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Abstract

Measures of deviation of a symmetric positive definite matrix from the identity are derived.
They give rise to symmetric rank-one, SR1, type updates. The measures are motivated by
considering the volume of the symmetric difference of the two ellipsoids, which arise from the
current and updated quadratic models in quasi-Newton methods. The measure defined by
the problem - maximize the determinant subject to a bound of 1 on the largest eigenvalue -
yields the SR1 update. The measure o(4) = ﬁ% yields the optimally conditioned, sized,
symmetric rank-one updates, [1, 2]. The volume considerations also suggest a ‘correction’ for
the initial stepsize for these sized updates. It is then shown that the o-optimal updates, as
well as the Oren-Luenberger self-scaling updates [3], are all optimal updates for the x measure,
the £ condition number. Moreover, all four sized updates result in the same largest (and
smallest) ’scaled’ eigenvalue and corresponding eigenvector. In fact, the inverse-sized BFGS
is the mean of the o-optimal updates, while the inverse of the sized DFP is the mean of the
inverses of the o-optimal updates. The difference between these four updates is determined
by the middle n — 2 scaled eigenvalues. The x measure also provides a natural Broyden class

replacement for the SR1 when it is not positive definite.

Keywords: Conditioning, Least-change Secant Methods, Quasi-Newton Methods, Unconstrained
Optimization, Sizing, Symmetric Rank-one Update, Volume of Ellipsoid, Condition Number.
Short Title: Measures for SR1 Updates.

1 Introduction

In this paper we consider several new measures of deviation, of a symmetric positive definite

matrix, from the identity matrix. These measures yield some well-known quasi-Newton updates.
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support.



We consider the unconstrained minimization problem

min f(z),

where f is twice continuously differentiable. We let z. denote the current approximation to a
minimizer z*, B, is the current approximation to the true Hessian at ., and g, is the gradient
at z.. Secant-type methods are based upon approximating Newton’s method by accumulating
Hessian approximations using gradient differences. These methods have the property that the
next Hessian approximation, or update B = B, is symmetric positive definite (denoted s.p.d.)

and satisfies the secant condition
Bs=y=g,—g.or B 'ly=s=z, —z..

Simultaneously, these methods preserve as much information as possible from the current Hessian

approximation B,. We will use the notation that B~! = H and
a=vy'Hy, b=1y's, c =s'B.s. (1.1)

Throughout the paper we deal with the space of real symmetric n X n matrices, n > 2, equipped
with the trace inner product, < A, B >= trace(AB), and the induced Frobenius norm, ||4||r =
(A, A>%. We assume the curvature condition b > 0 and that the current Hessian approximation
B, is positive definite.

Various measures have been used to preserve current Hessian information. Minimizing these
measures, subject to the secant condition being satisfied, yields many of the well known s.p.d.
updates used to date. For example, the measure ||B,— B, ||r yields the PSB update; the measure
||H.— H,||r yields the Greenstadt update. These updates may not preserve positive definiteness.
The weighted Frobenius norm ||T(H. — H,)T*||r, where T'*Ts = y, yields the BFGS update;
while ||T%(B, — B, )T !||r yields the DFP update. They preserve positive definiteness if and
only if the curvature condition & = y's > 0 holds. If the scaling matrix T above satisfies
(T*T + B.)s = y, then we get the symmetric rank-one (denoted SR1) update. (For the above
results see e.g. [4, 5, 2].) Each of the pairs of updates, say the pair B; and B,, yields a one
parameter family of updates formed from the linear combinations tB; + (1 — t)B;, t € ®. In
particular, the DFP and BFGS updates yield the Broyden class. The BFGS and DFP updates

can also be characterized as the optimal updates for the measure
P(A) = trace(A) — log(det(A4)), (1.2)

where det denotes determinant and A is chosen to be the scaled updates H? B, H? and BZ H,B¢Z,

respectively, see [6]. The measure

K(A) = (1.3)



(the £, condition number) where A; and A, are the largest and smallest eigenvalues, respectively,
has been used to choose an optimally conditioned update in the Broyden class, [7]. (See also [8]).

In [9],Theorem 5.1, we showed that the measure

_ trace(A4)/n

w(4) = W (1.4)

yields the inverse-sized BFGS update (the BFGS update of $B.) and sized DFP update (the
DFP update of 2B, ). (The sized updates are often referred to as the Oren-Luenberger self-scaling
updates, [3, 10].) The measure w acts as a condition number in that it provides a deviation from
a multiple of the identity as does the £, condition number, .

