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We consider the unconstrained minimization problemminx2<n f(x);where f is twice continuously di�erentiable. We let xc denote the current approximation to aminimizer x� , Bc is the current approximation to the true Hessian at xc , and gc is the gradientat xc . Secant-type methods are based upon approximating Newton's method by accumulatingHessian approximations using gradient di�erences. These methods have the property that thenext Hessian approximation, or update B = B+ , is symmetric positive de�nite (denoted s.p.d.)and satis�es the secant conditionBs = y � g+ � gc or B�1y = s � x+ � xc:Simultaneously, these methods preserve as much information as possible from the current Hessianapproximation Bc . We will use the notation that B�1 = H anda = ytHcy; b = yts; c = stBcs: (1.1)Throughout the paper we deal with the space of real symmetric n�n matrices, n � 2, equippedwith the trace inner product, < A;B >= tracehABi , and the induced Frobenius norm, jjAjjF =hA;Ai 12 : We assume the curvature condition b > 0 and that the current Hessian approximationBc is positive de�nite.Various measures have been used to preserve current Hessian information. Minimizing thesemeasures, subject to the secant condition being satis�ed, yields many of the well known s.p.d.updates used to date. For example, the measure jjBc�B+jjF yields the PSB update; the measurejjHc�H+jjF yields the Greenstadt update. These updates may not preserve positive de�niteness.The weighted Frobenius norm jjT (Hc � H+)T tjjF , where T tTs = y , yields the BFGS update;while jjT�t(Bc � B+)T�1jjF yields the DFP update. They preserve positive de�niteness if andonly if the curvature condition b = yts > 0 holds. If the scaling matrix T above satis�es(T tT + Bc)s = y , then we get the symmetric rank-one (denoted SR1) update. (For the aboveresults see e.g. [4, 5, 2].) Each of the pairs of updates, say the pair B1 and B2 , yields a oneparameter family of updates formed from the linear combinations tB1 + (1 � t)B2 , t 2 < . Inparticular, the DFP and BFGS updates yield the Broyden class. The BFGS and DFP updatescan also be characterized as the optimal updates for the measure (A) = trace(A)� log(det(A)); (1.2)where det denotes determinant and A is chosen to be the scaled updates H 12c B+H 12c and B 12c H+B 12c ,respectively, see [6]. The measure �(A) = �1(A)�n(A) ; (1.3)2



(the `2 condition number) where �1 and �n are the largest and smallest eigenvalues, respectively,has been used to choose an optimally conditioned update in the Broyden class, [7]. (See also [8]).In [9],Theorem 5.1, we showed that the measure!(A) = trace(A)=ndet(A) 1n (1.4)yields the inverse-sized BFGS update (the BFGS update of abBc ) and sized DFP update (theDFP update of bcBc ). (The sized updates are often referred to as the Oren-Luenberger self-scalingupdates, [3, 10].) The measure ! acts as a condition number in that it provides a deviation froma multiple of the identity as does the `2 condition number, � .As noted above, measures are important in providing theoretical derivations of well-knownupdates. These measures are also used to derive updates with special constraints, e.g. specialsparsity patterns are required in [11]. Measures are also important in convergence analysis, e.g.the measure  is used in the convergence analysis in [12]. The new measures we discuss havesome additional useful properties. They are similar to the potential functions used in interiorpoint methods. In particular, like potential functions, the optimal points are interior points. Inour case, this guarantees positive de�niteness of the optimal updates.The SR1 and sized SR1 updates are the focus of the measures in this paper. The SR1 updatehas a major drawback in that it is not necessarily positive de�nite. However, it has some verystrong convergence properties. Under certain regularity conditions, the updates converge globallyto the true Hessian [13]. Successful numerical tests - in a trust region framework to avoid thepossible loss of positive de�niteness - has resulted in a renewed interest in the SR1 update, seee.g. [14]. Another method of avoiding the loss of positive de�niteness of the SR1, is to size thecurrent update, see [1, 2]. The resulting updates are called the optimal conditioned sized SR1udpates.The primary motivation for this paper is to �nd the 'best' new update B+ , i.e. this updateshould satisfy the secant equation while preserving the most information from the current udpateBc . With this aim in mind, we �rst show that minimizing the volume of the symmetric di�erencebetween the two ellipsoids corresponding to B+ and Bc , is a valid measure for preserving themost information. This hard problem is not solved but rather relaxed in several ways. This leadsto the main results in this paper, which are measures yielding SR1 type updates. Adding therestriction that the ellipsoid for B+ contains (or is contained in) the normalized ellipsoid for Bc ,yields the measure �(A) = �1(A)det(A) 1n : (1.5)The optimal updates for this measure are the optimal conditioned, sized, SR1 updates. The sizingfactor for the ellipsoids corresponding to B+ implies that the initial stepsize of 1 may be wrongfor these methods. (A similar conclusion, for the Oren-Luenberger self-scaling BFGS method ispresented in [15].) Rather than try and correct the stepsize, we normalize both ellipsoids. This3



