Comput Optim Appl (2009) 44: 213-247
DOI 10.1007/s10589-007-9157-2

A stable primal-dual approach for linear programming
under nondegeneracy assumptions

Maria Gonzalez-Lima - Hua Wei -
Henry Wolkowicz

Received: 6 July 2006 / Revised: 23 November 2007 / Published online: 20 December 2007
© Springer Science+Business Media, LLC 2007

Abstract This paper studies a primal—dual interior/exterior-point path-following ap-
proach for linear programming that is motivated on using an iterative solver rather
than a direct solver for the search direction. We begin with the usual perturbed
primal—dual optimality equations. Under nondegeneracy assumptions, this nonlin-
ear system is well-posed, i.e. it has a nonsingular Jacobian at optimality and is not
necessarily ill-conditioned as the iterates approach optimality. Assuming that a basis
matrix (easily factorizable and well-conditioned) can be found, we apply a simple
preprocessing step to eliminate both the primal and dual feasibility equations. This
results in a single bilinear equation that maintains the well-posedness property. Spar-
sity is maintained. We then apply either a direct solution method or an iterative solver
(within an inexact Newton framework) to solve this equation. Since the linearization
is well posed, we use affine scaling and do not maintain nonnegativity once we are
close enough to the optimum, i.e. we apply a change to a pure Newton step technique.

M. Gonzalez-Lima research supported by Universidad Simén Bolivar (DID-GID001) and Conicit
(project G97000592), Venezuela. H. Wei research supported by The Natural Sciences and
Engineering Research Council of Canada and Bell Canada. H. Wolkowicz research supported by The
Natural Sciences and Engineering Research Council of Canada.

URL: http://orion.math.uwaterloo.ca/~hwolkowi/henry/reports’ ABSTRACTS.html. This report is a
revision of the earlier CORR 2001-66.

M. Gonzalez-Lima

Department of Scientific Computing and Statistics, Simon Bolivar University, Caracas

1080, Venezuela

e-mail: mgl@cesma.usb.ve

H. Wei - H. Wolkowicz ()

Department of Combinatorics & Optimization, University of Waterloo, Waterloo,
Ontario N2L 3G1, Canada

e-mail: hwolkowicz @uwaterloo.ca

H. Wei
e-mail: h3wei@math.uwaterloo.ca

@ Springer


http://orion.math.uwaterloo.ca/~hwolkowi/henry/reports/ABSTRACTS.html
mailto:mgl@cesma.usb.ve
mailto:hwolkowicz@uwaterloo.ca
mailto:h3wei@math.uwaterloo.ca

214 M. Gonzalez-Lima et al.

In addition, we correctly identify some of the primal and dual variables that converge
to 0 and delete them (purify step).

We test our method with random nondegenerate problems and problems from the
Netlib set, and we compare it with the standard Normal Equations NEQ approach.
We use a heuristic to find the basis matrix. We show that our method is efficient for
large, well-conditioned problems. It is slower than NEQ on ill-conditioned problems,
but it yields higher accuracy solutions.

Keywords Linear programming - Large sparse problems - Preconditioned conjugate
gradients - Stability

1 Introduction

The purpose of this paper is to study an alternative primal—dual path-following ap-
proach for Linear Programming (LP) that is based on an (inexact) Newton method
with preconditioned conjugate gradients (PCG). We do not form the usual normal
equations system, i.e. no ill-conditioned system is formed. For well-conditioned
problems with special structure, our approach exploits sparsity and obtains high ac-
curacy solutions.

The primal LP we consider is

p* :=mincTx
(LP) st. Ax=b, 1.1)
x >0.

The dual program is

d* :=maxb'y
(DLP) st. ATy4+z=c, (1.2)
z>0.

Here A e R™*", c € R", b € R™. We assume that m < n, A has full rank, and the
set of strictly feasible points defined as

f"’:{(x,y,z):Ax:b, ATy+z:c,x>O,z>0}

is not empty. Our algorithm assumes that we can obtain the special structure A =
(B E) (perhaps by permuting rows and columns), where B is m x m, nonsingular, not
ill-conditioned, and it is inexpensive to solve a linear system with B. Our approach
is most efficient under nondegeneracy assumptions.

Throughout this paper we use the following notation. Given a vector x € R", the
matrix X € R"*"  or equivalently Diag(x), denotes the diagonal matrix with the
vector x on the diagonal. The vector e denotes the vector of all ones (of appropri-
ate dimension) and / denotes the identity matrix, also with the appropriate correct
dimension. Unless stated otherwise, || .| denotes the Euclidean norm. And, given
F :R" — R, we let F’'(x) denote the Jacobian of F at x.

@ Springer



A stable primal—dual approach for linear programming 215

1.1 Background and motivation

Solution methods for Linear Programming (LP) have evolved dramatically follow-
ing the introduction of interior point methods. (For a historical development, see e.g.
[45, 50] and the references therein.) Currently the most popular methods are the el-
egant primal—-dual path-following methods. These methods are based on log-barrier
functions applied to the nonnegativity constraints. For example, we can start with the
dual log-barrier problem, with parameter p > 0,

n
d¥:=max bly+ MZlogzj
(Dlogbarrier) j=1 (1.3)
st. ATy+z=c,
z>0.

The stationary point of the Lagrangian for (1.3) (x plays the role of the vector of
Lagrange multipliers for the equality constraints) yields the optimality conditions

ATy+z—c
( Ax —b ):0, x,z>0. (1.4)

X—pz!

For each u > 0, the solution of these optimality conditions is unique. The set of
these solutions forms the so-called central path that leads to the optimum of (LP)
as u tends to 0. However, it is well known that the Jacobian of these optimality
conditions grows ill-conditioned as the log-barrier parameter p approaches 0. This
ill-conditioning (as observed for general nonlinear programs in the classical [19])
can be avoided by changing the third row of the optimality conditions to the more
familiar form of the complementary slackness conditions, ZXe — e = 0. One then
applies a damped Newton method to solve this system while maintaining positivity of
x, z and reducing u to 0. Equivalently, this can be viewed as an interior-point method
with path-following of the central path.

It is inefficient to solve the resulting linearized system as it stands, since it has
special structure that can be exploited. Block eliminations yield a positive definite
system (called the normal equations, NEQ) of size m, with matrix ADAT, where D
is diagonal; see Sect. 2.2. Alternatively, a larger augmented system or quasi-definite
system, of size (m + n) x (m + n) can be used, e.g. [51], [45, Chap. 19]. However,
the ill-conditioning returns in both cases, i.e. we first get rid of the ill-conditioning
by changing the log-barrier optimality conditions; we then bring it back with the
backsolves after the block eliminations; see Sect. 2.2.2. Another potential difficulty
is the possible loss of sparsity in forming ADAT.

However, there are advantages when considering the two reduced systems. The
size of the normal equations system is m compared to the size m + 2n of the original
linearized system. And efficient factorization schemes can be applied. The augmented
system is larger but there are gains in exploiting sparsity when applying factorization
schemes. Moreover, the ill-conditioning for both systems has been carefully studied.
For example, the idea of structured singularity is used in [49] to show that the normal

@ Springer



216 M. Gonzalez-Lima et al.

equations for nonlinear programming can be solved in a stable way in a neighbour-
hood of the central path. However, the backsolve step can still be negatively affected
by ill-conditioning if the assumptions in [49] are not satisfied; see our Example 2.2
below. In particular, the assumption of positive definiteness of the Hessian in [49]
does not apply to LP. For further results on the ill-conditioning of the normal equa-
tions and the augmented system, see e.g. [49, 52, 53] and the books [45, 50]. For a
discussion on the growth in the condition number after the backsolve, see Remark 2.6
below.

The major work (per iteration) is the formation and factorization of the reduced
system. However, factorization schemes can fail for huge problems and/or prob-
lems where the reduced system is not sparse. If A is sparse, then one could apply
conjugate-gradient type methods and avoid the matrix multiplications, e.g. one could
use A(D(ATv)) for the matrix-vector multiplications for the ADAT system. How-
ever, classical iterative techniques for large sparse linear systems have not been gen-
erally used. One difficulty is that the normal equations can become ill-conditioned. It-
erative schemes need efficient preconditioners to be competitive. This can be the case
for problems with special structure, see e.g. [27, 35]. For other iterative approaches
seee.g. [2, 8, 13, 14, 26, 31, 34, 37].

Although the reduced normal equations approach has benefits as mentioned above,
the ill conditioning that arises for NEQ and during the backsolve step is still a poten-
tial numerical problem for obtaining high accuracy solutions. In this paper we look at
a modified approach for these interior point methods. We use a simple preprocessing
technique to eliminate the primal and dual feasibility equations. Under nondegen-
eracy assumptions, the result is a bilinear equation that does not necessarily result
in a linearized ill-conditioned system. (Though the size of our linearized system is
n x n compared to m x m for NEQ.) Moreover, in contrast to NEQ, the backsolve
steps are stable. Therefore we can use this stable linear system to find the Newton
search direction within a primal—dual interior point framework. Furthermore, this al-
lows for modifications in the primal—dual interior point framework, e.g. we do not
have to always backtrack from the boundary and stay strictly interior. We then work
on this linear system with an inexact Newton approach and use a preconditioned
conjugate-gradient-type method to (approximately) solve the linearized system for
the search direction. One can still use efficient Cholesky techniques in the precondi-
tioning process, e.g. partial Cholesky factorizations that preserve sparsity (or partial
QR factorizations). The advantage is that these techniques are applied to a system
that does not necessarily get ill-conditioned and sparsity can be directly exploited
without using special techniques. As in the case mentioned above, the approach is
particularly efficient when the structure of the problem can be exploited to construct
efficient preconditioners. (This is the case for certain classes of Semidefinite Pro-
gramming (SDP) problems, see [48].) We also use a change to a pure Newton step
and purification techniques to speed up the convergence. In particular, the robustness
of the linear system allows us to apply the so-called Tapia indicators [18] to correctly
detect those variables that are zero at the solution.

@ Springer



A stable primal—dual approach for linear programming 217

1.2 Outline and main contributions

In Sect. 2 we introduce the basic properties for LP interior point methods. Section 2.2
presents the block elimination scheme for NEQ system, i.e. the scheme to find the
normal equations, NEQ. This is compared to the block elimination scheme for our
stable method in Sect. 2.4. In particular, we show that, as we approach the optimum,
the condition number for the NEQ system converges to infinity while (under nonde-
generacy assumptions) the condition number for the stable method stays uniformly
bounded. This is without any special assumptions on the step lengths during the it-
erations, see Proposition 2.5. In fact, the reciprocal of the condition number for the
NEQ system is O (i), see Remark 2.6. (In [25] it is shown that the condition number
of the normal equations matrix (not the entire system) stays uniformly bounded un-
der the nondegeneracy assumption and neighbourhood type restrictions on the step
lengths.) We include numerical examples that illustrate numerical roundoff difficul-
ties. In Sect. 3 we present the primal—dual interior point algorithm. The precondition-
ing techniques are given in Sect. 3.2. The change to a pure Newton step technique
is described in Sect. 3.3 while the purification technique appears in Sect. 3.4. The
numerical tests, on randomly generated problems and the standard NETLIB test set,
are given in Sect. 4; concluding remarks are given in Sect. 5.