As noted above, measures are important in providing theoretical derivations of well-known
updates. These measures are also used to derive updates with special constraints, e.g. special
sparsity patterns are required in [11]. Measures are also important in convergence analysis, e.g.
the measure ¢ is used in the convergence analysis in [12]. The new measures we discuss have
some additional useful properties. They are similar to the potential functions used in interior
point methods. In particular, like potential functions, the optimal points are interior points. In
our case, this guarantees positive definiteness of the optimal updates.

The SR1 and sized SR1 updates are the focus of the measures in this paper. The SR1 update
has a major drawback in that it is not necessarily positive definite. However, it has some very
strong convergence properties. Under certain regularity conditions, the updates converge globally
to the true Hessian [13]. Successful numerical tests - in a trust region framework to avoid the
possible loss of positive definiteness - has resulted in a renewed interest in the SR1 update, see
e.g. [14]. Another method of avoiding the loss of positive definiteness of the SR1, is to size the
current update, see [1, 2]. The resulting updates are called the optimal conditioned sized SR1
udpates.

The primary motivation for this paper is to find the ’best’ new update B, , i.e. this update
should satisfy the secant equation while preserving the most information from the current udpate
B.. With this aim in mind, we first show that minimizing the volume of the symmetric difference
between the two ellipsoids corresponding to B, and B., is a valid measure for preserving the
most information. This hard problem is not solved but rather relaxed in several ways. This leads
to the main results in this paper, which are measures yielding SR1 type updates. Adding the
restriction that the ellipsoid for B, contains (or is contained in) the normalized ellipsoid for B,

yields the measure
A (A
o(A) = L)l
det(A4)=

The optimal updates for this measure are the optimal conditioned, sized, SR1 updates. The sizing

(1.5)

factor for the ellipsoids corresponding to B, implies that the initial stepsize of 1 may be wrong
for these methods. (A similar conclusion, for the Oren-Luenberger self-scaling BFGS method is

presented in [15].) Rather than try and correct the stepsize, we normalize both ellipsoids. This



yields the measure

max{det(4) : A;(4) < 1}. (1.6)

The optimal update for this measure is the SR1 update. In fact, except for the trivial degenerate
case when B, satisfies the secant equation, loss of definiteness of the SR1 update is equivalent
to loss of feasibility of the above optimization problem. The final measure that we consider is
the £, condition number, k. We characterize completely the optimal updates for this measure.
In fact, we show that the w and o optimal updates are all x optimal. Moreover, there is a very
close spectral relationship between these four updates. In addition, the existence of a Broyden
class k optimal update complements positive definiteness of the SR1 update, and so it provides
a natural replacement for an indefinite SR1.

The rest of the paper is organized as follows. In Section 2 we present several results on
volumes of ellipsoids which lead to the measure ¢ and the measure defined by the maximum
determinant problem (1.6). In Section 3 we show that the optimal conditioned SR1 updates arise
from the measure ¢ and so have an optimal volume interpretation. In Section 4 we first show
that the volume considerations suggest that the initial stepsize for the optimally conditioned SR1
updates should not be 1. Equivalently, these updates should be resized after they are evaluated.
We then show that the SR1 update comes from (1.6) and has an optimal volume interpretation.
In Section 5, we present the k-optimal updates and the interesting spectral relationships among

the various sized updates.

2 Volume as a Measure for Least Change

In this section we derive two measures of least change. Both measures arise from relaxations
of the problem: approximate a given ellipsoid by another ellipsoid, from within a given set, by
minimizing the volume of their symmetric difference. These measures involve the singular values
of the product of two s.p.d. matrices. A further relaxation results in more tractable measures
involving eigenvalues.

Least change secant methods attempt to find an update B, that satisfies the secant equa-
tion while simultaneously preserving as much information as possible from the current Hessian
approximation B,. If we assume that the gradient vector g, can be a random direction (of norm
1 say), then we can consider that B, is preserving the information from B, when the search
directions H,g, and H.g, are close. Thus B, is a least change update of B, if the ellipsoids
formed from the images of the unit ball under H, and H, are close. Let us now use the volume
as a measure of closeness for ellipsoids. It would be best if we could find the update H, so that
the volume of the symmetric difference (set union minus intersection) of the updated and current
ellipsoids is minimized. With this aim in mind, we first consider two ’optimal’ updated ellipsoids.
The first ellipsoid minimizes the volume over all ellipsoids containing the current ellipsoid, while

the second one maximizes the volume over all ellipsoids contained within the current ellipsoid.



Suppose that B is s.p.d. Denote the ellipsoid for B of radius a by
E,(B)y={zc®R":||Bz|]|<a}={z c R :2'B’z < a*}; (2.1)
denote the ellipsoid corresponding to the square root of B by
E.(B%) = {z c ®": 2'Bz < o*}. (2.2)

Note that the image of the ball under H, H(E,(I)) = E,(B). The volume of this ellipsoid is
the determinant of H times the volume of E,(I), i.e.

vol(EL(B)) = de?(B)vol(El(I)).