yields the measure maxfdet(A) : �1(A) � 1g: (1.6)The optimal update for this measure is the SR1 update. In fact, except for the trivial degeneratecase when Bc satis�es the secant equation, loss of de�niteness of the SR1 update is equivalentto loss of feasibility of the above optimization problem. The �nal measure that we consider isthe `2 condition number, � . We characterize completely the optimal updates for this measure.In fact, we show that the ! and � optimal updates are all � optimal. Moreover, there is a veryclose spectral relationship between these four updates. In addition, the existence of a Broydenclass � optimal update complements positive de�niteness of the SR1 update, and so it providesa natural replacement for an inde�nite SR1.The rest of the paper is organized as follows. In Section 2 we present several results onvolumes of ellipsoids which lead to the measure � and the measure de�ned by the maximumdeterminant problem (1.6). In Section 3 we show that the optimal conditioned SR1 updates arisefrom the measure � and so have an optimal volume interpretation. In Section 4 we �rst showthat the volume considerations suggest that the initial stepsize for the optimally conditioned SR1updates should not be 1. Equivalently, these updates should be resized after they are evaluated.We then show that the SR1 update comes from (1.6) and has an optimal volume interpretation.In Section 5, we present the �-optimal updates and the interesting spectral relationships amongthe various sized updates.2 Volume as a Measure for Least ChangeIn this section we derive two measures of least change. Both measures arise from relaxationsof the problem: approximate a given ellipsoid by another ellipsoid, from within a given set, byminimizing the volume of their symmetric di�erence. These measures involve the singular valuesof the product of two s.p.d. matrices. A further relaxation results in more tractable measuresinvolving eigenvalues.Least change secant methods attempt to �nd an update B+ that satis�es the secant equa-tion while simultaneously preserving as much information as possible from the current Hessianapproximation Bc . If we assume that the gradient vector g+ can be a random direction (of norm1 say), then we can consider that B+ is preserving the information from Bc when the searchdirections H+g+ and Hcg+ are close. Thus B+ is a least change update of Bc if the ellipsoidsformed from the images of the unit ball under H+ and Hc are close. Let us now use the volumeas a measure of closeness for ellipsoids. It would be best if we could �nd the update H+ so thatthe volume of the symmetric di�erence (set union minus intersection) of the updated and currentellipsoids is minimized. With this aim in mind, we �rst consider two 'optimal' updated ellipsoids.The �rst ellipsoid minimizes the volume over all ellipsoids containing the current ellipsoid, whilethe second one maximizes the volume over all ellipsoids contained within the current ellipsoid.4



Suppose that B is s.p.d. Denote the ellipsoid for B of radius � byE�(B) = fx 2 <n : jjBxjj � �g = fx 2 <n : xtB2x � �2g; (2.1)denote the ellipsoid corresponding to the square root of B byE�(B 12 ) = fx 2 <n : xtBx � �2g: (2.2)Note that the image of the ball under H , H(E�(I)) = E�(B). The volume of this ellipsoid isthe determinant of H times the volume of E�(I), i.e.vol(E�(B)) = �ndet(B)vol(E1(I)):Given B �xed, since �1(B) = maxx2E1(I) jjBxjj;the ellipsoid of minimal volume containing E1(I) is E�(B) with � = �1(B). The n-th root ofthe volume of this ellipsoid leads to our measure�(B) = �1(B)det(B) 1n :The measure � has several interesting properties similar to the measure ! used in [9].Proposition 2.1 The measure �(B) satis�es1. 1 � �(B) � n!(B) � n�(B) � 4n!n(B) � 4n�n(B);2. �(�B) = �(B); for all � > 0;3. � is a pseudoconvex function on the set of s.p.d. matrices and thus any stationary point isa global minimizer.Proof. The result 1., without the function � , is given in [9, Prop 2.1]. Including � followsfrom the de�nitions, as does 2. On the set of s.p.d. matrices, the largest eigenvalue is a convexfunction, see e.g. [16, 17], while det(B) 1n is an increasing concave function, see e.g. [16, pg 475].(By increasing we mean isotonic with the Loewner order, i.e. the order A � B if A�B is s.p.d.)Thus � is pseudoconvex, see e.g. [18]. (For our purposes we need to only know that the ratioof a convex and (positive) concave function is pseudoconvex and that a stationary point of apseudoconvex function is a global minimum.) 2The inequalities in 1. of the Proposition show that � and ! act as condition numbers inthe sense that they provide bounds on the ampli�cation factors for relative errors. Moreover,since the two measures bound each other from below and above, minimizing one would be a5



