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Abstract

We follow the popular approach for unconstrained minimization, i.e. we develop a local
quadratic model at a current approximate minimizer in conjunction with a trust region. We
then minimize this local model in order to find the next approximate minimizer. Asymptot-
ically, finding the local minimizer of the quadratic model is equivalent to applying Newton’s
method to the stationarity condition.

For constrained problems, the local quadratic model corresponds to minimizing a quadratic
approximation of the objective subject to quadratic approximations of the constraints (Q*P),
with an additional trust region. This quadratic model is intractable in general and is usually
handled by using linear approximations of the constraints and modifying the Hessian of the
objective using the Hessian of the Lagrangean, i.e. a SQP approach. Instead, we solve the
Lagrangean relaxation of Q%P using semidefinite programming. We develop this framework
and present an example which illustrates the advantages over the standard SQP approach.
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1 Introduction

A modern popular approach for unconstrained minimization of a function, f(z),z € R", is to
build a quadratic model at a local estimate z(*). This model is usually convex; either the ap-
proximate Hessians are forced to be positive definite, as in modified-Newton and quasi-Newton
methods, or a trust region is added to convexify the problem as in the Levenberg-Marquadt
approach. (For unified views of unconstrained optimization, see Nazareth [27], [28], Fletcher
[13], or Gill et al. [16].) In this paper we extend this modeling approach in a direct way to con-
strained minimization, i.e. we form a local quadratic model and then try to solve this model as
best we can. We do this by solving the Lagrangean relaxation using semidefinite programming.
This leads to a modification of SQP methods which we call SQ?P.

In its most general formulation, constrained optimization is concerned with the nonlinear
equality and inequality programs (and mixtures of both)

NEP min{f(m) | h(z) =0,z € R”} and NLP  min {f(:e) lg(z) <0,z € R”},

where f : R” — R, and h,g : R® — R™ and all functions are sufficiently smooth. As in the
unconstrained case, a local (true) quadratic model (subproblem) is formed. It consists of a
second order approximation of both objective and constraints, Q*P. In addition, a quadratic
trust region constraint can be added. This model is in general intractable due to lack of convexity.
The usual approach is to approximate the quadratic constraints by linear constraints and modify
the Hessian of the objective function using the Hessian of the Lagrangean, i.e. we obtain a
quadratic programming QP subproblem and we use the well known family of solution methods,
Sequential Quadratic Programming (SQP). (See e.g. the recent survey by Boggs and Tolle [5].)

We will argue that, even though SQP has been honed, over the years, into an efficient
tool, the underlying model of the method can be improved. Specifically, we will show that



some difficulties arising from the QP subproblem, which require special considerations in any
implementation, are automatically taken care of when a different subproblem is considered.

The challenges facing an SQP implementation include the infeasibility or unboundedness of
the subproblems, the accuracy of the Lagrange multiplier estimates, and the loss of superlinearity
due to damped Newton steps (the so-called Maratos effect). Each of these problems has received
attention since the development of SQP in the sixties and a number of solutions are known. Yet
much research is still being done on the subject.

In this paper we work directly with the true quadratic subproblem Q?P. We solve the
(tractable) Lagrangean relaxation of Q*P efficiently using semidefinite programming (SDP).
This relaxation lies between the quadratic Q>P model and the QP relaxation. In addition, it
provides a surprisingly good approximation for the quadratic model. Our intention is to de-
scribe how this different subproblem can elegantly do away with some of the difficulties; we then
sketch how the subproblem can be solved using interior-point methods. This is not a computa-
tional paper describing a fully defined implementation, but rather a sketch of how interior-point
algorithms and semidefinite relaxations can be used in the context of constrained optimization.

Semidefinite programming has been a very successful tool for solving or approximating com-
binatorial optimization problems; see, for example [2, 18, 32, 20]. It also has found applications
in control theory. An overview of semidefinite programming and of many of its applications is
found in Vandenberghe and Boyd [40], see also [29, 31, 6]. Most of the success is related to the
links between the Lagrangean and semidefinite relaxations, as discussed in [36, 32].