Given B fixed, since

A1(B) = max ||Bz||,

z€E;(I)
the ellipsoid of minimal volume containing FE;(I) is E,(B) with a = A;(B). The n-th root of

the volume of this ellipsoid leads to our measure

Ai(B)

°B) = Geu(ByE

The measure o has several interesting properties similar to the measure w used in [9].

Proposition 2.1 The measure o(B) satisfies

1. 1< o(B) < nw(B) < nk(B) < 4nw™(B) < 4no™(B);

2. o(aB)=0(B), forall a >0;

3. o is a pseudoconvez function on the set of s.p.d. matrices and thus any stationary point is

a global minimazer.

Proof. The result 1., without the function o, is given in [9, Prop 2.1]. Including o follows
from the definitions, as does 2. On the set of s.p.d. matrices, the largest eigenvalue is a convex
function, see e.g. [16, 17], while det(B)* is an increasing concave function, see e.g. [16, pg 475].
(By increasing we mean isotonic with the Loewner order, i.e. the order A > B if A— B is s.p.d.)
Thus o is pseudoconvex, see e.g. [18]. (For our purposes we need to only know that the ratio
of a convex and (positive) concave function is pseudoconvex and that a stationary point of a

pseudoconvex function is a global minimum.) O

The inequalities in 1. of the Proposition show that ¢ and w act as condition numbers in
the sense that they provide bounds on the amplification factors for relative errors. Moreover,

since the two measures bound each other from below and above, minimizing one would be a



compromise for minimizing the other, i.e. minimizing w would give good approximations for
minimizing o.
We also need the measure

_ 1Bl
“B) = G (m)E

where ||B||, denotes the spectral norm of B, i.e. the largest singular value of B. Note that both
measures ¢ and s are well defined if B has real positive eigenvalues. Moreover, in this case,
o(B) < s(B) and equality holds if B is s.p.d. However, it can be shown that the two measures
are not necessarily isotonic.

We now state the relationship between the measures s, ¢ and volume. Note that the true
measure s, in the theorem, involves singular values, while the relaxed measure o, in the corollary,

involves eigenvalues and is more tractable. The relationship between the two measures is s(B) =

o(B!B), with s(B) = \/o(B?), if B is s.p.d.

Theorem 2.1 Suppose that B, s.p.d. is given and Q is a closed set of symmetric matrices which

intersects the set of s.p.d. matrices. Then:

a) When it exists, the s.p.d. B, in 2, which yields the ellipsoid Es(B,) of minimal volume
that contains E,(B.), is the solution of
min s(H.B,) (= o(B,H?B,)), (2.3)

BLEn
Bys.p.d.

with § = ||[(H.B)||2. Moreover, the volume ratio

vol(Es(By))

vol((5))

b) When it exists, the s.p.d. B, in Q, which yields the ellipsoid Eg(B,) of mazimal volume

contained in E,(B.), is the solution of

min s(H,B.) (= o(H,B’H,)), (2.4)
B,LEQ
B+‘;.p.d.

with f = 1/||(H;B.)||2. Moreover, the volume ratio

vol(E\(B.)) . n
vol(Ea(B,)) ~ "B
c) If
Q={B:Bs=y}, (2.5)

then the minimum in both minimization problems is attained.



Proof. Given B, and B, fixed, the ellipsoid of minimal volume for B, that contains F;(B.)

is Es(B,), where § is the solution of the generalized eigenvalue problem

§ = B.z||.
H;{lﬁf;lll +z||

After substituting « = H.y with ||y|| < 1, we get § = |[(H.B,)||2- Therefore, with only B,

[I(HeB)IZ
det(B+)

Similarly, the ellipsoid of maximum volume for B, that is contained in FE;(B,) is Eg(B,),
where the fact that Ei(By) C Ei(B.) if and only if Eg(By) C Ei(B.) implies that 8 =

fixed, we minimize or equivalently s(H.B,) to find the ellipsoid of minimal volume.

1
“deiBy) OT equivalently minimize s(H, B.).

The volume ratios follow from the definitions. To prove c), note that the functions are

1/||[(Hy+B.)||2, i.-e. we maximize

bounded below by 1 and bounded above by the fact that there is a feasible s.p.d. matrix, since
we assume that b > 0. Attainment follows from the restriction on the singular values by the
secant equation. (The proof of attainment follows the same argument as that given in [9, Lemma

2.1] for the measure w.) ]

Corollary 2.1 Under the hypotheses of the above Theorem, if the matrices B,,B.,H,, H. are
replaced by their respective square roots, with @ = {B3 : Bs = y} in (2.5), then the Theorem holds
with § = /A (H.B,) and 8 = 1/+/A(H,B,.) and with the measure s replaced by /o, the square
root of the measure o; so that the two objective functions are O'(B_%_HCB_%_) and U(HEBCHE),

respectively, and the two volume ratios are o(H,B,)% and o(H,B,)%, respectively.