compromise for minimizing the other, i.e. minimizing ! would give good approximations forminimizing � .We also need the measure s(B) = jjBjj2det(B) 1n ;where jjBjj2 denotes the spectral norm of B , i.e. the largest singular value of B . Note that bothmeasures � and s are well de�ned if B has real positive eigenvalues. Moreover, in this case,�(B) � s(B) and equality holds if B is s.p.d. However, it can be shown that the two measuresare not necessarily isotonic.We now state the relationship between the measures s; � and volume. Note that the truemeasure s , in the theorem, involves singular values, while the relaxed measure � , in the corollary,involves eigenvalues and is more tractable. The relationship between the two measures is s(B) =p�(BtB), with s(B) = p�(B2), if B is s.p.d.Theorem 2.1 Suppose that Bc s.p.d. is given and 
 is a closed set of symmetric matrices whichintersects the set of s.p.d. matrices. Then:a) When it exists, the s.p.d. B+ in 
, which yields the ellipsoid E�(B+) of minimal volumethat contains E1(Bc), is the solution ofminB+2
B+s:p:d: s(HcB+) (= �(B+H2cB+)); (2.3)with � = jj(HcB+)jj2 . Moreover, the volume ratiovol(E�(B+))vol(E1(Bc)) = s(HcB+)n:b) When it exists, the s.p.d. B+ in 
, which yields the ellipsoid E�(B+) of maximal volumecontained in E1(Bc), is the solution ofminB+2
B+s:p:d: s(H+Bc) (= �(H+B2cH+)); (2.4)with � = 1=jj(H+Bc)jj2. Moreover, the volume ratiovol(E1(Bc))vol(E�(B+)) = s(H+Bc)n:c) If 
 = fB : Bs = yg; (2.5)then the minimum in both minimization problems is attained.6



Proof. Given Bc and B+ �xed, the ellipsoid of minimal volume for B+ that contains E1(Bc)is E�(B+), where � is the solution of the generalized eigenvalue problem� = maxjjBcxjj�1 jjB+xjj:After substituting x = Hcy with jjyjj � 1, we get � = jj(HcB+)jj2 . Therefore, with only Bc�xed, we minimize jj(HcB+)jjn2det(B+) or equivalently s(HcB+) to �nd the ellipsoid of minimal volume.Similarly, the ellipsoid of maximum volume for B+ that is contained in E1(Bc) is E�(B+),where the fact that E1(B+) � E 1� (Bc) if and only if E�(B+) � E1(Bc) implies that � =1=jj(H+Bc)jj2 , i.e. we maximize 1jj(H+Bc)jjn2det(B+) or equivalently minimize s(H+Bc).The volume ratios follow from the de�nitions. To prove c), note that the functions arebounded below by 1 and bounded above by the fact that there is a feasible s.p.d. matrix, sincewe assume that b > 0. Attainment follows from the restriction on the singular values by thesecant equation. (The proof of attainment follows the same argument as that given in [9, Lemma2.1] for the measure ! .) 2Corollary 2.1 Under the hypotheses of the above Theorem, if the matrices B+; Bc; H+; Hc arereplaced by their respective square roots, with 
 = fB 12 : Bs = yg in (2.5), then the Theorem holdswith � = p�1(HcB+) and � = 1=p�1(H+Bc) and with the measure s replaced by p� , the squareroot of the measure � ; so that the two objective functions are �(B 12+HcB 12+) and �(H 12+BcH 12+),respectively, and the two volume ratios are �(HcB+)n2 and �(H+Bc)n2 , respectively.The above Theorem provides updates H+ so that H+(E�(I)) and H+(E�(I)) approximateHc(E1(I)). However, for H+g+ to properly approximate Hcg+ , we would like � and � to be 1.This is done in the following Theorem and Corollary which is then used in Section 4 to derivethe SR1 update.Theorem 2.2 Suppose that Bc s.p.d. is given and 
 is a closed set of symmetric matrices whichintersects the set of s.p.d. matrices. Then:a) If there exists an s.p.d. B in 
 such that jj(BHc)jj2 � 1, then there exists an s.p.d. updateB+ in 
 which yields the ellipsoid E1(B+) of minimal volume that contains E1(Bc) andit is the solution ofmaxfdet(HcB+) : B+ 2 
; B+s:p:d:; jj(HcB+)jj2 � 1g: (2.6)Moreover, the volume ratio vol(E1(B+))vol(E1(Bc)) = det(BcH+):7