2 Duality, optimality, and block eliminations

We first summarize the well known duality properties for LP. If both primal and
dual problems have feasible solutions, x, y, z, then: cTx > bTy (weak duality); and
p* = d* and both optimal values are attained (strong duality).

The well known primal—dual optimality conditions (primal feasibility, dual feasi-
bility, and complementary slackness) follow from the weak and strong duality prop-
erties.

Theorem 2.1 The primal-dual variables (x, y, z), with x, z > 0, are optimal for the
primal-dual pair of LPs if and only if

ATy+z—c
F(x,y,z)::( Ax —b ):O. 2.1
ZXe
Moreover, for feasible (x, y, z), we get
duality gap=c'x —bTy =x"T (c — ATy) =x'z. 2.2)
2.1 Linearization

Note that F : R" x R x R — R" x R x R". Let u > 0 and let us consider the
perturbed optimality conditions

ATy+z—c rd
Fu(x,y,z):= ( Ax—b ) = (rp) =0, 2.3)
ZXe — e

@ Springer



218 M. Gonzalez-Lima et al.

thus defining the dual and primal residual vectors r4, r, and perturbed complemen-
tary slackness r.. Currently, the successful primal—-dual algorithms are path-following
algorithms that use a damped Newton method to solve this system approximately with
(x, z) > 0. This is done in conjunction with decreasing u to 0. The Newton equation

Ax
(the linearization) for the Newton direction As = (Ay) is

Az
0 AT 1
FL(x,y,z)As: (A 0 O)As:—FM(x,y,z). 2.4)
Z 0 X
Damped Newton steps
X < x+apAx, Yy <—y+oagAy, < z2+aqAz,

are taken that backtrack from the nonnegativity boundary to maintain the positiv-
ity/interiority, x > 0, z > 0.
Suppose that F,(x, y, z) = 0in (2.3). Then (2.3, 2.2) imply

| 1 ¢ 1 ¢ 1 :

u=—ue e=—e ZXe= —z x = —(duality gap),

n n n n

i.e. the barrier parameter © is a good measure of the duality gap. However, most
practical interior-point methods are infeasible methods, i.e. they do not start with
primal—dual feasible solutions and stop with nonzero residuals. Similarly, if feasi-
bility is obtained, roundoff error can result in nonzero residuals r4, 7, in the next

iteration. Therefore, in both cases,

T

nu X

c— ATy + rd)Tx

cTx —yTAx + r;x)

CT

=z

=

=

= (ch —yT(b—i-r,;)—}-r}x)
= ( x—bTy—r;y+r;,rx)
=(

ctra)x—mb+ry)ty (2.5)

i.e. npu measures the duality gap of a perturbed LP. (See e.g. the survey article on
error bounds [40].)

2.2 Reduction to the normal equations

The Newton equation (2.4) is solved at each iteration of a primal—dual interior point
(p-d i-p) algorithm. This is the major work involved in these path-following algo-
rithms. Solving (2.4) directly is too expensive. There are several manipulations that
can be done that result in a much smaller system. We can consider this in terms of
block elimination steps.

@ Springer



A stable primal—dual approach for linear programming 219

2.2.1 First step in block elimination for normal equations

The customary first step in the literature is to eliminate Az using the first row of
equations. (Note the linearity and coefficient / for z in the first row of (2.3).) Equiv-
alently, apply elementary row operations to matrix F l/t (x,y,2), or find a matrix Pz
such that the multiplication of Pz F ;/L (x, y, z) results in a matrix with the correspond-
ing columns of Az being formed by the identity matrix and zero matrices. This is,

I 0 0\ /0 AT 7| 0o AT 1
(0 I 0>(A 0 0>=<A 0 0), (2.6)
-X 0 I/ \zZz 0 X Z —XAT o0
with right-hand side
I 0 0\ /ATy+z—¢ rd
—(0 I 0)( Ax —b ):—( rp ) (2.7)
-X 0 I ZXe — e —Xrqg+ZXe — e
We let
I 0 0 0o AT I
Pz=<0 I 0), K:(A 0 0). (2.8)
-X 0 I Z —XAT 0

2.2.2 Second step in block elimination for normal equations

The so-called normal equations are obtained by further eliminating Ax. (Note the
nonlinearity in x in the third row of (2.3).) Following a similar procedure, we define
the matrices F,,, P, with

I 0 0 0o AT T
Fn:=PnK:=<O I —Az—1)<A 0 0)

o0 z! Z —XAT 0
0 AT I,

= |0 [az'xa] 0. 29

I, —-zZ7'xAT o0
The right-hand side becomes
ATy +z—c —rq
—P,Pz ( Ax —b ) = (—rp +A—Z " Xrg+x— MZ_le)> . (2.10)
ZXe — e Z_erd—x-i—;LZ_le

The algorithm for finding the Newton search direction using the normal equations is
now evident from (2.9): we move the third column before column one and interchange
the second and third rows:

I, O AT Az —ry

0 I, —-z1'xAT (Ax> :( Z Xrg—x+uzle )

0 0 | Az 'xAT Ay —rp+ A(=Z Xrg+x —pnZ 7 te)
(2.11)

@ Springer



220 M. Gonzalez-Lima et al.

Thus we first solve for Ay, then backsolve for Ax, and finally backsolve for Az. This
block upper-triangular system has the disadvantage of being ill-conditioned when
evaluated at points close to the optimum. This will be shown in the next section. The
condition number for the system is found from the condition number of the matrix
F,, and not just the matrix AZ “1x AT, (Though, as mentioned above, the latter can
have a uniformly bounded condition number under some standard neighbourhood
assumptions plus the nondegeneracy assumption, see e.g. [25].) F}, is unnecessarily
ill-conditioned because P, is an ill-conditioned transformation.

2.3 Roundoff difficulties for NEQ examples

We present several numerical examples with NEQ (cases that are not covered in [49])
involving combinations of: degeneracy or nondegeneracy; feasible or infeasible start-
ing points; and large residuals. (Difficulties with degeneracy and NEQ appear in e.g.
Fig. 1 below.)

2.3.1 Nondegenerate but with large residual

Even if a problem is nondegenerate, difficulties can arise if the current primal—dual
point has a large residual error relative to the duality gap. This emphasizes the impor-
tance of keeping the iterates well-centered for NEQ.

Example 2.2 Here the residuals are not the same order as u. We see that we get
catastrophic roundoff error. Consider the simple data

A=(1 1), c=<_]1>, b=1.

The optimal primal-dual variables are

) =)

We use 6 decimals accuracy in the arithmetic and start with the following points
(nonfeasible) obtained after several iterations:

9.183012 x 10~ 2.193642 x 108
= (1.356397 x 10—8> T < 1.836603 ) y=—1.163398.
The residuals (relatively large) and duality gap measure are:

Il =0.081699,  [rall =0.36537,  u=x"z/n=2.2528 x 1075.

Though w is small, we still have large residuals for both primal and dual feasibility.
Therefore, 2 = nu is not a true measure of the duality gap. The two search direc-

Ax
tions, (Ay), that are found using first the full matrix F p/‘ in (2.4), and second the
Az

@ Springer



A stable primal—dual approach for linear programming 221

system with F;, in (2.9) (solving Ay first and then backsolving Ax, Az) are, respec-
tively,

8.16989 x 1072 —6.06210 x 10
—1.35442 x 1078 —1.35441 x 108
1.63400 x 10~ [, 1.63400 x 101

—2.14348 x 108 0
1.63400 x 107! 1.63400 x 107!

Though the error in Ay is small, since m = 1, the error after the backsubstitution
for the first component of Ax is large, with no decimals accuracy. The resulting
search direction results in no improvements in the residuals or the duality gap. Using
the accurate direction from Fj, see (2.16) below, results in good improvement and
convergence.

In practice, the residuals generally decrease at the same rate as u. (For example,
this is assumed in the discussion in [51].) But, as our tests in Sect. 4 below show, the
residuals and roundoff do cause a problem for NEQ when u gets small.

2.3.2 Degenerate case

‘We use the data

(1 0 1 0 (2 B .
A‘(o 2 0 _1>’ b—(()), c=(1 1 1 1)". (2.12)

An optimal primal—dual solution is

1

*_O *_1 * _

=l YT\ o) T
0

This problem is degenerate; x = [2, 0, 0, O]T is also an optimal solution. We par-
tition into index sets B = {1, 3} and A/ = {2, 4}. Following the analysis in [53], we
assume that x, z are in a certain neighbourhood of the central path and that the resid-
uals are of order w. Then the computed values satisfy (again from [53])

— o = O

Ay — Ay = O(u);

Axp—Axg=0@);  Axy — Axy = O(uu); (2.13)
Azp — Azg = O(uw); Azy — Azy = O(u).

Here ™ denotes the computed solution, and u is the unit roundoff. The results (2.13)
hold independent of the condition number of the system. Furthermore, the analysis in
[53] implies that the computed solutions progress well, i.e. with step lengths close to
one.
We now present two degenerate examples where the bounds (2.13) fail for NEQ.
We first present a pair of x and z that satisfy our assumptions (i.e. they are close
to the central path and the infeasibility residuals are O (u)). We use MATLAB’s “\”

@ Springer



222 M. Gonzalez-Lima et al.

(double precision) solver on the full system

0 AT 1| Ax —rq
(A 0 o)<Ay)=( - ) @1
Z 0 X Az —ZXe+ e

and consider this to be the accurate evaluation of the search direction. We then com-
pare this with the NEQ approach, i.e. we solve

0 AT I\ /Ax —ry
( 0 Az 'xAT o ) (Ay) = (—r,, +AZ YXrg+x — Mz—le)> .
I, —z7'xAT o Az Z Xrg—x+uzle

We solve 5} first, and then backsolve for Ax and Az. We simulate the f1(-) opera-
tion by keeping the 8 most significant digits after each arithmetic operation.

Example 2.3 We start with infeasible x and z

9.9985999 x 10~} 1.3758855 x 1074
o [ 23975770 < 107 [ 99979802 x 107!
~ 1 9.9983748 x 10! |’ *= 1 2.8397156 x 10~*

1.7333628 x 10~4 1.0001754

obtained by perturbing the optimal x* and z*. We get

—42x 1073

B 4 _(-30x107* | 18x107*
p=2.1x10"", r[’_< 3.1x 1074 )’ A= 10x 1074
—17x1073

Therefore the residuals are of order w. The solutions for Ay satisfy

Ay — —2.9255369 x 107> N —2.9262363 x 1073
Y=\ 18441334 x 1071 ) Y=\ 18441335 x 1071 )

Ay Ry (6:99389248 x 107
YT AY=15.29186195 x 1079 /-

Since the system for Ay is diagonal, the error is approximately equal to the unit
roundoff, 10~8. But the backsolve step

Ax=Z"Xrg—x+puZ e+ 72 'XATAy

@ Springer



A stable primal—dual approach for linear programming 223

is inaccurate because P, in (2.9) was an ill-conditioned transformation:

1.92649415 x 10~ 1.5234654 x 10~4
Ay — | ~1:19476143 x 10~ - | 11947615 x 10~
| 1.098805846 x 10~ |’ | 15017835 x107* |’

6.722683477 x 107 6.7226831 x 1075

4.0302875 x 1073
7.3832399 x 10~12
—4.0297765 x 107>
3.7664799 x 1012

Ax — Ax =

Although the nonbasic variables have absolute error O (nu), this is not true for the
basic variables, where we get approximately 0(5). (In terms of relative error, it is

O(%), since (Ax, Ay, Az)is O(u).)