The above Theorem provides updates H, so that H (E;(I)) and H,(Es(I)) approximate
H.(E.(I)). However, for H,g, to properly approximate H.g, , we would like § and 3 to be 1.

This is done in the following Theorem and Corollary which is then used in Section 4 to derive
the SR1 update.

Theorem 2.2 Suppose that B, s.p.d. is given and Q is a closed set of symmetric matrices which

intersects the set of s.p.d. matrices. Then:

a) If there exists an s.p.d. B in Q such that ||(BH,)||2 < 1, then there exists an s.p.d. update
B, in Q which yields the ellipsoid E,(B.) of minimal volume that contains Ei(B.) and

it is the solution of
max{det(H.B,): B, € Q, B,s.p.d., ||(H.By)||» <1}. (2.6)

Moreover, the volume ratio

vol(Ey(B.))

vol(Ey(B.)) = det(B.H,).



b) If there exists an s.p.d. B in Q such that ||(HB.)||» <1, then there exists an s.p.d. update
B, in Q which yields the ellipsoid E,(By) of mazimal volume that is contained in E,(B.)

and it is the solution of
max{det(H,B.): B, € Q, B,s.p.d., ||(H;B.)||. < 1}. (2.7)

Moreover, the volume ratio

vol(E4(B.))

vol(Er(B,)) = det(B,H.,).

Proof. The proof for a) follows by noting that the volume of E;(B,) is the volume of F;(I)
divided by det(B.) and that

E\(B.) C Ei(By) < [|(B+H.)|[2 < 1.

The proof of b) is similar. Attainment follows by the constraint on the norm and the fact that,
on s.p.d. matrices, the function det™ is concave and increasing, or the function logdet is concave

and strictly increasing. (See the proof of Prop. 2.1 and [16].). O

Corollary 2.2 Under the hypotheses of the above Theorem, if the matrices B,B,,B.,, H,,H,
are replaced by their respective square roots, then the Theorem holds with the spectral norm || - ||
replaced by the square root of the largest eigenvalue \/A;(-). Thus problems (2.6) and (2.7)
become (4.2) and (4.3), respectively.

3 The o-Optimal Updates

We now show that the best s.p.d. updates for our measure o are the sized, optimally conditioned,
SR1 updates in [1, 2]. Thus these updates provide ellipsoids of minimum (maximum) volume

containing (contained in) the current normalized ellipsoid. We again assume that b > 0 and B,

is s.p.d.
Theorem 3.1 Let
C (S -y (3.1)
a4y = — —_— — — 2, .
e a
Then the SR1 update of éBc,
H, = aH, +v'/(v'y), v=s—aH.y, a = a_, (3.2)

is the unique solution of
min o(H.B,).
Bys=y
Bys.p.d.

Moreover, £ = X\{(H.B.) is of multiplicity n—1 and the other eigenvalue of H. B, is \,(H.B) =
1/ay.



Proof. The optimum s.p.d. update exists by Corollary 2.1. We first show that we can restrict
the problem to sized SR1 updates. The Lagrangian for our problem is identical to the one in the

proof of [9, Theorem 5.1], with the possibly nondifferentiable function ¢ replacing w, i.e.
L(u,B) = 0(B) + u!(BBis — Hzy).
We have replaced the matrix H B, with
B=H:B,H:? (3.3)
for simplicity. The secant equation becomes
B(Bis) = (Hiy). (34)

(The current Hessian approximate becomes the identity, I.) The function A;(B) is not necessarily
a differentiable function in the case of a multiple eigenvalue. However, since it is a real valued
convex function, it is continuous and subdifferentiable, see e.g. [19]. The subgradient consists of
the convex hull of the normalized m eigenvectors, where m is the multiplicity of the eigenvalue
A1, see e.g. [16, 17]. We can now find a subgradient of the Lagrangian, using the calculations in
the proof of Theorem 5.1 in [9], and set it equal to zero. Using the fact that the derivative of the
determinant is the adjoint matrix and that Cramer’s rule states that the inverse is the adjoint

divided by the determinant, we get
H =tY + B su' 4+ u(B?s)', (3.5)