b) If there exists an s.p.d. B in 
 such that jj(HBc)jj2 � 1, then there exists an s.p.d. updateB+ in 
 which yields the ellipsoid E1(B+) of maximal volume that is contained in E1(Bc)and it is the solution ofmaxfdet(H+Bc) : B+ 2 
; B+s:p:d:; jj(H+Bc)jj2 � 1g: (2.7)Moreover, the volume ratio vol(E1(Bc))vol(E1(B+)) = det(B+Hc):Proof. The proof for a) follows by noting that the volume of E1(B+) is the volume of E1(I)divided by det(B+) and thatE1(Bc) � E1(B+) () jj(B+Hc)jj2 � 1:The proof of b) is similar. Attainment follows by the constraint on the norm and the fact that,on s.p.d. matrices, the function det 1n is concave and increasing, or the function logdet is concaveand strictly increasing. (See the proof of Prop. 2.1 and [16].). 2Corollary 2.2 Under the hypotheses of the above Theorem, if the matrices B;B+; Bc; H+; Hcare replaced by their respective square roots, then the Theorem holds with the spectral norm jj � jjreplaced by the square root of the largest eigenvalue p�1(�). Thus problems (2.6) and (2.7)become (4.2) and (4.3), respectively.3 The �-Optimal UpdatesWe now show that the best s.p.d. updates for our measure � are the sized, optimally conditioned,SR1 updates in [1, 2]. Thus these updates provide ellipsoids of minimum (maximum) volumecontaining (contained in) the current normalized ellipsoid. We again assume that b > 0 and Bcis s.p.d.Theorem 3.1 Let �� = cb � fc2b2 � cag 12 : (3.1)Then the SR1 update of 1�Bc ,H+ = �Hc + vvt=(vty); v = s� �Hcy; � = ��; (3.2)is the unique solution of minB+s=yB+s:p:d: �(HcB+):Moreover, 1� = �1(HcB+) is of multiplicity n�1 and the other eigenvalue of HcB+ is �n(HcB+) =1=�+: 8



Proof. The optimum s.p.d. update exists by Corollary 2.1. We �rst show that we can restrictthe problem to sized SR1 updates. The Lagrangian for our problem is identical to the one in theproof of [9, Theorem 5.1], with the possibly nondi�erentiable function � replacing ! , i.e.L(u;B) = �(B) + ut(BB 12c s �H 12c y):We have replaced the matrix HcB+ withB = H 12c B+H 12c (3.3)for simplicity. The secant equation becomesB(B 12c s) = (H 12c y): (3.4)(The current Hessian approximate becomes the identity, I .) The function �1(B) is not necessarilya di�erentiable function in the case of a multiple eigenvalue. However, since it is a real valuedconvex function, it is continuous and subdi�erentiable, see e.g. [19]. The subgradient consists ofthe convex hull of the normalized m eigenvectors, where m is the multiplicity of the eigenvalue�1 , see e.g. [16, 17]. We can now �nd a subgradient of the Lagrangian, using the calculations inthe proof of Theorem 5.1 in [9], and set it equal to zero. Using the fact that the derivative of thedeterminant is the adjoint matrix and that Cramer's rule states that the inverse is the adjointdivided by the determinant, we getH = tY + B 12c sut + u(B 12c s)t; (3.5)where u is a multiple of the Lagrange multiplier vector, Y is a subgradient of �1(B), andt = n=�1(B). The subgradient works for these fractional pseudoconvex functions just as itdoes for convex functions, see e.g. [20, pg 48]. (Y replaces H , the gradient of the trace, andt = n=�1(B) replaces trace(B). Otherwise the details for the decomposition of H in (3.5) areunchanged from those in [9, Theorem 5.1]. Note that the gradient of utBw on the space ofsymmetric matrices is wut+uwt2 .) Moreover, the calculations show that Y = Pi �ixixti , where xiare the normalized eigenvectors for �1; �i � 0; Pi �i = 1; i = 1; � � � ; m . The above decompositionof H implies that the rank of Y � n � 2 and so the multiplicity of the largest eigenvalue of Bis � n � 2. Therefore B is at most a rank-two update of a multiple of the identity, �I , where� = �1(B). If it is rank-two, let us �rst assume that it is a Broyden class update. Then 1�B hasn � 2 unit eigenvalues and the other (smaller) two eigenvalues of 1�B are, see [8, pg 111] or [9],�� = f1(�)� (f1(�)2 � f2(�)) 12 ; (3.6)where � is the scalar for the parameterization of the Broyden class of rank-two updates, andf1(�) = a(b+ c)� �(ac� b2)2b2 ; f2(�) = ac� �(ac� b2)bc :9