Moreover, efficient numerical implementations for SDP have appeared recently: SDPpack
(Alizadeh et al.), SDPSOL (Boyd and Vandenberghe), SDPA (Fujisawa et al.), SDPT3 (Toh
et al.), CSDP (Borchers) and a Matlab toolbox (Rendl et al.) URLs can be found at the SDP
homepage of C. Helmberg http://www.zib.de/helmberg/semidef.html. Several of these packages
exploit sparsity and solve exceptionally large problems. For example, Ye [4] published results
on problems of the order 10000 variables.

In Section 2 we revisit a classical continuous optimization question, the Trust-Region sub-
problem, which we choose to view as a semidefinite program with an eye towards a generalization
of the solution technique. A generalization we describe in Section 3 where the Lagrangean dual
of a quadratically constrained program is solved via a semidefinite relaxation. In Section 4 we
review very briefly the standard approach to sequential quadratic programming with its lin-
earization of the constraints, which we then contrast to quadratic approximations in Section
5.

This leads, in Sections 6 and 7, to a different sequential process, based on a quadratic model
of both the objective function and the constraints, and related to a higher-order Newton step.

In this paper, the results will be stated without proofs but with numerous references. More
details can be found in [21]. Numerical approaches for SDP are discussed in [22], while more
insight into the geometry of semidefinite relaxations can be found in [1].

2 The Simplest Case
Consider the unconstrained problem

UNC min{f(ac) | z € R"}.
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When possible, the method of choice for this problem is Newton’s method, which solves a
quadratic model of the objective function. To ensure a solution (or convexity) of the model,
Newton’s method is often implemented within a Trust-Region, or Restricted-Step approach.
This, very efficient, variation proceeds from an initial estimate of the solution; it develops a
second-order model of the objective function, deemed valid in a region around the estimate; and
solves the trust-region subproblem,

TRS min{qo(d) = d'Qd + 2b'd | q1(d) = d'd < 6%, d € R“}.

The model is constructed from Q = V2f(z(*)) (or an approximation of the Hessian), b =
Vf(:r:(k)) and the parameter é represents the radius where the model is trusted. A solution d is
then used as the step to the next estimate 2k+1) — (k) 4 4.

The TRS has been generalized [38],[25], to an arbitrary quadratic constraint and to upper
and lower bounds on the trust region. Strong duality results of TRS are maintained and efficient
implementations have been developed for these generalizations. We will review some of these
results before applying them to a constrained problem.

The early results concern necessary and sufficient conditions for optimality of TRS. These
conditions, stated in the theorem below for reference, were first established by Gay [15], and
concurrently by Sorensen [37].

Theorem 2.1 The point d is an optimal solution for TRS if and only if there is a A such that
the pair (d, X) satisfy

dtd < 62 (primal feasibility),
(@+ AI) = 0 (strengthened second-order) s
A>0 (multiplier sign) (dual feasibility)
(Q+ AI)d= —b (stationarity) (complementarity),

A(did-48%)=0
where = denotes positive semidefiniteness.

We have added the groupings of: primal feasibility, dual feasibility, complementary slackness.
This corresponds to the current popular primal-dual approaches to optimization problems. We
will see below that the two middle conditions and the first complementarity condition do in fact
correspond to a properly chosen dual problem.

Directly from these conditions, special-purpose, very efficient algorithms have been developed
for TRS. Some further insight into the structure of the problem is obtained by observing the
equivalence of TRS to a convex program, i.e. to its linear semidefinite programming relaxation.

First, as was shown in [38], the Lagrangean dual of TRS can be written as

NonLinDualSDP-TRS max{—bt(Q FADN - A2 | Q + AL > 0,1 > o},

a nonlinear semidefinite program, where ()Jr is the Moore-Penrose generalized inverse. This pro-
gram illustrates the dual feasibility statements following Theorem 2.1. In addition, stationarity



of the Lagrangean of the dual (NonLinDualSDP-TRS) corresponds to feasibility of the primal
(TRS); while the stationarity condition in the theorem implicitly yields half of the complemen-
tary slackness, i.e. we can rewrite the stationarity as:

(Q+ A (d*+2) = —b; d* = —(Q + AD)Tb; 22(Q + M)z = (Q + A, zzt) = 0.