where u is a multiple of the Lagrange multiplier vector, Y is a subgradient of A;(B), and
t = n/A(B). The subgradient works for these fractional pseudoconvex functions just as it
does for convex functions, see e.g. [20, pg 48]. (Y replaces H , the gradient of the trace, and
t = n/A(B) replaces trace(B). Otherwise the details for the decomposition of H in (3.5) are
unchanged from those in [9, Theorem 5.1]. Note that the gradient of u*Bw on the space of
symmetric matrices is w) Moreover, the calculations show that ¥ = Y. 6,z,2¢, where z;
are the normalized eigenvectors for A;, 6; > 0, >°.0, =1, 72=1,---,m. The above decomposition
of H implies that the rank of ¥ > n — 2 and so the multiplicity of the largest eigenvalue of B
is > n — 2. Therefore B is at most a rank-two update of a multiple of the identity, AI, where
A = A(B). If it is rank-two, let us first assume that it is a Broyden class update. Then %B has

n — 2 unit eigenvalues and the other (smaller) two eigenvalues of +B are, see [8, pg 111] or [9],

s = Ai(9) £ (Li(9)" - f(9))7, (3.6)
where ¢ is the scalar for the parameterization of the Broyden class of rank-two updates, and
a(b+ c) — ¢(ac — b2 ac — ¢(ac — b?
e e e R



Note that %B is a rank-two update of I with secant equation

1 1 ]. 1
“B)(\3B3s) = (—H?y).
(5B)AiBks) = ({7 HEY)

Thus a and ¢ are changed to a and Ac, respectively. Therefore, since o(3B) = o(B), we are

minimizing the function
1 ., 1 ac — ¢(ac — b?)

This function is isotonic with ¢, for ¢ < —*45;, which are also the values of ¢ for which the

update B is s.p.d. But we must maintain the maximality of A, i.e. 1 > A,. In [8, Lemma 7.1.3]

it is shown that AL are isotonic with —¢. The optimality conditions imply that A is the largest
eigenvalue. Therefore, we can decrease ¢ until 1 = A, , i.e. the multiplicity of A is at least n—1,

i.e. B is an SR1 update of a multiple of the identity and equivalently, for some a > 0,
H = ol 1 /(r*HEy), 7 = (BEs) — (od)(HEy).

The eigenvalues of H are a and

1 2ab — ¢ — a?a
tr /(rtHIy) =+ 2 "%
a+rr/(rHzy)=a+ P

The eigenvalue « is the smallest if and only if

_ 2ab — ¢ — a?a

h(a) = >0

aa—b
and the condition number is then the strictly pseudoconvex function

hla)+a  c—ab

a ab — a?a’

k(H) = k(o) =

Since the multiplicity of the smallest eigenvalue of H is at least n — 1, cancellation shows that

the measure o is equivalent to x on SR1 updates of a multiple of the identity, i.e.

o(B) = 1/a :(a—l—h(a)

(/) (1/ (e + h(@))))* a

We can therefore replace ¢ by . Since the optimum of o is characterized by the eigenvalue

)h.

configuration and the stationary point property, we see that a unique stationary point a satisfying
h(a) > 0 must exist. Setting the derivative of £ to 0 yields the stationary points in (3.1). One
of these points must correspond to the unique optimum. The numerator of h is < 0, for all «.
Therefore, we can assume that the denominator of h is < 0. Since o < a,, we get that a_
corresponds to the unique optimum. (Note that the case ac = b* raises no difficulties.) Finally,

note that the smaller eigenvalue of B is

(o +h(a)) = =220 _qya,.

a_b—c

10



The case when B is not a Broyden class rank-two update follows similarly. Note that if
B = A 4+ K, where K is rank-two, then y — as is in the range of K; and so K can be written
using the two vectors y — as, w, for some w € R*. Therefore we can parametrize the line of
updates which join B with the SR1 update of AI. This yields a representation for the eigenvalues

of the updates on this line, similar to the representation in (3.6). a

Corollary 3.1 Let

a a a1
AL o= = — _ 213, 3.7
G = 7 {b2 c} (3.7)
Then the SR1 update of éHc,
B, = aB, + 99'/(¢'s), 9=y — &B.s, & = &_, (3.8)

is the unique solution of
min o(B.H,).

Bis=y
Bys.p.d.

Moreover, + = A(B.H,) is of multiplicity n — 1 and equals oy in (8.1); the other eigenvalue

of B.H, is 1/&, and equals a_, the reciprocal from (3.1); the largest and smallest eigenvalues
of H.B, and the optimal value of the measure, from the theorem and the corollary, all have the

same respective values.