Note that 1�B is a rank-two update of I with secant equation( 1�B)(� 12B 12c s) = ( 1� 12 H 12c y):Thus a and c are changed to 1�a and �c , respectively. Therefore, since �( 1�B) = �(B), we areminimizing the function �( 1�B)n = 1f2 = 1=(ac� �(ac� b2)�bc ):This function is isotonic with � , for � < acac�b2 , which are also the values of � for which theupdate B is s.p.d. But we must maintain the maximality of � , i.e. 1 � �+ . In [8, Lemma 7.1.3]it is shown that �� are isotonic with �� . The optimality conditions imply that � is the largesteigenvalue. Therefore, we can decrease � until 1 = �+ , i.e. the multiplicity of � is at least n�1,i.e. B is an SR1 update of a multiple of the identity and equivalently, for some � > 0,H = �I + rrt=(rtH 12c y); r = (B 12c s)� (�I)(H 12c y):The eigenvalues of H are � and� + rtr=(rtH 12c y) = �+ 2�b� c� �2a�a� b :The eigenvalue � is the smallest if and only ifh(�) = 2�b� c� �2a�a� b > 0and the condition number is then the strictly pseudoconvex function�(H) = �(�) = h(�) + �� = c� �b�b� �2a:Since the multiplicity of the smallest eigenvalue of H is at least n � 1, cancellation shows thatthe measure � is equivalent to � on SR1 updates of a multiple of the identity, i.e.�(B) = 1=�((1=�)n�1(1=(�+ h(�)))) 1n = (�+ h(�)� ) 1n :We can therefore replace � by � . Since the optimum of � is characterized by the eigenvaluecon�guration and the stationary point property, we see that a unique stationary point � satisfyingh(�) > 0 must exist. Setting the derivative of � to 0 yields the stationary points in (3.1). Oneof these points must correspond to the unique optimum. The numerator of h is � 0, for all � .Therefore, we can assume that the denominator of h is < 0. Since �� � �+ , we get that ��corresponds to the unique optimum. (Note that the case ac = b2 raises no di�culties.) Finally,note that the smaller eigenvalue of B is1=(�� + h(��)) = ��a� b��b� c = 1=�+:10



The case when B is not a Broyden class rank-two update follows similarly. Note that ifB = �I +K , where K is rank-two, then y � �s is in the range of K ; and so K can be writtenusing the two vectors y � �s; w , for some w 2 <n . Therefore we can parametrize the line ofupdates which join B with the SR1 update of �I . This yields a representation for the eigenvaluesof the updates on this line, similar to the representation in (3.6). 2Corollary 3.1 Let �̂� = ab � fa2b2 � ac g 12 : (3.7)Then the SR1 update of 1̂�Hc ,B+ = �̂Bc + v̂v̂t=(v̂ts); v̂ = y � �̂Bcs; �̂ = �̂�; (3.8)is the unique solution of minB+s=yB+s:p:d: �(BcH+):Moreover, 1̂� = �1(BcH+) is of multiplicity n � 1 and equals �+ in (3.1); the other eigenvalueof BcH+ is 1=�̂+ and equals �� , the reciprocal from (3.1); the largest and smallest eigenvaluesof HcB+ and the optimal value of the measure, from the theorem and the corollary, all have thesame respective values.Proof. The proof follows by interchanging the roles of H and B . That the optimal values arethe same for both problems can be seen by using the fact that the largest n � 1 eigenvalues areequal at the optimum in the Theorem while the smallest n � 1 are equal in the Corollary and�(B) = �(B�1). 24 A Measure for SR1The optimal conditioned SR1 updates discussed above arise from the volume considerations ofCorollary 2.1. Our motivation was that, for H+ to preserve built up information from Hc , wewant H+g+ and Hcg+ close for random g+ , i.e. we want the images of the unit balls H+(E1(I))and Hc(E1(I)) close in volume. However, Theorem 2.1 a) �nds H+ so that H+(Et(I)) approx-imates Hc(E1(I)), where t = jjHcB+jj is not necessarily 1. Therefore H+(tg+) = (tH+)(g+)(rather than H+(g+)) approximates Hc(g+). This suggests that we scale H+ , or equivalentlyscale the search direction or initial stepsize, to get t(H+g+), i.e., based on a quadratic model ar-gument which attempts to preserve current Hessian information, the initial stepsize of 1 for theseupdates is wrong. Note that the initial stepsize can determine whether one update is superior toanother since relatively little e�ort is placed into the line search part of quasi-Newton methods.11



