

Yij=27") () =1,
veY

using (4.1) and (4.2). The case ¢ = t(k) but j # t(I), VI is handled
similarly.
Finally, if ¢ # t(k), Yk, and j # t(I), VI, then we need only observe
that ((z,);, (2,);) = (1,1) in exactly 2"~ elements of V, and the same
count also holds for each of the combinations (1, -1), (-1,1), (-1, -1).
Thus, 3°,cp (20);(20); = 0. Hence ¥; ; = 0.

. Define

Vp=pPTyp= |2 0 c SEHm+1)x(t(n)+1)
0 It(n)—n

Since this is a similarity transformation, ¥ and Yp have exactly the
same eigenvalues, so it suffices to prove the result for Yp. Also, Yp is
block diagonal, so its eigenvalues are those of the blocks. The lower
block has the eigenvalue 1 with multiplicity ¢(n) — n = t(n — 1) (we
have the set of eigenvectors e, 41, .. ., et(n)). The upper block is clearly

#(i) e (i)

n 4+ 1 is its only nonzero eigenvalue. For V' as in the statement of the
14
0
give a set of eigenvectors for the zero eigenvalue, which has multiplicity
n.

rank-1; since

theorem, Yp = 0. So the columns of V' (extended with zeros)

20



3. The result follows by the similarity of ¥ and Yp and the proof of the
previous part of the theorem.

Now define the matrix

we=p | ¢ € REDHDX(En-1)+1)
0 Iitn-1)

with e € ®*t1. Then R(Y) = R(W) and we can use W to provide a
mapping from SHn=1+1 t5 the minimal face F: if Y € F, Y = WZWT for
Z € Stt=D+1 " and we require Z > 0 to stay in the positive semidefinite

cone of the smaller space.
The projected version of MCPSDP3 is thus:

vy = max trace(WIHW)Z
s.t.  trace(WTE,;W)Z =1,i=0,...,t(n)
trace (WTEOJ(i)W)Z =1,i=1,...,n
trace (WTQ;;W)Z =0,Vi,j€{1,...,n},i<j
Z = 0,7 € Stn—D+1,

We now remove all the redundant constraints in this program.
Let w; denote the i*® column of W7T. The construction of W implies

wl = wzzi) =el Vic {1,...,n}, and the remaining columns of W:

T .o . . T T T
{wijoni 67 €{L, .. onhi<jl={er, ez, 1)}

form a linearly independent set. (Together with wl, they form a basis for
%t(n—l)—l—l‘)
Since WTE;W = w;w! and WTE07t(i)W = %(woth(i) + th(i)wg), we
have
WTEt(i),t(i)W = wowl = WTEwWW,Vie {1,...,n}
and
WTEo,t(i)W = wows = WTEwW,Vie {1,...,n}.
These observations allow us to remove 2n redundant constraints and

obtain the projected SDP:

v; = max trace(

MCPSDP3p trace (WTQ;;W)Z =0,Yi,j € {1,...,n},i<j
Z z 0, Z E St(n—l)-l-l‘

21
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To verify that there is no more redundancy in the constraints, observe
that the first set of equality constraints is now equivalent to the (linear)
constraint diag (Z) = e, that diag(WTQ;;W) = 0, V4,5 above, and that
the first column of each matrix WTQijW is equal to Z*wy(j_1)44. Since
these columns are all linearly independent, we conclude all the constraints
are indeed linearly independent.

5 Solving the strengthened relaxation

We now solve the projected strengthened relaxation MCPSDP3p. First we
simplify our notation. We have the following primal-dual pair:

p* = max trace(WTH.W)Z
(P) st. diagZ =e
trace (WTQ;W)Z =0,V (i,5) € J
Z 0,7 ¢ §tn-1+1
d*= min ) z;
€T
(D) st. S=Diag(e)+ ¥ w,WIQ,W-WwTHW
(i.g)ed
S =0,z € RV 4 ¢ Ri(—1)
where
IT:={1,...,t(n—-1)+1}
T =A{074):45€{L,...,n},i<j}.
We begin by establishing that Slater’s constraint qualification holds for
the primal problem (P). This guarantees p* = d*, i.e. there is no duality

gap.
Lemma 5.1 Slater’s constraint qualification holds for (P).