Proof. The proof follows by interchanging the roles of H and B. That the optimal values are
the same for both problems can be seen by using the fact that the largest n — 1 eigenvalues are
equal at the optimum in the Theorem while the smallest » — 1 are equal in the Corollary and

k(B) = x(B™1). o

4 A Measure for SR1

The optimal conditioned SR1 updates discussed above arise from the volume considerations of
Corollary 2.1. Our motivation was that, for H, to preserve built up information from H, , we
want H,g, and H.g, close for random g, ,i.e. we want the images of the unit balls H, (E;(I))
and H.(E;(I)) close in volume. However, Theorem 2.1 a) finds H, so that H,(E;(I)) approx-
imates H.(E{(I)), where ¢ = ||H.B,|| is not necessarily 1. Therefore H,(tg.) = (tHy)(9+)
(rather than H,(g,)) approximates H.(g,). This suggests that we scale H, , or equivalently
scale the search direction or initial stepsize, to get t(H,g.), i.e., based on a quadratic model ar-
gument which attempts to preserve current Hessian information, the initial stepsize of 1 for these
updates is wrong. Note that the initial stepsize can determine whether one update is superior to

another since relatively little effort is placed into the line search part of quasi-Newton methods.

11



For Corollary 2.1 a), we have that H_%_(Et(I)) approximates Hc%(El(I)), where t = /A (H.B.).
Therefore tH_% gL = H? g, or
tH:H:g, ~ H.g,. (4.1)

This suggests a further scaling correction rather than just a stepsize correction.

Rather than correct the stepsize using the optimally conditioned updates that arise from
Corollary 2.1 which results in the secant equation not being satisfied, we can try to find the
correct minimal volume updates using Theorem 2.2 and Corollary 2.2, i.e. let us find the updates
so that H,(F.(I)) approximates H.(E;(I)) with ¢t = 1. We now see that when the SR1 is s.p.d.,
then Corollary 2.2 yields the SR1 update,

B, = B, + od'/d's,

where ¥ = y — B.s. We again assume that b > 0 and B. is s.p.d. (Note that the formula for the
SR1 changes if 2 = ac. In this case, the entire Broyden class reduces to the SR1; or it reduces

to the rank-zero update B., if the latter satisfies the secant equation.)

Theorem 4.1 Consider the two mazimum determinant problems from Corollary 2.2
(%) max{det(H.B;): B, € Q, Bys.p.d., \{(H.B;) <1}, (4.2)

and
(47) max{det(H,B.): B, € Q, Bys.p.d., \;(H;B.) <1}, (4.3)

where Q, as given by (2.5), defines the set of symmetric matrices satisfying the secant equation.
Then:

a) b> a if and only if the SR1 update B, ts the unique solution of problem (i); in which case
A(BiH.) =1, and problem (i) is infeasible;

b) b > c if and only if the SR1 update B, is the unique solution of problem (it); in which case
An(B1H.) =1, and problem (i) is infeasible;

¢) b < min{a,c} if and only if the SR1 update is not s.p.d. if and only if the feasible set of
both problems (i) and (i) is the empty set or contains B,.

Proof. The proof is very similar to the proof of Theorem 3.1. (We refer the reader there for
missing details.) Let us consider the first maximization problem (i) given in a). Suppose that
b > a. For simplicity, we again use the matrix B in (3.3) with corresponding secant equation
(3.4) . (Note that the SR1 update is s.p.d. when =5 < —2%; or equivalently ;=% < —2%, see
e.g. [8],[9]. Therefore b > a implies that the SR1 update is s.p.d. and in addition, that b < ¢
since b? < ac. Moreover the SR1 update has n — 1 unit eigenvalues and the other eigenvalue is
smaller than 1 if ¢°s = b— ¢ < 0, or equivalently if (s — H.y)'y =b—a > 0. Thus B # I.) In

this case we can take the SR1 update of (1 —€)I, where € > 0 is small, and get a feasible update
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with largest eigenvalue < 1. Therefore the generalized Slater constraint qualification holds, i.e.

Lagrange multipliers exist for the problem. The Lagrangian for this first problem is
L(a,u, B) = det(B)» — aA(B) — u'(BB3:s — H?y),
where we have added the power 1/n to the determinant. Differentiating yields

_ det(B)~ ,adj(B)
0= n (det(B)

If we let the Lagrange multipliers absorb the constants, we get the same decomposition as in the

— aY — Bisu' —u(BZs)t). (4.4)

proof of Theorem 3.1
H=aY + Bc%sut + u(Bc%s)t.

Since H is s.p.d., we conclude that a > 0 or n = 2. Therefore, by complementary slackness
with the eigenvalue constraint, we see that A;(B) =1 or n = 2. We now conclude that B is at
most a rank-two update of I, where 1 = A{(B) if n > 2. We first assume that B is Broyden
class. (As in Theorem 3.1, we can then generalize this argument to arbitrary rank-two updates.)
Therefore we can explicitly write down the objective function to be maximized, i.e.
ac — ¢(ac — b?)

be '

This function is isotonic with —¢, for appropriate ¢. Therefore, if A, < 1, we can decrease

det(B) =

¢ and increase det(B). But this increases the other two eigenvalues A (¢) of B. We must
maintain the maximality of A\; = 1. We conclude that B is the SR1 update of the identity. This
proves necessity and the eigenvalue statement in a). Conversely, if the SR1 is the unique solution
of (i), then all the eigenvalues of B are <1 and, as seen above, this implies that b > a.