Example 2.4 This second example shows that catastrophic error can occur in 5} In
this example, we change the data matrix A to

(1 0 1 0 (2 B .
A‘(z 2 2 _1>’ b—(4>, c=(1 1 1 1)". (2.15)

An optimal solution is
=1 0 1 0T, =@ 1 0 1.

We let the initial x and z be

9.9985681 x 10! 1.9454628 x 10~*
[ 81713298 x 1073 ~ [ 9.9961681 x 107!
- 1.0001432 ’ T | 1.9454628 x 10~4

1.634266 x 104 1.0001916

Again, we check the duality gap parameter and the residuals:

9.99999994 x 10~
— —4 ==
p=21x10"% rp= <1_99959995 x 10—8) ’

4.77999995 x 10~
—1.50000001 x 10~°?
4.77999995 x 10~
5.75000003 x 10~°

=

In this case Z\y is quite inaccurate:

ay_ (647338334 x 107! o ((—1-5866402 x 107!
Y=\ 2323651175 x 10-1 ) Y= 7.935 x 102 :

Ay 5 (8060023536 x 107!
YT AY=N 24.030011751 x 107! )

@ Springer



224 M. Gonzalez-Lima et al.

For Ax we have

1.16701057 x 10~ 7.4739018 x 107>
Ap— | 239921125 x 107 | 89878474 x 107
= 2116711057 x 1074 |0 Y= 21.5868482 x 1074 |

4.79842209 x 1073 —1.7864276 x 107

4.196203945 x 107>
—6.588636152 x 107
4.197376255 x 107
6.584849696 x 1072

Ax — Ax =

For Az we have

—3.59881646 x 105 —3.598 x 105
A, — | 64730235 x 10~ o | 1587 107!
=1 —3.5988165 x 105 |° = 23508 x 1075 |

—3.2365118 x 107! 7.935 x 1072

—8.16462922 x 1077
8.06002352 x 107!
—8.16462922 x 10~°
—4.03001181 x 10~}

Az—Az=

2.4 Simple/stable reduction

There are other choices for the above second step in Sect. 2.2.2, such as the one
resulting in the augmented (quasi-definite) system [46, 50].

In our approach we present a different type of second elimination step. We assume
that we have the special structure A = (B E) (perhaps obtained by permuting rows
and columns), where B is m x m, nonsingular and not ill-conditioned, and it is inex-
pensive to solve the corresponding linear system Bu = d, i.e. a factorization B = LU
can be found with both L and U triangular and sparse. For example, the best choice
is B = I obtained when x includes a full set of slack variables. Though it is desirable
for B to be well-conditioned, there is no need for B to be a feasible basis matrix.

We partition the diagonal matrices Z, X using the vectors z = (3"), x = (}") with

2y Xy

lengths m and v =n — m. With K given in (2.8), we define the matrices Fy, Py with

I, 0 0 0 0 0 AT I,
0 B! 0 0 B E 0 0
Fo=hRK=1, —ZuwB7l I, 0 Zmw 0 —=X,BT 0
0 0 0 I, 0 Z, —-X,ET o0
0 0 AT I,
I B~ 'E 0 0
_ 2.1
0 | -Z,B'E —X,,BT 0 (2.16)
0 Zy —X,ET 0

@ Springer



A stable primal—dual approach for linear programming 225

The right-hand side becomes

ATy+z—c :d
—PiPz < Z?(Z:b ) =—h —Xn(rd)m +pZmee—p,e
e —Xo(ra)y + ZuXye — pie
—ry
_ _B_l”p

2.17
ZmB_lrp‘|’Xm(rd)m_Zmee"‘Me ( )

Xy(ra)v — ZyXye + e

Our algorithm uses the last two rows to solve for Ax,, Ay. We then use the second
row to backsolve for Ax,, and then the first row to backsolve for Az. The matrix
B~ is never evaluated, but rather the required operation is performed using a system
solve. Therefore, we require this operation to be both efficient and stable. Moreover, if
we started with exact dual feasibility and we find the steplength o > 0 that maintains
positivity for x, z, then we can update y <— y +a Ay first, and then set z =c — AT y;
thus we maintain exact dual feasibility (up to the accuracy of the matrix multiplication
and vector subtraction). There is no reason to evaluate and carry the residual to the
next iteration. This works for the normal equations backsolve as well. But, if we start
with exact feasibility for the primal as well, we can also update x, < x, + ¢ Ax, and
then solve Bx,, = b — Ex,. Thus we guarantee stable primal feasibility as well (up to
the accuracy in the matrix vector multiplications and additions, and the system solve
for x,,). This is discussed further at the end of Sect. 2.6.

The matrix derived in (2.16) is generally better conditioned than the one from the
normal equations system (2.9) in the sense that, under nondegeneracy assumptions,
the condition number is bounded at the solution. We do not change a well-posed prob-
lem into an ill-posed one. The result proved in Proposition 2.5 shows the advantages
of using this Stable Reduction.

2.5 Condition number analysis

Proposition 2.5 Let F,, and F be the matrices defined in (2.9) and (2.16). Then,
the condition number of F,, diverges to infinity if x(0); /z((); diverges to infinity, for
some i, as [ converges to 0. The condition number of Fs is uniformly bounded if
there exists a unique primal—dual solution of problems (1.1) and (1.2).

Proof Note that

I —Z71xAT 0
FIF, = (-sz—l (AAT+(AZ7'XAT2 4+ AZ72Xx24T) A ) . (2.18)

0 AT I,
We now see, using interlacing of eigenvalues, that this matrix becomes increasingly
ill-conditioned. Let D = Z~1X. Then the nonzero eigenvalue of Dl.ziA:,i(A;,i)T di-

verges to infinity, as u converges to 0. Therefore the largest eigenvalue of the matrix
in the middle block AD?AT =37, D2 A. ;(A. ;)T must diverge to infinity, i.e. the

@ Springer



226 M. Gonzalez-Lima et al.

largest eigenvalue of FnT F, diverges to infinity. Since the smallest eigenvalue can-
not exceed 1, this implies that the condition number of F,:r F, diverges to infinity, as
u— 0and x(un);/z(w); diverges to infinity, for some i.

On the other hand, the condition number of Fj is uniformly bounded. This follows
from the fact that the submatrix within the box in F; (2.16) is exactly F /L in (2.23).
As shown in Theorem 2.8 below, F ;L is nonsingular at the solution, i.e. Fé is nonsin-
gular. Nonsingularity of F at u = 0 now follows from the observation that the two
backsolve steps are stable. g

Remark 2.6 We can observe that the condition number of the matrix F F,, is greater
than the largest eigenvalue of the block AZ~2X?AT; equivalently, m is
smaller than the reciprocal of this largest eigenvalue. With the assumptionn that x
and z stay in a certain neighbourhood of the central path, we know that min; (z; /x;)

is O (). Thus the reciprocal of the condition number of F;, is O (u).
2.6 The stable linearization

The stable reduction step above corresponds to the following linearization approach.
Recall the primal LP

p* =mincTx
(LP) st. Ax=b, (2.19)
x>0.

An essential preprocessing step is to find a (hopefully sparse) representation of the
null space of A as the range of a matrix N, i.e. given an initial solution X, we get

Ax=b = |Ax=b ifandonlyif x=x+ Nv, forsomeveR""™"|

For our method to be efficient, we would like both matrices A, N to be sparse. More
precisely, since we use an iterative method, we need both matrix vector multiplica-
tions Ax and Nv to be inexpensive. If the original problem is in symmetric form, i.e.
if the constraint is of the type

Ex <b, EegRm<t—m,

(applications for this form abound, e.g. the diet problem and minimum cost produc-
tion problem; see e.g. [45, Chap. 16], [46]) then we can add slack variables and get
A=, E),N = ( I;E ) More generally, in this paper we assume that

—m

-1
A=(B E). N=<_B E) (2.20)

In—m

where E is sparse and the linear system Bv = d is nonsingular, well-conditioned and
inexpensive to solve. (For example, B is block diagonal or triangular. Surprisingly,
this structure holds for most of the NETLIB test set problems. See the comments and
Tables 8-10 in Sect. 4.2.)

@ Springer



A stable primal—dual approach for linear programming 227

We can now substitute for both z, x and eliminate the first two (linear) blocks of
equations in the optimality conditions (2.3). We obtain the following single block
of equations for optimality. By abuse of notation, we keep the symbol F for the
nonlinear operator. The meaning is clear from the context.

Theorem 2.7 Suppose that Ax = b and the range of N equals the nullspace of A.
Also, suppose that x =% + Nv >0 and z = c — ATy > 0. Then the primal-dual
variables x,y, z are optimal for (LP), (DLP) if and only if they satisfy the single
bilinear optimality equation

F(v,y) :=Diag(c — ATy)Diag(f + Nv)e =0. (2.21)

This leads to the single perturbed optimality conditions that we use for our primal—
dual method,

F, (v, y) :=Diag(c — ATy)Diag()E + Nv)e — ue =0. (2.22)

This is a nonlinear (bilinear) system. The linearization (or Newton equation) for the
search direction As := (Av) is
= (ay

F (v, y)As =—F, (v, y), (2.23)

where the Jacobian F ,/L(lh y) is the matrix

J = Fl;(v, y)
= (Diag(c — ATy)N —Diag(z + Nv)AT)
= (ZN -xAT). (2.24)

Therefore, system (2.23) becomes
ZNAv—XATAy:—FM(v,y). (2.25)

We note that the first part of the system (2.25) is usually the large part since it has
n — m variables Av. However, this part is inexpensive to evaluate if the matrix E is
sparse and the system Bu = d is inexpensive to solve. The second part is usually the
small part since it only has m variables Ay. This latter part is the size of the normal
equations system that arises in the standard approaches for LP.

Note that algorithms that use reduced linearized systems of this size do exist, e.g.
[45, Chap. 19] discusses the quasi-definite system of size n x n. These larger systems
can be more efficient in the sparse case. In particular, the distinct division into two sets
of (almost orthogonal) columns can be exploited using projection and multifrontal
methods, e.g. [9, 22, 30, 32, 33]. This allows for parallel implementations that do the
QR factorizations for the preconditioning steps.

Under standard assumptions, the above system (2.25) has a unique solution at each
point (v, y) that corresponds to a strictly feasible primal—dual pair x, z. In addition,
we now show nonsingularity of the Jacobian matrix at optimality, i.e. it does not
necessarily get ill-conditioned as p approaches 0.

@ Springer



228 M. Gonzalez-Lima et al.

Theorem 2.8 Consider the primal-dual pair (LP), (DLP). Suppose that A is onto
(full rank), the range of N is the null space of A, N has full column rank, and (x, y, z)
is the unique primal—dual optimal solution. Then the matrix J of the linear system
JAs = —F, (2.23) is nonsingular.