Note that z # 0 in the above relates to the so-called hard case for TRS.
In addition, the Lagrangean dual has been shown to be equivalent to the following linear
semidefinite program [35],

t b
_b Q

We can take the dual of the above linear semidefinite program (LinDualSDP-TRS) and get a
semidefinite program equivalent to TRS.

LinDualSDP-TRS min{(52 PNt [ ] =M, tcR,\e R+}.

LinPrimalSDP-TRS  min {i(Y) = (R, Y) | (Eao,Y) =1, (Pp,Y) < 6%, Y € 871},

The variable in this program, Y, belongs to the space of symmetric positive semidefinite matrices
of dimension n + 1 X n + 1, which we denote S:‘_H. Also,

0 bt 0 0 1 0
P0—|: :|1PI_|: :|7E00—|:0 0:|’

and (A, B) is the usual matrix space inner product, trace BA®.

This pair of linear primal-dual semidefinite programs (LinDualSDP-TRS, LinPrimalSDP-
TRS) are bounded and feasible. Therefore optimal solutions are attained at equal objective
values. Finally, and this is crucial, part of the first column of the primal semidefinite solution,
the matrix Y, is feasible for TRS. And, possibly with an additional displacement, chosen in the
nullspace of the Lagrangean, this first column yields the same objective value for TRS as its dual
optimal. (The next sections will provide some details in more generality.) By this procedure,
usually known as lifting, of TRS to the cone of semidefinite matrices, and projecting back (by
the first column), we see that there are no duality gaps for TRS. This was first shown by Stern
and Wolkowicz [38].

Theorem 2.2 Assuming a non-trivial trust-region, the optimal solution to TRS and to its La-
grangean dual (NonLinDualSDP-TRS) are attained and the corresponding objective values are
equal.

An interesting consequence is that polynomial-time interior-point algorithms can be used to
solve TRS (via its semidefinite reformulation), even if the objective function and the feasible set
are non-conver. We therefore have a tractable problem. TRS sits somewhere between convex
and non-convex problems. What generalization of TRS to multiple trust-regions can we expect
is now the obvious question.



3 Multiple Trust-Regions

We now move up from the one-constraint problem, since our ultimate objective is to solve NLP
and consider a quadratic objective constrained by multiple quadratics,

Q’P min{thom +2bkz —ap | 2' Qe +2bLz < ap,1 <k <m,z € R”}.

In this section we present two main ideas. First we show that the feasible set of the SDP
relaxation in matrix space actually provides a non-convez approximation of the feasible set of
the original Q?P. Next we exploit this geometry to obtain a good approximation of the optimum
of Q?P from the optimum of the SDP relaxation.

As soon as two trust-regions are considered, the standard necessary optimality conditions
for Q?P are not sufficient (as they were for TRS). This is reflected in the duality gap exhibited
by some instances of multiple trust-region programs, an example of which follows shortly. In a
certain way, the primal program satisfies the necessary conditions while the dual satisfies the
sufficient.

We derive here the Lagrangean and semidefinite duals. First, introduce the vector y =
(zo z)*. We then require z2 = 1 or, in terms of the new variable, y’Egpy = 1, to get an
equivalent program to Q? P with only pure quadratic forms in the objective and the constraints,

Hom-Q*P min{ytPoy | ¥ Eooy = 1,4’ Pry < ap, 1 <k <m,y € R““},
where

0 0 br Qk

The homogenization simplifies the notation and opens the way to the semidefinite relaxation
since we can rewrite Hom-Q?P using matrix variables.

t
Eooz[l 0] ande:[O bk], 0<k<m.