Proof. We consider the matrix Z := Ti(n—1)41- Since Z = 0, we only
need to verify that it satisfies the equality constraints.
Clearly, trace E;Z = 1, Vi € Z. Now observe that

T
WWT _ p € 0 € 0 PT
0 Lin_ny 0 Iin-1
_ L, [EB 0 T
0 Iin-1)
= PYpPT
_ v
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where Yp is the matrix defined in the proof of Theorem 4.1.
Using this observation, the second set of equality constraints for Z may
be written as
traceQ;;Y =0, V(4,5) € J,
and it is now straightforward to verify that these equalities hold:

1 J
traceQ;;Y =0 & ZYt(i—1)+k,t(j—1)+k‘|' > Yi(k—1)4it(i-1)+k
k=1 k=1+1

+ > Yigenytise-1)4s — Yooty = 0
k=j+1

and the right-hand side holds Abecause for each choice of (¢,7) € J, by
Theorem 4.1(1), the entries of Y involved are all zero. [ |

It is straightforward to prove that the same is true for the dual problem.
Lemma 5.2 Slater’s constraint qualification holds for (D).
Proof.  Since Z Ei; = Ii(n—1)41, if we choose §;; := 0 V (4,j) € J and
Z; == ||dsvec (Q )Hl —|— 1V € Z, the corresponding dual (slack) matrix is
S = (lldsvec (@)l + Dlypn-1)41 — WT HW

and clearly S is strictly diagonal dominant and has all its diagonal entries
positive. It follows that S is positive definite. [ |

5.1 Primal-dual interior-point algorithm

The relaxations MCSDP and MCPSDP3p were compared on a variety of
problems using the software package SDPPACK (version 0.9 Beta) [1]. In
the case of MCPSDP3p, the matrix X in this section is obtained by

X = sMat ((Wz*WT)O,lzt(n))’

where Z* is optimal for MCPSDP3p. In all the test problems we used,
the resulting matrix X was always found to be positive semidefinite. We
also examined the numerical rank of X, i.e. the number of eigenvalues that
appear to be nonzero. See Table 1 for some typical results. We also tested
both bounds on random quadratic boolean problems (i.e. with negative
weights allowed). Results are presented in Table 2.
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n | Weight of MCSDP bound | MCPSDP3p bound | Numerical
optimal cut (% rel. error) (% rel. error) rank of X
5 4 45225 (13.06%) | 4.2890 (7.22%) 2
p = 0.8845 p = 0.9326
10 12 12.5 (4.17%) 12.3781 (3.15%) 1
p = 0.9600 p = 0.9695
7 56 56.4055 (0.72%) | 56.0954 (0.17%) 3
p = 0.9928 p = 0.9983
8 30 30.2015 (0.67%) 30.0000 (7.5e-09%) 1
p = 0.9933 p = 1.0000
9 58 58.9361 (1.61%) | 58.1182 (0.20%) 3
p = 0.9841 p = 0.9980
10 64 64.0811 (0.1268%) 64 (0%) 1
p = 0.9987 p = 1.0000
12 88 90.3919 (2.72%) | 89.5733 (1.79%) 4
p = 0.9735 p = 0.9824
14 114 115.1679 (1.02%) 114.5758 (0.51%) 3
p = 0.9899 p = 0.9950
16 158 160.0201 (1.28%) 159.1054 (0.70%) 4
p = 0.9874 p = 0.9931

Table 1: The first line of results corresponds to solving both MC relaxations
for a 5-cycle with unit edge-weights. The second line corresponds to the
Petersen graph with unit edge-weights. All the other results come from
randomly generated weighted graphs. For each bound, the rel.
defined as the difference between the bound and the value of optimal cut
divided by the value of the optimal cut, and p equals the value of the optimal
cut divided by the bound.

error is

Our results show the strengthened bound MCPSDP3p yielding a strict
improvement over MCSDP every time.

Because the matrix variable Y in MCPSDP3p has O(n*) scalar vari-
ables, solving the relaxation using an interior-point method becomes very
slow and requires a large amount of memory, even for moderate n. However,
it is important to note that the strengthened relaxation MCPSDP3p has a
special sparsity structure. Future work will aim at exploiting this structure
to develop a specialized algorithm that addresses the above mentioned lim-
itations and allows to efficiently solve the relaxation for large instances of

MC.
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n | Weight of MCSDP bound | MCPSDP3p bound | Numerical
optimal cut (% rel. error) (% rel. error) rank of X
9 10 13.1744 (31.74%) | 11.4416 (14.42%) 3
p = 0.7590 p = 0.8740
10 54 58.5410 (8.41%) 56.1157 (3.92%) 4
p = 0.9224 p = 0.9623
12 120 125.8493 (4.87%) | 122.7504 (2.29%) 4
p = 0.9535 p = 0.9776
14 104 118.4940 (13.94%) | 113.1409 (8.79%) 5
p = 08777 p = 0.9192
16 182 101.6495 (5.30%) | 187.7041 (3.13%) 5
p = 0.9497 = 0.9696

Table 2: Results for randomly generated quadratic boolean problems. For
each bound, the rel. error is defined as the difference between the bound
and the value of optimal cut divided by the value of the optimal cut, and p
equals the value of the optimal cut divided by the bound.

6 Conclusion

We have presented an SDP relaxation that provides a strengthened bound
for MC relative to the current well-known SDP bound for MC. Though
the computation time required to solve this new SDP relaxation is large
compared to the time for solving the well-known SDP relaxation, it is hoped
that a specialized algorithm exploiting structure will improve this situation
and that this new bound will be competitive both in time and in quality. In
addition, provable quality estimates need to be shown.
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