Proof Suppose that J As = 0. We need to show that As = (Av, Ay) =0.

Let B and N denote the set of indices j such that x; = X; + (Nv); > 0 and
set of indices i such that z; = ¢; — (ATy)i > 0, respectively. Under the uniqueness
(nondegeneracy) and full rank assumptions, we get BUN ={1,...,n}, BNN =,
and the cardinalities |B| = m, |N| = n — m. Moreover, the submatrix Ag, formed
from the columns of A with indices in B, is nonsingular.

By our assumption and (2.25), we have

(JAS) = (c = AT)R(NAV)E — G + No(ATAy) =0, V.
From the definitions of B, A/ and complementary slackness, this implies that

cj—(ATy); =0, %+ (Nv); >0, (ATAy); =0, VjeB, (226)
ci —(ATy); >0, i+ (Nv); =0, (NAv); =0, VieN. :
The first line of (2.26) implies AngAy =0, i.e. we obtain Ay =0.

It remains to show that Av = 0. From the definition of N we have AN = 0. There-
fore, (2.26) implies

0=(Ag Ax) (fﬁﬁfﬁ) = Ag(NAV)B + An (N Av) v = Ag(NAv)g.

By (2.26) and the nonsingularity of Ag, we get
NAv=0.

Now, full rank of N implies Av =0.
(An alternative proof follows using (2.16). We can see, after permutations if
needed, that both K and P; are nonsingular matrices.) U

We use (2.22) and the linearization (2.25) to develop our primal—dual algorithm.
This algorithm is presented and described in the next section.

3 Primal-dual algorithm

The algorithm we use follows the primal—dual interior-point framework, see e.g. the
books [45], [50, p. 198]. That is, we use Newton’s method applied to the perturbed
system of optimality conditions with damped step lengths for maintaining nonnega-
tivity (not necessarily positivity) constraints. Our approach differs in that we elimi-
nate, in advance, the primal and dual linear feasibility equations. (Within an infea-
sible approach, they get eliminated completely only after a steplength of 1 and stay
eliminated.) The search direction is found first using a direct factorization in (2.23),

@ Springer



A stable primal—dual approach for linear programming 229

and second using a preconditioned conjugate-gradient-type method, LSQR, due to
Paige and Saunders [39]. These are applied to the last two rows of (2.16, 2.17). This
contrasts with popular approaches that find the search directions by using direct fac-
torization methods on the normal equations system. In addition, we use a change to
a pure Newton step, i.e. we use affine scaling (the perturbation parameter © = 0) and
we do not backtrack to preserve positivity of z, x once we have found (or estimated)
the region of quadratic convergence of Newton’s method. Therefore, the algorithm
mixes interior and exterior ideas. We also include the identification of zero values
for the primal variable x and eliminate the corresponding indices; thus reducing the
dimension of the original problem. We call this a purification step.

Only indices corresponding to the matrix E are eliminated so that we maintain
the (B E) structure. The procedures are explained in more detail in the following
sections.

3.1 Initialization and preprocessing

The preprocessing involves finding B to satisfy the structure in (2.20) with B mostly
upper triangular and sparse. However, in some cases we can start the algorithm with
a feasible approach i.e. we have initial data x, vy, yo such that

AX =b; xo=X+ Nvg > 0; z0=c—ATyy>0.

The existence of such initial data cannot be assumed in general because finding a
feasible solution is just as difficult as solving the problem to optimality. However,
special structure can provide this initialization, e.g. suppose that both E, b (and so A)
are nonnegative elementwise. Then, with x = (;‘2'), we can set xp = b — Ex1 > 0, for
sufficiently small x; > 0, and v = 0. Similarly, we can choose z =c — ATyo > 0 for
sufficiently negative yy.

3.2 Preconditioning techniques

Recall that Z := Z(y) = Diag(c — ATy), X := X (v) = Diag(% + Nv), and the Jaco-
bian of F), (2.24) is

J:=F,(v,y)=(ZN —XAT). 3.1)

Since we are interested in using a conjugate-gradient-type method for solving the
linear system (2.23), we need efficient preconditioners. For a preconditioner we mean
a simple nonsingular matrix M such that J M~ is well conditioned. To solve system
(2.23), we can solve the better conditioned systems JM~'Ag = —F, and MAs =
Aq. Tt is clear that the best condition for J M ! is obtained when the matrix M is the
inverse of J. We look for a matrix M such that MM approximates J1J.

We use the package LSQR [39], which implicitly solves the normal equations
JTIAs =—JTF I’L Two possible choices for the preconditioning matrix M are: the

square root of the diagonal of JTJ; and the partial Cholesky factorization of the
diagonal blocks of JTJ. In the following we describe these approaches. Since our
system is nonsymmetric, other choices would be, e.g. quasi-minimal residual (QMR)
algorithms [20, 21]. However, preconditioning for these algorithms is more difficult,
see e.g. [6, 7].

@ Springer



230 M. Gonzalez-Lima et al.

3.2.1 Optimal diagonal column preconditioning

We begin with the simplest of the preconditioners. For any given square matrix K
let us denote w(K) = %. Let M = argminw((J D)T(J D)) over all positive
diagonal matrices D. In [16, Proposition 2.1(v)] it was shown that M;; = 1/||J;;],
the j-th column norm. This matrix has been identified as a successful preconditioner
(see [24, Sect. 10.5], [44]) since w is a measure of the condition number, in the sense
that it is bounded above and below by a constant times the standard condition number

(ratio of largest and smallest singular values).
3.2.2 Partial (block) Cholesky preconditioning

From (3.1) we obtain that

JTy = < NTZN —NTZXAT)
"\ —AXZN  AX2AT
Suppose that z, x lies near the central path, i.e. ZX = ul (approximately equal).
Then the off diagonal terms of JTJ are approximately 0, since AN = 0 by defini-
tion of N, and X Z is small when p is small. In this case, block (partial) Cholesky
preconditioning is extremely powerful.

We now look at finding a partial Cholesky factorization of JTJ by finding the
factorizations of the two diagonal blocks. We can do this using the Q-less QR factor-
ization, i.e. suppose that QzRz = ZN, QxRx =X AT represents the QR factoriza-
tions with both Rz and Ry square matrices (using the Q-less efficient form, where
Qz, Or are not stored or formed explicitly). Then

RJRz=NTZ?N,  RY}Rx=AX?AT, (3.2)

We can now choose the approximate factorization

Ty~ 2y _(Rz O
JI=EM'M, M_<0 RX>.

We should also mention that to calculate this preconditioner is expensive. The ex-
pense is comparable to the Cholesky factorization of the normal equation AZ 1 X AT,
Therefore, we tested both a complete and an incomplete Cholesky preconditioner (de-
noted IC) for the diagonal blocks.

3.3 Change to pure Newton step technique

Let us assume that the Jacobian of the function F in (2.1) defining the optimality
conditions is nonsingular at the solution. Then, the problem has unique primal and
dual solutions, s* = (x*, y*, z*). Therefore, from the standard theory for Newton’s
method, there is a neighbourhood of the solution s* of quadratic convergence and,
once in this neighbourhood, we can safely apply affine scaling with step lengths of
one without backtracking to maintain positivity of x or z.

@ Springer



A stable primal—dual approach for linear programming 231

To estimate the guaranteed convergence area of the optimal solution, we need to
use a theorem due to Kantorovich [28]. We use the form in [15, Theorem 5.3.1].
Let NV (x, r) denote the neighbourhood of x with radius r, and Lip,, (N (x, r)) denote
Lipschitz continuity with constant y in the neighbourhood.

Theorem 3.1 (Kantorovich) Suppose r > 0, so € W', F : X" — R", and that F is
continuously differentiable in N (so, r) with J (so) nonsingular. Assume for a vector
norm and the induced operator norm that J € Lip,, (N (s, 7)) for some Lipschitz
constant v, and that constants B, n > 0 exist such that

1) <, 160 " Flsoll <n.

Definex = Byn. Ifa < % andr >rg:=(1—+/1—=2a)/(By), then the sequence {si}
produced by

Skr1 =8k — Js0) T F (), k=0,1,...,

is well defined and converges to s, a unique zero of F in the closure of N (sg, rp).
If a < %, then s, is the unique zero of F in N(so,r1), where ry := min[r, (1 +

V1 =2a)/(By)] and

Isk —ssll < @) L, k=0,1,....
o

We follow the notation in [15] and find the Lipschitz constant used to determine
the region of quadratic convergence.

Lemma 3.2 The Jacobian F'(v,y) = (Diag(c — ATy)N —Diag(x + Nv)AT) in
(3.1) is Lipschitz continuous with constant

y = 0omax(F' = F'(0)) < V2| A|[[IN]. (3-3)

where omax (F' — F’(0)) is the largest singular value of the linear transformation
G(v,y):=F'(v,y) — F'(0) : " — R

Proof For each s = (v, y) € K" we get the matrix F'(s) € R"*". This mapping is de-
noted by the affine transformation F’ : K" — R"*", Therefore G(s) := F'(s) — F’'(0)
is a linear transformation. The largest singular value of the matrix representa-
tion is denoted oyax ‘= omax(G). This satisfies ||F'(s) — F'S)|| = |G(s — 3)|| <
omax||s — §||. Hence by setting s = 0 and § to be the singular vector corresponding to
the largest singular value, we conclude y = opax-

Now let As = (ﬁ ). Since

y
I(F'(s) — F'()) As|

IAs]

IDiag(AT(y — )N Av — Diag(ATAy)N (v — )|
- IAs]

| F'(s) — F'(5)|| = max

@ Springer



232 M. Gonzalez-Lima et al.

NATG = HIINAvI+ [ATAY[IN @ — D)
lAs]|

< ANy =Sl + AT TN v — ]|

< V2| AIlINIIs = 5],

< ma

a Lipschitz constant is y = V2IIA| IV O

Observe that the Lipschitz constant depends on the representation matrix N that
we consider. In particular, N can be chosen so that its columns are orthonormal and
INAv| = |Av] and |[N(v — v)|| = ||lv — v]|. In this case, the Lipschitz constant
y < V2||All

We can evaluate the largest singular value om,x in the above Theorem 3.1 as fol-
lows. Consider the linear transformation £ : R" > R" defined by

c (;) := vec(Diag(ATy)N Diag(Nv)AT),

where vec(M) denotes the vector formed columnwise from the matrix M. The inverse
. 2 .
of vec is denoted Mat. Let w € i"*". The inner-product

<£ <;) , u)> = (vec (Diag(ATy)N Diag(Nv)AT), w)

B (v) (NTdiag(ATsz))
y) '\ Adiag(NWl) /[’
where W is the first n — m columns of Mat(w) and W5 is the remaining m columns
of Mat(w). Therefore, the adjoint operator of L is

NTdiag(ATW) )

L*(w) =
(w) (Adiag(NWlT

We can use a few iterations of the power method to approximate efficiently the largest
eigenvalue of £L*L (which is the equivalent to the square of the largest singular value
of £). This can be done without forming the matrix representation of L.

We also need to estimate 3, the bound on the norm of the inverse of the Jacobian
at the current s = (v, y), i.e.