The optimum solution of the second problem given in b) is similarly solved by the SR1 if and
only if b > ¢. We still have to prove the infeasibility claims in a) and b), i.e. that there are no
other solutions of (i) (or (ii)) when the SR1 is infeasible. Now suppose that b > ¢ so that b < a
and the SR1 update can not solve problem (i) as it is an infeasible point. Then problem (i) is
either infeasible or, if there exists a feasible solution B, it cannot have largest eigenvalue < 1.
For if it did, then the above argument implies that the SR1 update exists and is optimal. Thus a
feasible solution B exists if and only if A;(B) = 1, i.e. there are no strictly feasible points. The
generalized Slater constraint qualification fails and, in fact, there can be no Lagrange multipliers
at the optimum. (Or, the above implies the existence of a rank-two update which again leads
to the SR1.) If the feasible set is a single point, then it is also the optimal point. Otherwise,
the feasible set consists of the intersection of the (convex) set of s.p.d. matrices with largest
eigenvalue A\; <1 and the (linear manifold) set of matrices satisfying the secant equation. This
intersection must be a (convex) subset of the set of matrices with largest eigenvalue A; = 1. To
complete the proof we need only show that this set is empty. If B is any optimal matrix with

normalized eigenvectors z; for the eigenvalue 1, then we can orthogonally decompose

B=[XV] [ g 10; l X V], (4.5)
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where X is n X k, k < n— 2 (otherwise, either B = I or the SR1 can be shown to be s.p.d., by
the above rank-two update argument), and X consists of the k orthonormal eigenvectors of B
corresponding to the eigenvalue 1, [X V] is an orthogonal matrix, and \;(B) < 1. The secant
equation now becomes
[ o ] (X VI'BEs) = (IX VI'HEy).
0 B

We see that we have reduced the problem to a n—k dimensional problem, since det(B) = det(B).
But then the optimum must have largest eigenvalue 1, which contradicts the decomposition. The
infeasibility statement for problem (ii) in a) follows similarly.

We now prove ¢). If b < min{a, c}, then the above infeasibility proof holds step by step except
for the statement that B # I in (4.5), which required that b > ¢. Since B = I is equivalent
to the current update B, satisfying the secant equation, we have shown that the feasible set of
problem (ii) contains B.. The converse is clear from the definitions. The result for problem (i)
follows similarly. a
An alternate interpretation of Theorem 4.1 can be obtained from the fact that, for B., B, s.p.d.,

we have ) )
M(B;'By)<1 <= B:*B,B:*-1<0
<— B, -B. <0,

This follows by Sylvester’s Theorem of Inertia, see [16] and Section 2. (A similar result holds for
strict inequality.) Furthermore, B, — B, < 0 implies that

}‘k(B+) < }‘k(BC)a Vka (4'6)

which implies that the same ordering holds for the trace and determinant. (Similarly, for
A(Bi'B.) <1 we get B.— B, <0 and the implication

A(B) < A(By), VE.) (4.7)

5 the x Measure

We now derive the optimal updates for the x measure and show that there is a strong relationship
between these updates and the various SR1 updates discussed above. In fact, we show that the
o-optimal updates in Section 3 and the w-optimal updates in [9] are actually x-optimal as well
and have a common spectral property.

Each of the measures w, ¥, o lead to a pair of BFGS and DFP type updates. Our measures are
motivated by the volume considerations. As mentioned earlier, ideally we would like to minimize
the volume of the symmetric difference. One point about the symmetric difference is that if we
found a measure for it, then the measure should only lead to a single update rather than a pair
of updates. One such measure, that yields only a single update rather than a pair, is the £,

condition number «, since the condition numbers of a matrix and its inverse are equal. In [21]
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it has been shown that the measure x yields a scaled Broyden class update. We can apply the
techniques from the proof of Theorem 3.1 to the measure x to obtain an explicit representation
for the optimal x update. (As seen in the above proofs, we can assume that B, = I.) We get