Hom-Matrix-Q*P  min {<Y, Py) | (Y, Eg), (Y, Pr) < ap, 1 <k<m,Y € ST’l, Y is rank—one},

Dropping the rank-one condition provides a relaxation which we can justify by showing its

equivalence with the Lagrangean relaxation. After some rearrangement of terms, the Lagrangean
dual of Hom-Q?P reads

max{min {yt(P—l— Z)\iPi + X0Eo0)y — Ao — Na |y € R"+1} | A >0,X0 € R}.

=1
For the inner minimization to be bounded we must now have
m
P+ AP+ XEoo > 0.
=1
Since all principal minors of a positive semidefinite matrix are positive semidefinite, this implies

Q+ ) \Qix0.

=1



This is where the duality gap arises. The standard necessary optimality conditions for Q?>P do
not require the Hessian of the Lagrangean to be semidefinite. But the Lagrangean dual program
we are deriving here requires the same Hessian to be semidefinite. We therefore cannot expect
the primal variables corresponding to an optimal dual solution to be optimal for Q? P. They will
be optimal only in cases where the Lagrangean is convex at primal optimality.

To complete the derivation, we note that the minimum over y will be attained at y = 0 from

which we get the dual program

Dual-Q?P max{—)\o — Xa|Py+XoEoo+ > AP = 0,A> 0}.

=1

Example 3.1 Example of two trust-regions.
Consider the homogenized primal-dual pair,

0 1 0 0 -2 0 00 0
u o= min{yt 1 -2 0|yl¥=1,9] 2 1 o0ly<ty|0 1 0 y§4}
0 0 2 0 0 1 00 1
o 1-2x\ 0
v = max{—)\o—)\l—4)\2| 1-2M —24 A+ A\ 0 go,Azo}.
0 0 24 A4 Ay

The optimal solutions are

1 9 0
v =1 2 |, therefore z* = [ 0 ] ,and A = | 1/2 |,
0 3/2

with a duality gap of

13
w -l = |-+ 5| 2o

The relaxation of Q?P into a semidefinite program, done directly, by dropping the rank-one
condition on the homogenized primal, or by taking the semidefinite dual of Dual-Q?P will result
in the following, which we will refer to as the relaxation of Q?P,

SDP-Q?P min{<P0,Y> | (Eoo,Y) = 1,(P,Y) < ap, 1< k<m,Y ¢ Si“}.



Example 3.2 Semidefinite relaxation of Example 3.1.

1 0 0 -2 0 000
min{(| 1 =2 0 |,V)[(Boo,Y)=1,(| 2 1 0[,¥)<1,([0 1 0|,¥)<4}
0 0 2 0 0 1 00 1
The optimal solution is
1 075 0
Y'=|075 4 o0
0 0 0

The feasibility of the first column of the semidefinite relaxation, which is exemplified above
was first shown by Fujie and Kojima [14] for an equivalent problem with linear objective function.
And while a transformation of Q?P into an equivalent program with a linear objective function
is simple, it obscures the geometry of the semidefinite relaxation. In fact, this transformation is

not needed.(See [1]). We define the feasible set of Q*P,
F:={z € R"| 2!Qpz + 2ble < a1,1 < k < m};
the feasible set of SDP-Q?P,
F={Y eST | (P,Y) < ar, 1<k <m}

and the projector map,
t

.Qn+l n a T _
PR.S+ HR,PR([]} X:|)—a}
Theorem 3.3 Suppose that Y is a feasible solution of SDP-Q?P. The projected vector, =
Pgr(Y), is then feasible for all convez constraints of Q*P.

This is a fairly interesting result. It produces feasible points of TRS from feasible points of
the relaxation (SDP-Q?P), even when these are not rank one. Therefore, it provides a convex
approximation to the set . However, SDP actually provides a better approximation than this
would lead us to believe. And it does so using non-convex inequalities.

Let us define a valid inequality for Q?P as

m

Z)\i(thkm +2btz —ag) <0, where Q+ ZAlQl = 0.