> = : (3.4)
ﬁ O'min(J)
Finally, to estimate n, we note that

1T Fo(o, Il =177 (=ZXe)| <. (3.5)

The vector J 1 (—ZXe) is the affine scaling direction and is available within the
predictor-corrector approach that we use.

We now have the following heuristic for our change to a pure Newton step tech-
nique.

@ Springer



A stable primal—dual approach for linear programming 233

Theorem 3.3 Suppose that the constants v, 8, n in Theorem 3.1 satisfy (3.3,3.4,3.5),
respectively. And, suppose that sy = (vg, yo) and o = yBn < % Then the undamped
Newton sequence sy generated by syy1 = sg — J ()" F (sp) converges to s*, the

unique zero of F in the neighbourhood N (so, r1).

Remark 3.4 Theorem 3.3 guarantees convergence of the affine scaling direction to a
solution of F(s) = 0 without backtracking. But, it does not guarantee convergence
to a solution with x, z nonnegative. Nonetheless, all our numerical tests successfully
found nonnegative solutions.

3.4 Purify step

Purifying refers to detecting variables that are zero at optimality. This is equivalent to
identifying active constraints, e.g. [10—12]. We use the Tapia indicators [18] to detect
the x variables going to zero. (See also [1, 36].) This is more difficult than the change
to a pure Newton step, as variables can increase and decrease while converging to 0,
see e.g. [23].

Our tests were divided into two cases. Our infeasible code has a starting point
that satisfies strict positivity, but primal—dual feasibility Ax = b, ATy + z = ¢ may
fail. For this case, once we identify a variable x; converging to zero, we remove
the corresponding column in A and components in ¢, z. The infeasibility at the next
iteration stays small. To maintain the (B E) structure of our data matrix A, we limit
our choice of dropping variables to those associated with E. In the case of our feasible
code (our starting point satisfies positivity as well as both primal and dual feasibility),
we have more involved book-keeping so that we maintain feasibility after dropping
variables with small positive values.

4 Numerical tests

Our numerical tests use the well known NETLIB LP data library as well as ran-
domly generated data. We compare our algorithm with the well known MATLAB
based linear programming solver LIPSOL [54], www.caam.rice.edu/"zhang/lipsol/.
(We use the same preprocessing as LIPSOL: delete fixed variables; delete zero rows
and columns; ensure that A is structurally full rank; shift nonzero lower bounds; find
upper bounds.)

Our randomly generated problems use data A, b, ¢, with a known optimal basis
in A and optimal values x, y, and z. For the infeasible code tests, we used the same
starting point strategy given in LIPSOL. For the feasible code tests we applied one
Newton step from the optimal point with a large positive w, in order to maintain
feasibility of the starting point. In addition, we ensure that the Jacobian of the opti-
mality conditions at the optimum is nonsingular (so the optimal x, y, z are unique)
and its condition number is not large, since we want to illustrate how the stable sys-
tem takes advantage of well-conditioned, nondegenerate, problems. The iteration is
stopped when the relative duality gap (including the relative infeasibility) is less than
10~!2. The computations were done in MATLAB 6.5 on a 733 MHz Pentium 3 run-
ning Windows 2000 with 256 MB RAM.

@ Springer



234 M. Gonzalez-Lima et al.

Table 1 nnz(E)—number of nonzeros in E; cond(-)—condition number; Ay optimal basis matrix, J =
(ZN — X AT) at optimum, see (3.1); D_time—avg. time per iteration for search direction, in sec.; its—
iteration number of interior point methods. * denotes NEQ stalls at relative gap 10~11

Data m n nnz(E) cond(AR) cond(J) NEQ Stable direct

D_time its D_time its

1 100 200 1233 51295 32584 0.03 * 0.06 6
2 200 400 2526 354937 268805 0.09 6 0.49 6
3 200 400 4358 63955 185503 0.10 * 0.58 6
4 400 800 5121 14261771 2864905 0.61 * 3.66 6
5 400 800 8939 459727 256269 0.64 6 4.43 6
6 800 1600 10332 11311945 5730600 5.02 6 26.43 6
7 800 1600 18135 4751747 1608389 5.11 * 33.10 6

To find the search direction, we use either a direct or iterative method to solve
JAs = —F),,. The direct method uses [L, U, P, Q] =1lu(:) in MATLAB to find LU
factors of J. The permutations P,Q exploit the sparsity of J. (Note that using lu(-) is
generally slower than using \ with a single right-hand side, but we have two right-
hand sides (for the predictor and corrector steps) and use the factors twice.) The iter-
ative method uses an inexact Newton approach. The linear system is solved approx-
imately using LSQR [39] with different preconditioners. We use adaptive tolerance
settings for LSQR: atol = max(10™13, 1071%), brol = max(10~1°,10~1%4). Both
direct and iterative approaches share the same interior-point framework and include
the change to a pure Newton and purify steps. They differ only in the method used
for computing the search direction.

The normal equation, NEQ, approach uses chol(-) in MATLAB to find a Cholesky
factorization of AZ~'XAT. It then uses the Cholesky factor with the MATLAB \
(backslash) in both the predictor and corrector step. (We note that using “chol(-)” is
generally three times slower than using \ (backslash) directly on NEQ.) The NEQ
approach can solve many of the random generated problems to the required accuracy.
However, if we set the stopping tolerance to 10713, we do encounter quite a few
examples where NEQ stalls with relative gap approximately 10~!!, while the stable
system has no problem reaching the desired accuracy.

The tests in Tables 1-3 are done without the change to a pure Newton step and
purification techniques. The stable method with the direct solver and also with the
diagonal preconditioner consistently obtains high accuracy optimal solutions. The
stable method is not competitive in terms of time compared to the NEQ approach for
this test set. One possible reason is that the condition numbers of J, the Jacobian at
the optimum, and of the basis matrix Ag, are still too large for the iterative method
to be effective. We provide another set of numerical tests based on well conditioned
Ap in the following subsection.

We also performed many tests with the change to a pure Newton step. Using our
test for o in Theorem 3.3 with the inexpensive bound for y, we can usually detect the
guaranteed convergence region at 1 = 107 or with the relative gap tolerance at 10~
or 107>, We also encountered a few examples where the change begins as early as
w = 10~* and some examples where the change begins as late as o = 1078, After the

@ Springer



A stable primal—dual approach for linear programming 235

Table 2 Same data sets as in Table 1; two different preconditioners (incomplete Cholesky with drop
tolerance 0.001 and diagonal); D_time—average time for search direction; its—iteration number of interior
point methods; L_its—average number of LSQR iterations per major iteration; Pre_time—average time
for preconditioner; Stalling—LSQR cannot converge due to poor preconditioning

Data set LSQR with IC for diagonal blocks LSQR with Diag
D_time its L_its Pre_time D_time its L_its Pre_time
1 0.15 6 37 0.06 0.41 6 556 0.01
2 342 6 343 0.28 2.24 6 1569 0.00
3 2.11 6 164 0.32 3.18 6 1595 0.00
4 NA Stalling NA NA 13.37 6 4576 0.01
5 NA Stalling NA NA 21.58 6 4207 0.01
6 NA Stalling NA NA 90.24 6 9239 0.02
7 NA Stalling NA NA 128.67 6 8254 0.02
Table 3 Same data sets as in
Table 1; LSQR with Block Data set LSQR with block Chol. Precond.
Cholesky preconditioner. D_time its L_its Pre_time
Notation is the same as Table 2
1 0.09 6 4 0.07
2 0.57 6 5 0.48
3 0.68 6 5 0.58
4 5.55 [§ 6 5.16
5 6.87 6 6 6.45
6 43.28 6 5 41.85
7 54.80 6 5 53.35

test is satisfied, we use an undamped Newton method, i.e. we use the affine scaling
direction with step length 1 without limiting x and z to be nonnegative. It usually
takes only one iteration to achieve the required accuracy 10~!2. This is not a surprise
considering the quadratic convergence rate of Newton’s method.

If we compare the method without a change to a pure Newton step, then we con-
clude that the change technique gives an average 1 iteration saving to achieve the de-
sired accuracy. We also encountered several instances where NEQ did not converge
after the change to a pure Newton step, while our stable method had no difficulty. We
should mention that NEQ is not suitable for a pure Newton step because the Jacobian
becomes singular. Moreover, a catastrophic error occurs if a z element becomes zero.

We also tested the purification technique. It showed a benefit for the stable di-
rection when n was large compared to m, since we only identify nonbasic variables.
(However, deleting variables does not help NEQ because AXZ™ LAT remains m x m.)
The time saving on solving the linear system for the stable direction is cubic in the
percentage of variables eliminated, e.g. if half the variables are eliminated, then the
time is reduced to (%)3 = % the original time. The purification technique starts to
identify nonbasic variables as early as 6, 7 iterations before convergence. It usually
identifies most of the nonbasic variables from two to four iterations before conver-

@ Springer



236 M. Gonzalez-Lima et al.

15 T T T T T T T T
o O 0 O O
o o © 9
€] o o © ]
101 o o b
o
coo O o © o 6 o
© 06 00006 06 0
5t —— stable solver B

O normal equation solver

a
(] (0]
o 00°
e or .
~o
o
o
—5F 4
—10} 4
_15 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45

iters

Fig. 1 TIterations for degenerate problem

gence. For all our random generated tests, the purification technique successfully
identified all the nonbasic variables before the last two iterations.

We should also mention the computation costs. For the change to a pure Newton
step, we need to evaluate the smallest singular value of a sparse n x n matrix to find S,
and then solve an n x n linear system to find the value n (see Theorem 3.3). The cost
of finding the smallest singular value is similar to that of solving a system of the same
size. Solving this linear system is inexpensive since the matrix J is the same as for
the search direction and we already have a factorization.

In the above tests we restricted ourselves to nondegenerate problems. See Fig. 1 for
a comparison on a typical degenerate problem. Note that NEQ had such difficulties
on more than half of our degenerate test problems.