the stationary point condition
0= XA, — AL + sub + ust,

for some u, where Al = ;2! is an element in the subdifferential of A; and #; is a normalized
eigenvector. (A rank argument implies that the subdifferentials have to be rank-one, since the
rank of su’ + us’ is at most 2.) We now conclude that the span of {u,s} equals the span of
{z,,2,}, i.e. s € span{z;,2,}. The secant condition now implies that y is in this span also.
Our problem is reduced to the 2-dimensional subspace span{s,y}. But the measures k,w, o all
have the same optimum in 2-dimensions. (This can be seen from the eigenvalue expansion and
has been shown in [9].) Therefore we can use an arbitrary orthonormal basis of span{s,y} and
find the optimal update, restricted to the 2-dimensional subspace, using the results in Section 3
or the w-optimal updates in [9]. This yields a rank-two matrix on the 2-dimensional subspace.
We can then add on the rank-(n-2) matrix on the orthogonal complement and choose arbitrary
eigenvalues between A; and A, , e.g. we can add on AP where P is the orthogonal projection of
rank n — 2 and A = (A + A,)/2.

To better illustrate the x-optimal updates, we now characterize the case when there exists
one in the Broyden class. Let () = I — P be the orthogonal projection onto the two dimensional
subspace span{s,y}. In [9] it is shown that, in two dimensions, the optimal update of @ (the

identity in the 2-dimensional subspace) for the measures k,w, o is the Broyden class update

1 1
Bo=Q - Last 4 Tyt + (1 g)euur, (5.1)
where w = %y — %s and
a—b)b
¢ - ]_ - ﬁ. (5.2)

(In fact, this update, the inverse-sized BFGS, the sized DFP, and the optimal conditioned SR1
updates are all equal in two dimensions. Note that Qs = s and Qy = y.) As in the proof of
Theorem 3.1, we can evaluate the two functions f;, fo and obtain the following values for the

two nonzero eigenvalues of the scaled update in (5.1):

de = A9 £ (A(9) - f(e) (5.3)
= g |

This agrees with the results obtained in both Theorem 3.1 and Corollary 3.1. We get the same
results if we do the calculation for the eigenvalues of the scaled w-optimal updates, i.e. the
inverse-sized BFGS and sized DFP updates. This shows that both the ¢-optimal and w-optimal
updates are actually optimal updates for the measure x as well. Therefore, the above proof for

the k-optimal updates implies that the largest and smallest eigenvalues, with their corresponding
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eigenvectors, for each of these four updates have the same respective values, since this is true
for all the k-optimal updates (and their convex combinations). In fact, the values of the sizing
factors show that the mean of the two o-optimal updates is the inverse-sized BFGS update. (A
similar result holds for the sized DFP. These means should provide better updates for minimizing
the volume of the symmetric difference. We can continue this process and find two new means
until a limit is reached.) Therefore, to get H.B, as close to the identity as possible, we should
choose the update for which the n — 2 middle eigenvalues is closest to 1. One x-optimal update

is
1 1 1 1
aP +Q — —ss'+ 2yy’ + (1 - gJeww’ = al + (1 - a)Q — —ss" + 2yy’ + (1 - p)ewn’, (5.4)

where ¢ is given in (5.2). This update is in the Broyden class when a = 1. We can choose oo = 1

if and only if the convex hull of the two eigenvalues in (5.3) contains 1. This is equivalent to
2ac > (a + c)b. (5.5)

Note that if (5.5) fails, then either b > a or b > ¢, which by Theorem 4.1 implies that the SR1
is s.p.d., i.e. if there is no x-optimal update in the Broyden class, then the SR1 update is s.p.d.
(Condition (5.5) is the condition that determines the different cases for the optimal x update
restricted to the Broyden class, i.e. it determines when the middle n — 2 scaled eigenvalues are
equal to 1, see [8].)

We summarize some of the above discussion in the following. Note that, for simplicity of

notation, we assume that B, = I in part 1.

Theorem 5.1 Consider the measures w,o,k and the corresponding four sized updates: the
inverse-sized BFGS and sized DFP updates which are optimal for the measure w, and the two
sized, optimal conditioned, SR1 updates which are optimal for the measure o. Then the following

holds:

1. The k-optimal updates (of I) are of the form B, = Bg + B, where By is given in (5.1),
Q is the projection on span{s,y}, P =1 — Q, PBP = B, and the eigenvalues of B lie
between the eigenvalues of Bg given in (5.3).

2. Each of the four sized updates mentioned above (and their convexr combinations) is optimal

for the K measure.

3. Each of these four sized updates (and their convexr combinations), denoted B, , yields the
same value for the largest (and smallest) eigenvalue, and corresponding eigenvector, for the
scaled update H? B, HZ .

4. The mean of the two o -optimal updates is the inverse-sized BFGS update. The mean of the

mverses of the two o -optimal updates is the inverse of the sized DFP update.
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5. A k-optimal update exists in the Broyden class if and only if (5.5) holds. Moreover, if (5.5)
fails, then the SR1 s s.p.d.
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