For Corollary 2.1 a), we have that H 12+(Et(I)) approximates H 12c (E1(I)), where t = p�1(HcB+).Therefore tH 12+g+ � H 12c g+ or tH 12c H 12+g+ � Hcg+: (4.1)This suggests a further scaling correction rather than just a stepsize correction.Rather than correct the stepsize using the optimally conditioned updates that arise fromCorollary 2.1 which results in the secant equation not being satis�ed, we can try to �nd thecorrect minimal volume updates using Theorem 2.2 and Corollary 2.2, i.e. let us �nd the updatesso that H+(Et(I)) approximates Hc(E1(I)) with t = 1. We now see that when the SR1 is s.p.d.,then Corollary 2.2 yields the SR1 update,B+ = Bc + v̂v̂t=v̂ts;where v̂ = y�Bcs . We again assume that b > 0 and Bc is s.p.d. (Note that the formula for theSR1 changes if b2 = ac . In this case, the entire Broyden class reduces to the SR1; or it reducesto the rank-zero update Bc , if the latter satis�es the secant equation.)Theorem 4.1 Consider the two maximum determinant problems from Corollary 2.2(i) maxfdet(HcB+) : B+ 2 
; B+s:p:d:; �1(HcB+) � 1g; (4.2)and (ii) maxfdet(H+Bc) : B+ 2 
; B+s:p:d:; �1(H+Bc) � 1g; (4.3)where 
, as given by (2.5), de�nes the set of symmetric matrices satisfying the secant equation.Then:a) b > a if and only if the SR1 update B+ is the unique solution of problem (i); in which case�1(B+Hc) = 1, and problem (ii) is infeasible;b) b > c if and only if the SR1 update B+ is the unique solution of problem (ii); in which case�n(B+Hc) = 1, and problem (i) is infeasible;c) b � minfa; cg if and only if the SR1 update is not s.p.d. if and only if the feasible set ofboth problems (i) and (ii) is the empty set or contains Bc .Proof. The proof is very similar to the proof of Theorem 3.1. (We refer the reader there formissing details.) Let us consider the �rst maximization problem (i) given in a). Suppose thatb > a . For simplicity, we again use the matrix B in (3.3) with corresponding secant equation(3.4) . (Note that the SR1 update is s.p.d. when �cb�c < acac�b2 or equivalently �ab�a < acac�b2 , seee.g. [8],[9]. Therefore b > a implies that the SR1 update is s.p.d. and in addition, that b < csince b2 � ac . Moreover the SR1 update has n � 1 unit eigenvalues and the other eigenvalue issmaller than 1 if v̂ts = b� c < 0, or equivalently if (s �Hcy)ty = b� a > 0. Thus B 6= I .) Inthis case we can take the SR1 update of (1� �)I , where � > 0 is small, and get a feasible update12



with largest eigenvalue < 1. Therefore the generalized Slater constraint quali�cation holds, i.e.Lagrange multipliers exist for the problem. The Lagrangian for this �rst problem isL(�; u; B) = det(B) 1n � ��1(B)� ut(BB 12c s�H 12c y);where we have added the power 1=n to the determinant. Di�erentiating yields0 = det(B) 1nn (adj(B)det(B) � �Y � B 12c sut � u(B 12c s)t): (4.4)If we let the Lagrange multipliers absorb the constants, we get the same decomposition as in theproof of Theorem 3.1 H = �Y +B 12c sut + u(B 12c s)t:Since H is s.p.d., we conclude that � > 0 or n = 2. Therefore, by complementary slacknesswith the eigenvalue constraint, we see that �1(B) = 1 or n = 2. We now conclude that B is atmost a rank-two update of I , where 1 = �1(B) if n > 2. We �rst assume that B is Broydenclass. (As in Theorem 3.1, we can then generalize this argument to arbitrary rank-two updates.)Therefore we can explicitly write down the objective function to be maximized, i.e.det(B) = ac� �(ac� b2)bc :This function is isotonic with �� , for appropriate � . Therefore, if �+ < 1, we can decrease� and increase det(B). But this increases the other two eigenvalues ��(�) of B . We mustmaintain the maximality of �1 = 1. We conclude that B is the SR1 update of the identity. Thisproves necessity and the eigenvalue statement in a). Conversely, if the SR1 is the unique solutionof (i), then all the eigenvalues of B are � 1 and, as seen above, this implies that b > a .The optimum solution of the second problem given in b) is similarly solved by the SR1 if andonly if b > c . We still have to prove the infeasibility claims in a) and b), i.e. that there are noother solutions of (i) (or (ii)) when the SR1 is infeasible. Now suppose that b > c so that b < aand the SR1 update can not solve problem (i) as it is an infeasible point. Then problem (i) iseither infeasible or, if there exists a feasible solution B , it cannot have largest eigenvalue < 1.For if it did, then the above argument implies that the SR1 update exists and is optimal. Thus afeasible solution B exists if and only if �1(B) = 1, i.e. there are no strictly feasible points. Thegeneralized Slater constraint quali�cation fails and, in fact, there can be no Lagrange multipliersat the optimum. (Or, the above implies the existence of a rank-two update which again leadsto the SR1.) If the feasible set is a single point, then it is also the optimal point. Otherwise,the feasible set consists of the intersection of the (convex) set of s.p.d. matrices with largesteigenvalue �1 � 1 and the (linear manifold) set of matrices satisfying the secant equation. Thisintersection must be a (convex) subset of the set of matrices with largest eigenvalue �1 = 1. Tocomplete the proof we need only show that this set is empty. If B is any optimal matrix withnormalized eigenvectors xi for the eigenvalue 1, then we can orthogonally decomposeB = [X V ] " I 00 �B # [X V ]t; (4.5)13