4.1 Well conditioned Ag

Our previous test examples in Tables 1-3 are all sparse with 10 to 20 nonzeros per
row. In this section we generate sparser problems with about 3, 4 nonzeros per row
in E but we still maintain nonsingularity of the Jacobian at the optimum. We first
fix the indices of a basis B; we choose half of the column indices j so that they
satisfy 1 < j <m and the other half satisfy m 4+ 1 < j <n. We then add a random
diagonal matrix to Ag to obtain a well-conditioned basis matrix and generate two
random (sufficiently) positive vectors xg and zxs. We set the optimal x* = ( ; ﬁ)

@ Springer



A stable primal—dual approach for linear programming 237

Table 4 Sparsity vs solvers: cond(-)—(rounded) condition number; D_time—average time for search
direction; its—number of iterations; L_its—average number LSQR iterations per major iteration. All data
sets have the same dimension, 1000 x 2000, and have 2 dense columns

Data sets NEQ Stable Direct LSQR

Name cond(Ag) cond(J) nnz(E) D_time its D_time its D_time its L_its
nnz2 19 14000 4490 3.75 7 5.89 7 0.19 7 81
nnz4 21 20000 6481 3.68 7 7.38 7 0.27 7 106
nnz8 28 10000 10456 3.68 7 11.91 7 0.42 7 132
nnz16 76 11000 18346 3.69 7 15.50 7 0.92 7 210
nnz32 201 12000 33883 3.75 9 18.43 9 2.29 8 339

Table 5 How problem dimension affects different solvers: cond(-)—(rounded) condition number;
D_time—average time for search direction; its—number of iterations. All the data sets have 2 dense
columns in E. The sparsity for the data sets are similar; without the 2 dense columns, they have about
3 nonzeros per row

Data sets NEQ Stable Direct LSQR
Name  Size cond(Ag) cond(J) D_time its D_time its D_time its
szl 400 x 800 20 2962 029 7 042 7 0.07 7
sz2 400 x 1600 15 2986 029 7 042 7 0.11 7
sz3 400 x 3200 13 2358 030 7 043 7 0.19 7
sz4 800 x 1600 19 12340 191 7 3.05 7 0.13 7
sz5 800 x 3200 15 15480 1.92 7 3.00 7 0.27 7
826 1600 x 3200 20 53240 16.77 17 5152 7 0.41 7
sz7 1600 x 6400 16 56810 16.70 7 5175 7 0.65 8
sz8 3200 x 6400 19 218700 240.50 7 57355 7 0.84 7
sz9 6400 x 12800 24 8.9e+5 2.20 6
sz10 12800 x 25600 22 2.4e+5 4.67 6
iB

with x s = 0; and the optimal z* = ( p N), with zg = 0. The data b, ¢ are determined
from b := Ax*, ¢ := ATy* + z*, y* € N random (using MATLAB’s “randn”).

We now compare the performance of three different solvers for the search direc-
tion, namely NEQ solver, direct linear solver on the stable system, and LSQR on
the stable system. In this section, we restrict ourselves to the diagonal preconditioner
when we use the LSQR solver. (The computations in this section were done on a
Sun-Fire-480R running SunOS 5.8.)

The problems in Table 4 all have the same dimensions. To illustrate that our
method can handle sparse problems without additional special techniques, we in-
clude two full dense columns (in E). We let the total number of nonzeros increase.
The condition numbers are evaluated using the MATLAB “condest” command. The
loss in sparsity has essentially no effect on NEQ, since the ADAT matrix is already
dense because of the two dense columns. But we can see the negative effect that the
loss of sparsity has on the stable direct solver, since the density in the system (2.24)

@ Springer



238 M. Gonzalez-Lima et al.

Table 6 LIPSOL results:

D_time—average time for Data sets LIPSOL

search direction; its—number of =~ Name D_Time its

iterations. (We also tested

problems sz8, sz9, sz10 with the ;0 0.08 12

change two dense columns nnzd 0.50 14

replaced by two sparse columns,

only 6 nonzeros in these new nnz8 1.69 14

columns. (D_time, iterations) on  npz16 272 14

LIPSOL for these fully sparse

32 3.94 13

problems: (0.41,11), (2.81,11), % o

(43.36,11)) szl 0.16 11
sz2 0.15 13
sz3 0.15 14
sz4 0.05 12
sz5 0.03 14
sz6 0.22 15
sz7 0.06 15
sz8 1.55 14
sz9 12.80 15
sz10 126.47 15

increases. For these problem instances, using LSQR with the stable system can be up
to twenty times faster than the NEQ solver.

Our second test set in Table 5 shows how size affects the three different solvers.
The time for the NEQ solver is proportional to m>. The stable direct solver is about
twice that of NEQ. LSQR is the best among these 3 solvers on these instances. The
computational advantage of LSQR becomes more apparent as the dimension grows.

We also use LIPSOL to solve our test problems, see Table 6. Our tests use LIP-
SOL’s default settings except that the stopping tolerance is set to 10~'2. LIPSOL uses
a primal—dual infeasible-interior-point algorithm. We can see that the number of it-
erations for LIPSOL are in a different range from our tests in Tables 4, 5 which are
usually in the range of 6-8. It can be observed that LIPSOL in general performs bet-
ter than the NEQ code we have written. Since LIPSOL has some special code to deal
with factorization, while our method just uses the LU (or chol) factorization from
MATLAB, it is not unexpected to see the better performance from LIPSOL.

But comparing to the iterative method, we should mention that when the problem
size becomes large, the iterative method has an obvious advantage over the direct
factorization method. This can be seen clearly from the solution times of problems
sz8, sz9, sz10 in Table 6 and the corresponding time of LSQR in Table 5. When the
problem size doubles, the solution time for LIPSOL increases roughly by a factor of
8-10, while the solution time for our iterative method roughly doubles. This is also
true for fully sparse problems as mentioned in the caption of Table 6.

The iterative solver LSQR does not spend the same amount of time at different
stages of an interior point method. To illustrate this, we take the data set in Table 4.
For each problem we draw the number of LSQR iterations at each iteration; see Fig. 2.

@ Springer



A stable primal—dual approach for linear programming 239

700 T T T T T T T
O nnz2
O - nnz4
1% % nnz8
L v nnzi6 ||
600 ¢ nnz32
¢
o 5001 B
c
Ke]
‘§ &
ﬁ 400} : .
3 ot
- °© o
S 300( ¢ o 1
2 v O 0
v = :
200 Voo : v Vi A
v
x v ¥ x X x X a
X c o g u é
o x .
100r o o o ; 005 o 0% g b
© g BB O oo
O 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

iterations in interior point methods

Fig. 2 LSQR iterations for data set in Table 4. Odd-numbered iterations are predictor steps;
even-numbered iterations are corrector steps

4.2 NETLIB set—Ill-conditioned problems

The NETLIB LP data set is made up of large, sparse, highly degenerate problems,
which result in singular Jacobian matrices at the optimum. These problems are ill-
posed in the sense of Hadamard; we used the measure in [38] and found that 71%
of the problems have infinite condition number. (See also [29].) In particular, small
changes in the data can result in large changes in the optimum x,y,z, see e.g.
[3, 4], [5, pp. 9-10], [43, Chap. 8]. Therefore, infeasibility is difficult to detect and, it
is not evident what a non-regularized solution of these problems means. Nevertheless,
we applied our method to these problems. Though our method solves the problems
in the NETLIB data set to high accuracy, our tests show that it is not competitive
(with regard to CPU times) compared to standard LP packages such as LIPSOL ver-
sion 0.60 [54], when applied exclusively to the NETLIB data set. Ill-conditioning
of J in our algorithm affects the performance of iterative solvers. Direct factorization
is preferable for the NETLIB set.

For general LP problems, we want to find a B that is sparse and easy to factorize
in the (B E) structure. An upper triangular matrix is a good choice. The heuristic we
use is to go through the columns of the matrix A and find those columns that only
have one nonzero entry. We then permute the columns and rows so that these nonzero
entries are on the diagonal of B. (In the case of multiple choices in one row, we

@ Springer



240 M. Gonzalez-Lima et al.

Table 7 LIPSOL failures with

desired tolerance le—12; NETLIB problems Highest accuracy attained

highest accuracy attained by

LIPSOL bnl2 infeasible
cycle 9.19e—11
dfioo1 infeasible
etamacro 7.66e—11
fitlp infeasible
fit2p infeasible
greenbea infeasible
grow15 4.35e—10
grow22 9.24e—10
grow7 2.62e—10
kb2 3.75e—12
pilot87 1.21e—8
seba infeasible

picked the one with the largest magnitude.) We remove the corresponding rows and
columns, and then repeat the procedure on the remaining submatrix. If this procedure
is successful, we end up with an upper triangular matrix B. However, sometimes, we
may have a submatrix A of A such that no column has one nonzero entry. Usually,
such a submatrix A is much smaller in size. We use an LU factorization on this small
submatrix and find an upper triangular part U inthe U part of the LU factorization by
using the above procedure. The B is then determined by incorporating those columns
of U after an appropriate permutation. This procedure also results in a useful LU
factorization for B. In our tables, we denote the row dimension of the A as no-tri-size
of B. For NETLIB problems, surprisingly, most of them have a zero no-tri-size of
B as shown in Tables 8-10. It is worth noting that some of the NETLIB problems
may not have full row rank or the LU factorization on the submatrix A may not
give an upper triangular U. Thus we may not be able to identify the upper triangular
matrix U. In Tables 8-10, these problems are marked with a “ *” in the column
of no-tri-size of B. For these singular problems, our solver may not give a correct
answer. (This issue can be resolved by preprocessing to eliminate redundant rows
and by a better LU factorization. This is beyond the scope of this paper.) Among
these singular problems, “bore3d” and “standgub” have a complete zero row; thus
we can easily identify the linearly dependent row in the matrix A and remove it. Our
answers for these two problems are accurate.

To make a fair comparison on the errors, we changed the error term in LIPSOL to
be the same as ours, which is defined as

lcTx — bTy] lrpll llrall
error ;= + + . 4.1
14 |cTx| L4+b 14| @1

We note that LIPSOL can solve all the NETLIB problems to 8 decimal accuracy. In
addition, we added the preprocessing step that LIPSOL is using to our code.

We observed improved robustness when using our stable direct factorization
method. For example, when the stopping tolerance is set to 12 decimals, LIPSOL

@ Springer



A stable primal—dual approach for linear programming 241

Table 8 NETLIB set with LIPSOL and Stable Direct method. D_time—avg. time per iteration for search
direction, in sec.; its—iteration number of interior point methods

Problems LIPSOL Stable Direct

Name D_time its Error D_time its Error No-tri-size of B
25fv47 0.05 25 1.21le—14 0.94 24 8.7e—15 2
80bau3b 0.14 41 4.38¢e—14 2.84 49 5.5e—13 0
adlittle 0.01 12 4.13e—14 0.01 12 3.7e—16 2
afiro 0.01 8 3.70e—15 0.00 8 3.5e—16 0
agg 0.03 19 1.06e—13 0.10 19 4.5¢e—13 0
agg?2 0.03 17 1.28e—13 0.19 17 1.4e—15 0
agg3 0.03 17 2.38e—15 0.18 16 1.4e—13 0
bandm 0.01 20 1.77e—14 0.05 17 2.3e—15 0
beaconfd 0.01 13 3.64e—14 0.04 13 3.0e—15 0
blend 0.01 12 8.32e—13 0.01 12 3.4e—15 0
bnll 0.02 28 2.32e—14 0.37 27 3.0e—14 8
bnl2 0.08 7 2.40e+01 2.01 51 7.3e—13 0
boeing] 0.03 22 1.46e—13 0.14 23 4.7e—15 0
boeing2 0.01 20 1.46e—14 0.03 17 7.9e—13 0
bore3d 0.01 18 9.62e—14 0.03 18 33e—14 4"
brandy 0.01 17 8.37e—15 0.04 15 4.2e—13 52
capri 0.02 19 2.76e—13 0.06 20 1.2e—12 0
cycle 0.12 36 9.19e—11 1.98 29 2.5e—13 4
czprob 0.03 36 791e—14 1.06 34 7.1e—13 0
d2q06c 0.18 33 1.92e—14 6.21 30 2.1e—13 132*
d6cube 0.11 25 1.23e—15 3.54 14 4.8e—14 404"
degen2 0.03 14 3.62e—13 0.14 13 2.4e—15 97"
degen3 0.25 29 1.22e—13 2.02 17 3.8e—13 159"
dfioo1 19.63 17 2.28e+4-00 46.65 52 1.0e+01 4275"
€226 0.01 22 1.05e—13 0.06 21 3.7e—13 0
etamacro 0.02 45 7.66e—11 0.11 37 7.3e—13 16
ffft800 0.03 27 9.2le—14 0.21 25 4.1e—14 0
finnis 0.02 30 7.40e—13 0.08 27 8.6e—13 0
fitld 0.04 24 4.18¢—13 0.50 18 9.2e—15 0
fitlp 0.30 17 1.75e—05 0.25 16 9.2e—14 0
fit2d 0.43 26 7.05e—13 80.99 23 8.4e—15 0
fit2p 0.68 22 2.35e—07 5.76 23 5.1e—14 0
forplan 0.02 23 1.98e—13 0.09 28 7.9e—13 0
ganges 0.04 19 5.14e—14 0.28 20 9.6e—13 12
gfrd-pnc 0.02 20 3.53e—14 0.1 20 9.9e—15 0

could not solve the subset of NETLIB problems in Table 7 and, incorrectly, finds that
several problems are infeasible. Table 7 lists the highest accuracy that LIPSOL can
get. (LIPSOL does solve problems fitlp, fit2p, seba when the stopping tolerance is set

@ Springer



242 M. Gonzalez-Lima et al.

Table 9 NETLIB set with LIPSOL and Stable Direct method continued

Problems LIPSOL Stable Direct

Name D_time its Error D_time its Error No-tri-size of B
greenbea 0.24 32 6.0le—04 5.68 45 4.6e—13 2
greenbeb 0.15 38 2.0le—13 5.49 37 6.le—14 2
growl15 0.03 31 4.35e—10 0.86 12 24e—13 0
grow22 0.04 25 9.24e—10 2.27 14 4.3e—14 0
grow7 0.02 37 2.62e—10 0.16 12 2.2e—15 0
israel 0.02 23 5.06e—13 0.04 23 9.6e—14 0
kb2 0.01 34 3.75e—12 0.01 16 l.le—14 0
lotfi 0.01 19 1.5le—15 0.05 17 9.5e—13 0
maros-r7 2.03 15 1.43e—15 14.97 15 1.3e—15 0
maros 0.05 33 5.24e—13 0.59 31 l.1e—13 4
modszk1 0.02 25 3.23e—13 0.22 68 9.8e—13 0
nesm 0.06 35 1.45e—13 2.77 32 7.3e—13 0
perold 0.04 32 5.66e—13 0.71 37 6.4e—13 0
pilot.ja 0.30 33 2.63e—13 1.34 35 3.7e—12 0
pilot 0.07 35 7.72e—13 13.69 42 6.7e—12 0
pilot.we 0.04 36 7.6le—13 0.95 40 4.5e—15 0
pilot4 0.03 31 1.80e—13 0.3 31 1.5e—13 0
pilot87 0.80 99 1.21e—08 27.58 42 2.8e—15 0
pilotnov 0.06 20 1.73e—13 1.86 24 1.3e—13 0
recipe 0.01 11 1.32e—13 0.01 11 6.le—15 0
sc105 0.01 11 4.42e—16 0.01 10 6.0e—16 0
5c205 0.01 11 2.26e—13 0.02 10 7.2e—13 0
sc50a 0.01 10 3.34e—15 0.01 10 5.3e—16 0
sc50b 0.01 8 1.35e—15 0.01 8 6.le—16 0
scagr25 0.01 17 7.46e—15 0.04 16 3.0e—15 0
scagr7 0.01 13 2.50e—13 0.01 13 7.5e—16 0
scfxml 0.01 18 1.79e—13 0.06 18 2.0e—15 8
scfxm?2 0.02 21 4.24e—14 0.13 20 3.3e—15 16
scfxm3 0.03 21 1.21e—14 0.19 20 3.5e—15 24
scorpion 0.01 15 1.99¢e—13 NA NA NA 132*
scrs8 0.02 26 7.17e—13 0.1 25 6.2e—13 0
scsdl 0.01 10 6.40e—13 0.12 11 3.3e—14 0
scsd6 0.02 15 7.31e—15 0.42 15 6.1e—15 0
scsd8 0.03 12 1.07e—14 2.64 13 2.2e—15 0
sctapl 0.01 17 5.67e—13 0.05 18 2.6e—14 0

to 10~8 and does solve problems bni2, dfi001, greenbea with tolerance 10~8 and its
own error term.) This illustrates the numerical difficulties that arise for NEQ based
methods when the requested accuracy is more than 10~8. Our stable direct factoriza-
tion method not only achieved the desired accuracy (except for capri with 1.2e—12,

@ Springer



A stable primal—dual approach for linear programming 243

Table 10 NETLIB set with LIPSOL and Stable Direct method continued

Problems LIPSOL Stable Direct

Name D_time its Error D_time its error No-tri-size of B
sctap2 0.03 19 7.33e—13 0.27 16 1.9e—15

sctap3 0.04 18 1.46e—13 0.36 21 1.9e—15

seba 0.10 23 8.39¢—07 0.1 17 7.4e—15 0
sharelb 0.01 21 1.92e—13 0.03 24 5.5e—15 66
share2b 0.01 14 5.69e—15 0.01 12 1.2e—14 0
shell 0.02 20 1.61le—15 0.04 12 1.2e—15 494"
ship041 0.02 13 1.88e—13 0.24 13 1.9e—15 0
ship04s 0.02 14 2.76e—13 0.14 13 1.7e—15 0
ship08l 0.04 16 3.34e—15 0.49 16 2.4e—15 0
ship08s 0.02 14 2.47e—13 0.2 15 2.0e—15 0
ship121 0.05 17 9.98¢—13 0.62 17 1.0e—14 0
ship12s 0.02 19 3.94e—15 0.21 16 3.7e—15 0
sierra 0.06 17 1.50e—13 0.17 12 5.5e—15 515"
stair 0.02 15 2.93e—13 0.1 14 4.8e—13 0
standata 0.02 17 1.62e—14 0.13 17 4.5e—15 0
standgub 0.02 17 5.15e—13 0.06 17 4.0e—15 "
standmps 0.02 24 9.87e—14 0.19 23 1.7e—14 0
stocforl 0.01 16 6.84e—13 0.01 19 3.9e—14 0
stocfor2 0.05 22 1.19e—13 0.32 22 1.8e—13 0
tuff 0.02 23 2.83e—16 0.13 20 1.4e—13 0
vtp.base 0.01 23 5.76e—13 0.03 27 3.5e—13 0
woodlp 0.15 21 4.37e—13 0.76 13 6.4e—14 241"
woodw 0.11 30 6.13e—13 41.59 30 9.6e—14 0

pilot.ja with 3.7e—12, pilot with 6.7e—12) but also exhibited quadratic convergence
during the final few iterations on these problems. For complete results on the NETLIB
problem, see Tables 8—10. Further numerical tests appear in the forthcoming [42, 47]
and in the recent Masters thesis [41]. In [41, 42], a different transformation on the
NETLIB problems is used to obtain the (I E) structure. The numerical tests on the
NETLIB problems in [41, 42] show that the ill-conditioning negatively affects the
performance of the stable algorithm. However, it also observed that much more ac-
curate solutions were obtained by using the stable linearization approach compared
to NEQ. Tests for quadratic programs are done in [17].

4.3 No backtracking

We now present some interesting numerical results under the condition that the in-
terior point method takes a complete step to the boundary without the customary
backtracking that guarantees sufficient positivity of the variables x, z. We present the
results from the three algorithms: (i) NEQ with backtracking; (ii) stable system with
backtracking; (iii) stable system with no backtracking. Since the NEQ approach is

@ Springer



244 M. Gonzalez-Lima et al.

0 T T T T T T
P! —— NEQ with backtracking
O STAB with backtracking
> —- STAB without backtracking
4} i
-6} i

log, ,(rel gap)
®

—10} i
—12} i
\
\ o
\
—14} \ i
\
\
_ I I I I ¥ I
161 2 3 4 5 6 7 8

iters

Fig. 3 Iterations for different backtracking strategies. The data is from row 2 in Table 1

undefined at the boundary, we cannot include a fourth comparison. No backtracking
does not create problems for our stable system, since we do not need the inverse of
XorZ.

See Fig. 3 for a comparison between NEQ with backtracking and the stable di-
rection with and without backtracking. In this example, the relative gap stopping
tolerance for NEQ is set to 107!, which is the highest accuracy NEQ can get for
this problem. However, the relative gap stopping tolerances for both of the stable sys-
tem approaches are set to 1074, For the first 4 iterations the three approaches are
almost indistinguishable, since the backtrack (we backtrack with 0.9998) is such a
small step. However, once the duality gap is small, no backtracking means we are
close to taking a complete Newton step so we get a large improvement with the no-
backtracking strategy. We reach the desired tolerance in 6 iterations compared to 8
for the stable direction with backtracking. The difference with using backtracking for
the stable direction is typical; while stalling for NEQ occurs for about half our tests.

For many tests, we see that the number of iterations are reduced and the last step
behaves just as if the change to a pure Newton step was implemented, i.e. we jump to
the stopping tolerance of 14 decimals. This is probably due to the fact that a full step
to the boundary is closer to a full Newton step, i.e. this is comparable to implement-
ing the pure Newton step technique. On average, the stable direct method without
backtracking results in a 1, 2 reduction in the number of iterations.

@ Springer



A stable primal—dual approach for linear programming 245

5 Conclusion

We have presented a robust alternative for interior-point solutions of LPs. We used
a preprocessing step to eliminate both the primal and dual (linear) feasibility equa-
tions. We then applied an inexact Newton approach to the resulting linear system. We
compared this method to the NEQ approach.

Advantages of our approach include:

1. Under primal and dual nondegeneracy, the resulting linear system for the search
direction does not necessarily get ill-conditioned as we approach the optimum.

2. When the linear system is well-conditioned, one may successfully apply: pre-
conditioned iterative methods, a dynamic change to affine scaling without back-
tracking, dynamic purification, and no backtracking from the boundary (taking the
complete step to the boundary is advantageous).

3. High accuracy solutions are obtained for both nondegenerate and degenerate prob-
lems; though for ill-conditioned problems this can be at the expense of (sometimes
significantly) larger computational time.

4. Exact primal—dual feasibility is maintained throughout the iterations, if we start
feasible.

Since our reduced linear system is larger than the usual normal equations ap-
proach, NEQ, our method is not competitive for the highly ill-conditioned NETLIB
test set, with respect to CPU time, though we can obtain higher accuracy solutions.
We think that improvements in our preliminary methods for finding B and for the
preconditioning in LSQR will result in improved speed and accuracy.

In summary, we believe that our stable approach for interior-point methods for LPs
provides: a first step towards greater reliability; and a means for applying iterative
methods for finding the search direction. Our method has advantages in comparison
with the NEQ approach when the nondegeneracy assumptions are satisfied or when
higher accuracy solutions are needed. Our numerical tests show that we can take
direct advantage of sparsity for large sparse well-conditioned problems.