where X is n� k , k < n� 2 (otherwise, either B = I or the SR1 can be shown to be s.p.d., bythe above rank-two update argument), and X consists of the k orthonormal eigenvectors of Bcorresponding to the eigenvalue 1, [X V ] is an orthogonal matrix, and �1( �B) < 1. The secantequation now becomes " I 00 �B # ([X V ]tB 12c s) = ([X V ]tH 12c y):We see that we have reduced the problem to a n�k dimensional problem, since det(B) = det( �B).But then the optimummust have largest eigenvalue 1, which contradicts the decomposition. Theinfeasibility statement for problem (ii) in a) follows similarly.We now prove c). If b � minfa; cg , then the above infeasibility proof holds step by step exceptfor the statement that B 6= I in (4.5), which required that b > c . Since B = I is equivalentto the current update Bc satisfying the secant equation, we have shown that the feasible set ofproblem (ii) contains Bc . The converse is clear from the de�nitions. The result for problem (i)follows similarly. 2An alternate interpretation of Theorem 4.1 can be obtained from the fact that, for Bc; B+ s.p.d.,we have �1(B�1c B+) � 1 () B� 12c B+B� 12c � I � 0() B+ �Bc � 0;This follows by Sylvester's Theorem of Inertia, see [16] and Section 2. (A similar result holds forstrict inequality.) Furthermore, B+ � Bc � 0 implies that�k(B+) � �k(Bc); 8k; (4.6)which implies that the same ordering holds for the trace and determinant. (Similarly, for�1(B�1+ Bc) � 1 we get Bc � B+ � 0 and the implication�k(Bc) � �k(B+); 8k:) (4.7)5 the � MeasureWe now derive the optimal updates for the � measure and show that there is a strong relationshipbetween these updates and the various SR1 updates discussed above. In fact, we show that the� -optimal updates in Section 3 and the ! -optimal updates in [9] are actually �-optimal as welland have a common spectral property.Each of the measures !;  ; � lead to a pair of BFGS and DFP type updates. Our measures aremotivated by the volume considerations. As mentioned earlier, ideally we would like to minimizethe volume of the symmetric di�erence. One point about the symmetric di�erence is that if wefound a measure for it, then the measure should only lead to a single update rather than a pairof updates. One such measure, that yields only a single update rather than a pair, is the `2condition number � , since the condition numbers of a matrix and its inverse are equal. In [21]14



it has been shown that the measure � yields a scaled Broyden class update. We can apply thetechniques from the proof of Theorem 3.1 to the measure � to obtain an explicit representationfor the optimal � update. (As seen in the above proofs, we can assume that Bc = I .) We getthe stationary point condition 0 = �01�n � �0n�1 + sut + ust;for some u , where �0i = xixti is an element in the subdi�erential of �i and xi is a normalizedeigenvector. (A rank argument implies that the subdi�erentials have to be rank-one, since therank of sut + ust is at most 2.) We now conclude that the span of fu; sg equals the span offx1; xng , i.e. s 2 spanfx1; xng . The secant condition now implies that y is in this span also.Our problem is reduced to the 2-dimensional subspace spanfs ,yg. But the measures �; !; � allhave the same optimum in 2-dimensions. (This can be seen from the eigenvalue expansion andhas been shown in [9].) Therefore we can use an arbitrary orthonormal basis of spanfs ,yg and�nd the optimal update, restricted to the 2-dimensional subspace, using the results in Section 3or the ! -optimal updates in [9]. This yields a rank-two matrix on the 2-dimensional subspace.We can then add on the rank-(n-2) matrix on the orthogonal complement and choose arbitraryeigenvalues between �1 and �n , e.g. we can add on �P where P is the orthogonal projection ofrank n � 2 and � = (�1 + �n)=2.To better illustrate the �-optimal updates, we now characterize the case when there existsone in the Broyden class. Let Q = I � P be the orthogonal projection onto the two dimensionalsubspace spanfs ,yg. In [9] it is shown that, in two dimensions, the optimal update of Q (theidentity in the 2-dimensional subspace) for the measures �; !; � is the Broyden class updateBQ = Q� 1csst + 1byyt + (1� �)cwwt; (5.1)where w = 1by � 1cs and � = 1� (a� b)bac� b2 : (5.2)(In fact, this update, the inverse-sized BFGS, the sized DFP, and the optimal conditioned SR1updates are all equal in two dimensions. Note that Qs = s and Qy = y .) As in the proof ofTheorem 3.1, we can evaluate the two functions f1; f2 and obtain the following values for thetwo nonzero eigenvalues of the scaled update in (5.1):�� = f1(�)� (f1(�)2 � f2(�)) 12= ab � fa2b2 � acg 12 : (5.3)This agrees with the results obtained in both Theorem 3.1 and Corollary 3.1. We get the sameresults if we do the calculation for the eigenvalues of the scaled ! -optimal updates, i.e. theinverse-sized BFGS and sized DFP updates. This shows that both the � -optimal and ! -optimalupdates are actually optimal updates for the measure � as well. Therefore, the above proof forthe �-optimal updates implies that the largest and smallest eigenvalues, with their corresponding15



eigenvectors, for each of these four updates have the same respective values, since this is truefor all the �-optimal updates (and their convex combinations). In fact, the values of the sizingfactors show that the mean of the two � -optimal updates is the inverse-sized BFGS update. (Asimilar result holds for the sized DFP. These means should provide better updates for minimizingthe volume of the symmetric di�erence. We can continue this process and �nd two new meansuntil a limit is reached.) Therefore, to get HcB+ as close to the identity as possible, we shouldchoose the update for which the n� 2 middle eigenvalues is closest to 1. One �-optimal updateis �P + Q� 1csst + 1byyt + (1� �)cwwt = �I + (1� �)Q� 1csst + 1byyt + (1� �)cwwt; (5.4)where � is given in (5.2). This update is in the Broyden class when � = 1. We can choose � = 1if and only if the convex hull of the two eigenvalues in (5.3) contains 1. This is equivalent to2ac � (a+ c)b: (5.5)Note that if (5.5) fails, then either b > a or b > c , which by Theorem 4.1 implies that the SR1is s.p.d., i.e. if there is no �-optimal update in the Broyden class, then the SR1 update is s.p.d.(Condition (5.5) is the condition that determines the di�erent cases for the optimal � updaterestricted to the Broyden class, i.e. it determines when the middle n � 2 scaled eigenvalues areequal to 1, see [8].)We summarize some of the above discussion in the following. Note that, for simplicity ofnotation, we assume that Bc = I in part 1.Theorem 5.1 Consider the measures !; �; � and the corresponding four sized updates: theinverse-sized BFGS and sized DFP updates which are optimal for the measure ! , and the twosized, optimal conditioned, SR1 updates which are optimal for the measure � . Then the followingholds:1. The �-optimal updates (of I ) are of the form B+ = BQ + B , where BQ is given in (5.1),Q is the projection on spanfs,yg, P = I � Q, PBP = B , and the eigenvalues of B liebetween the eigenvalues of BQ given in (5.3).2. Each of the four sized updates mentioned above (and their convex combinations) is optimalfor the � measure.3. Each of these four sized updates (and their convex combinations), denoted B+ , yields thesame value for the largest (and smallest) eigenvalue, and corresponding eigenvector, for thescaled update H 12c B+H 12c .4. The mean of the two � -optimal updates is the inverse-sized BFGS update. The mean of theinverses of the two � -optimal updates is the inverse of the sized DFP update.16



5. A �-optimal update exists in the Broyden class if and only if (5.5) holds. Moreover, if (5.5)fails, then the SR1 is s.p.d.Acknowledgement: The author would like to thank John Dennis for many hours of helpfulconversations. This paper follows the work done in [9] and a question posed by John Dennison using the ellipsoids of the quadratic model as a measure. Thanks also go to two anonymousreferees for their careful reading and many suggestions which improved the presentation of thepaper. In particular, thanks go to one of the referees for correcting several errors, including anerror in the volume motivation, and in helping to improve the statement of Theorem 4.1.
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