Acknowledgements The authors are indebted to Michael Saunders (Department of Management Sci-
ence and Engineering, Stanford University) for providing the LSQR MATLAB code for the PCG-like
method. The authors would also like to thank Tamas Terlaky (Department of Computing and Software,
McMaster University) for many helpful conversations. In addition, we thank an anonymous associate edi-
tor and three referees for helping us make numerous significant improvements to the paper.

References

1. Andersen, E.D., Ye, Y.: Combining interior-point and pivoting algorithms for linear programming.
Manag. Sci. 42, 1719-1731 (1996)

2. Anstreichner, K.M.: Linear programming in 0((n3/ Inn)L) operations. SIAM J. Optim. 9(4), 803—
812 (1999) (electronic). Dedicated to John E. Dennis, Jr., on his 60th birthday

3. Ben-Tal, A., Nemirovski, A.S.: Robust convex optimization. Math. Oper. Res. 23(4), 769-805 (1998)

4. Ben-Tal, A., Nemirovski, A.S.: Robust solutions of uncertain linear programs. Oper. Res. Lett. 25(1),
1-13 (1999)

5. Ben-Tal, A., Nemirovski, A.: Robust solutions of linear programming problems contaminated with
uncertain data. Math. Program. Ser. A 88(3), 411-424 (2000)

@ Springer



246

M. Gonzalez-Lima et al.

10.

12.
13.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

. Benzi, M., Meyer, C.D., Tuma, M.: A sparse approximate inverse preconditioner for the conjugate

gradient method. SIAM J. Sci. Comput. 17(5), 1135-1149 (1996)

. Benzi, M., Tuma, M.: A sparse approximate inverse preconditioner for nonsymmetric linear systems.

SIAM J. Sci. Comput. 19(3), 968-994 (1998)

. Bergamaschi, L., Gondzio, J., Zilli, G.: Preconditioning indefinite systems in interior point methods

for optimization. Comput. Optim. Appl. 28(2), 149-171 (2004)

. Bjorck, A.: Methods for sparse least squares problems. In: Bunch, J.R., Rose, D.J. (eds.) Sparse Matrix

Computations, pp. 177-199. Academic Press, New York (1976)
Burke, J.: On the identification of active constraints II. The nonconvex case. STAM J. Numer. Anal.
27(4), 1081-1103 (1990)

. Burke, J.V., Moré, J.J.: On the identification of active constraints. SIAM J. Numer. Anal. 25(5), 1197—

1211 (1988)

Burke, J.V., Moré, J.J.: Exposing constraints. SIAM J. Optim. 4(3), 573-595 (1994)

Chai, J.-S., Toh, K.-C.: Preconditioning and iterative solution of symmetric indefinite linear systems
arising from interior point methods for linear programming. Comput. Optim. Appl. 36(2/3), 221-247
(2007)

. De Leone, R., Mangasarian, O.L.: Serial and parallel solution of large scale linear programs by aug-

mented Lagrangian successive overrelaxation. In: Optimization, Parallel Processing and Applications,
Oberwolfach, Karlsruhe, 1987. Lecture Notes in Economics and Mathematical Systems, vol. 304,
pp- 103-124. Springer, Berlin (1988)

. Dennis, J.E. Jr., Schnabel, B.R.: Numerical Methods for Unconstrained Optimization and Nonlinear

Equations. Classics in Applied Mathematics, vol. 16. SIAM, Philadelphia (1996) (Corrected reprint
of the 1983 original)

. Dennis, J.E. Jr., Wolkowicz, H.: Sizing and least-change secant methods. STAM J. Numer. Anal. 30(5),

1291-1314 (1993)

. Dominguez, J., Gonzalez-Lima, M.D.: A primal—dual interior-point algorithm for quadratic program-

ming. Numer. Algorithms 105, 1-30 (2006)

El-Bakry, A.S., Tapia, R.A., Zhang, Y.: A study of indicators for identifying zero variables in interior-
point methods. SIAM Rev. 36(1), 45-72 (1994)

Fiacco, A.V., McCormick, G.P.: Nonlinear Programming Sequential Unconstrained Minimization
Techniques. STAM, Philadelphia (1990)

Freund, R.W., Gutknecht, M.H., Nachtigal, N.M.: An implementation of the look-ahead Lanczos
algorithm for non-Hermitian matrices. SIAM J. Sci. Comput. 14, 137-158 (1993)

Freund, R.W., Jarre, F.: A QMR-based interior-point algorithm for solving linear programs. Math.
Program. Ser. B 76, 183-210 (1996)

Golub, G.H., Pereyra, V.: The differentiation of pseudoinverses and nonlinear least squares problems
whose variables separate. SIAM J. Numer. Anal. 10, 413-432 (1973)

Gould, N.ILM., Orban, D., Sartenaer, A., Toint, Ph.L.: Componentwise fast convergence in the solution
of full-rank systems of nonlinear equations. Tr/pa/00/56, CERFACS, Toulouse, France (2001)
Greenbaum, A.: Iterative Methods for Solving Linear Systems. SIAM, Philadelphia (1997)

Giiler, O., Den Hertog, D., Roos, C., Terlaky, T., Tsuchiya, T.: Degeneracy in interior point methods
for linear programming: a survey (Degeneracy in Optimization Problems). Ann. Oper. Res. 46/47(1—
4), 107-138 (1993)

Hager, W.W.: The dual active set algorithm and the iterative solution of linear programs. In: Novel
Approaches to Hard Discrete Optimization, Waterloo, ON, 2001. Fields Institute Communications,
vol. 37, pp. 97-109. Am. Math. Soc., Providence (2003)

Jadice, J1.J., Patricio, J., Portugal, L.F., Resende, M.G.C., Veiga, G.: A study of preconditioners for
network interior point methods. Comput. Optim. Appl. 24(1), 5-35 (2003)

Kantorovich, L.V.: Functional analysis and applied mathematics. Uspekhi Mat. Nauk 3, 89-185
(1948) (Transl. by C. Benster as N.B.S. Rept. 1509, Washington, 1952)

Keil, C., Jansson, C.: Computational experience with rigorous error bounds for the Netlib linear pro-
gramming library. Reliab. Comput. 12(4), 303-321 (2006)

Lu, S., Barlow, J.L.: Multifrontal computation with the orthogonal factors of sparse matrices. SIAM
J. Matrix Anal. Appl. 17(3), 658-679 (1996)

Mangasarian, O.L.: Iterative solution of linear programs. SIAM J. Numer. Anal. 18(4), 606-614
(1981)

Matstoms, P.: The multifrontal solution of sparse linear least squares problems. Licentiat thesis, De-
partment of Mathematics, Linkoping University, Sweden (1991)

@ Springer



A stable primal—dual approach for linear programming 247

33.
34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.
S1.

52.

53.

54.

Matstoms, P.: Sparse QR factorization in MATLAB. ACM Trans. Math. Softw. 20, 136-159 (1994)
Mehrotra, S.: Implementations of affine scaling methods: approximate solutions of systems of linear
equations using preconditioned conjugate gradient methods. ORSA J. Comput. 4(2), 103-118 (1992)
Mehrotra, S., Wang, J.-S.: Conjugate gradient based implementation of interior point methods for
network flow problems. In: Linear and Nonlinear Conjugate Gradient-Related Methods, Seattle, WA,
1995, pp. 124-142. SIAM, Philadelphia (1996)

Mehrotra, S., Ye, Y.: Finding an interior point in the optimal face of linear programs. Math. Program.
A 62(3), 497-515 (1993)

Oliveira, A.R.L., Sorensen, D.C.: A new class of preconditioners for large-scale linear systems from
interior point methods for linear programming. Linear Algebra Appl. 394, 1-24 (2005)

Ordéiiez, F., Freund, R.M.: Computational experience and the explanatory value of condition mea-
sures for linear optimization. SIAM J. Optim. 14(2), 307-333 (2003) (electronic)

Paige, C.C., Saunders, M.A.: LSQR: an algorithm for sparse linear equations and sparse least squares.
ACM Trans. Math. Softw. 8(1), 43-71 (1982)

Pang, J.: Error bounds in mathematical programming (Lectures on Mathematical Programming
(ISMP97), Lausanne, 1997). Math. Program. Ser. B 79(1-3), 299-332 (1997)

Perez-Garzia, S.: Alternative iterative primal—dual interior-point algorithms for linear programming.
Master’s thesis, Simon Bolivar University, Center for Statistics and Mathematical Software (CESMa),
Venezuela (2003)

Perez-Garcia, S., Gonzalez-Lima, M.: On a non-inverse approach for solving the linear systems aris-
ing in primal—dual interior point methods for linear programming. Technical report 2004-01, Simon
Bolivar University, Center for Statistical and Mathematical Software, Caracas, Venezuela (2004)
Tikhonov, A.N., Arsenin, V.Y.: Solutions of IlI-Posed Problems. Winston/Wiley, Washington (1977)
(Transl. ed. Fritz John)

Van der Sluis, A.: Condition numbers and equilibration of matrices. Numer. Math. 14, 14-23,
(1969/1970)

Vanderbei, R.J.: Linear Programming: Foundations and Extensions. Kluwer Academic, Dordrecht
(1998)

Vanderbei, R.J.: LOQO: an interior point code for quadratic programming (Interior Point Methods).
Optim. Methods Softw. 11/12(1-4), 451-484 (1999)

Wei, H.: Numerical stability in linear programming and semidefinite programming. Ph.D. thesis, Uni-
versity of Waterloo (2006)

Wolkowicz, H.: Solving semidefinite programs using preconditioned conjugate gradients. Optim.
Methods Softw. 19(6), 653-672 (2004)

Wright, M.H.: Ill-conditioning and computational error in interior methods for nonlinear program-
ming. SIAM J. Optim. 9(1), 84-111 (1999) (electronic)

Wright, S.: Primal-Dual Interior-Point Methods. SIAM, Philadelphia (1996)

Wright, S.: Modifying SQP for degenerate problems. Technical report, Argonne National Laboratory
(1997)

Wright, S.J.: Stability of linear equations solvers in interior-point methods. SIAM J. Matrix Anal.
Appl. 16(4), 1287-1307 (1995)

Wright, S.J.: Stability of augmented system factorizations in interior-point methods. SIAM J. Matrix
Anal. Appl. 18(1), 191-222 (1997)

Zhang, Y.: User’s guide to LIPSOL: linear-programming interior point solvers V0.4 (Interior Point
Methods). Optim. Methods Softw. 11/12(1-4), 385-396 (1999)

@ Springer



	A stable primal-dual approach for linear programming under nondegeneracy assumptions
	Abstract
	Introduction
	Background and motivation
	Outline and main contributions

	Duality, optimality, and block eliminations
	Linearization
	Reduction to the normal equations
	First step in block elimination for normal equations
	Second step in block elimination for normal equations

	Roundoff difficulties for NEQ examples
	Nondegenerate but with large residual
	Degenerate case

	Simple/stable reduction
	Condition number analysis
	The stable linearization

	Primal-dual algorithm
	Initialization and preprocessing
	Preconditioning techniques
	Optimal diagonal column preconditioning
	Partial (block) Cholesky preconditioning

	Change to pure Newton step technique
	Purify step

	Numerical tests
	Well conditioned AB
	NETLIB set-Ill-conditioned problems
	No backtracking

	Conclusion
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