These inequalities, an infinite number of them, are not, in general, convex. (Simply consider
a TRS where the objective is strictly convex while the constraint is not.) However, they provide
geometric insight into the SDP relaxation. More precisely, we have the following theorem.

Theorem 3.4 Under Slater’s constraint qualification, the closure of the set of projected first
columns,

{z|z=Pr(Y),Y € F,



is equal to the set of vectors satisfying all valid inequalities,
{m | S X2 Qre + 285 — ar) <0, Q-+ NQi - 0}.

These valid inequalities establish the relation between the set of projected columns of SDP
solutions and some intersection of the original constraints.

We now use the above geometric descriptions to provide an approximate solution to Q*P
from the optimum of SDP. We use the first column of the optimum Y but then we use the
properties of the valid inequalities to improve this column, i.e. we move onto a boundary
of a valid inequality, or equivalently obtain complementary slackness. A feasible pair Y, A to
the semidefinite relaxation, if Y is not rank one, will in general map to a vector # for which
complementarity fails but improving the objective value is then easy. The idea is to choose
a displacement along the nullspace of the Lagrangean until one or more slack constraints is
satisfied with equality.

Lemma 3.5 If the semidefinite primal optimal solutionY is not rank one, let # = Pr(Y), (part
of the first column of Y ). Then there is a Z chosen in N'(Qo + Y. \iQ;i + uEqo), the nullspace

of the Lagrangean, such that ¢ = & + Z, is feasible and will improve the primal objective value

of Q*P.

Example 3.6 Nullspace move to optimality of Example 3.1.

1 075 0
vy'=|o0m 4 0| Ve, )=]|0 %] zeN iLEa))=| 1P
0 4 0 4 0

After a step in the nullspace up to a constraint, we obtain the optimal solution (compare to
Ezample 3.1)

e*=Pp(Y)+2z= [ g ] .
This additional step is a straight-forward generalization of an idea introduced by Moré and
Sorensen [26] to solve TRS and there is an explicit expression for the step as there is for TRS.

4 Sequential Quadratic Programming

Sequential Quadratic Programming, denoted SQP, also known as Recursive Quadratic Program-
ming, falls under the heading of Lagrange [23] or Newton-Lagrange [13] methods and is arguably
the most efficient general-purpose algorithm for medium size nonlinear constrained programs
[39], [5]. With solid theoretical foundations, with the appropriate quadratic subproblem, the
method can be viewed as an extension of Newton or quasi-Newton algorithms to constrained
optimization.

Yet the very existence of innumerable variations of the basic algorithm indicates that the
last word on SQP has not been written. Research has produced SLiQP [9], [13] based on a



non-differentiable merit function and FSQP [30] for a method where iterates are kept within
the feasible region. And much of the current research aims to apply the method to large-scale
problems [17].

The original algorithm dates from Wilson’s [43] dissertation in 1963 but was made better-
known by Beale [3] and then Han [19] and Powell [33] a few years later. Consider again, the
general, nonlinear programs with equality and inequality constraints

NEP min{f(m) | h(z) =0,z € R"} and NLP  min {f(a:) lg(z) <0,z € R"},

where f: R" = R, and h, g : R®” — R™. We sometimes write vector-valued functions, like h(z),
as

h(z) = (hi(z) ha(z) ... hn(z)).
We define the Lagrangean of NEP as L(z, ) := f(z) + A*h(z). The first-order necessary

conditions (under a constraint qualification) for NEP at an optimal point 2* guarantee the
existence of a multiplier A satisfying V,L(2z*,A) = 0. Together with feasibility (equivalent to
ViL(z*, A) = 0), stationarity expands to

Vf(z*)+ Vh(z*)A =0,
h(z*) =0,
where A = (A; A2 ... A,)? is the vector of Lagrange multipliers. To simplify the exposition, we

use Vh(z) to denote [Vhy(2)Vhy(z)...Vhy,(z)], the transpose of the Jacobian of h.

An iterative attempt at the non-linear system above by Newton’s method produces

—Vf(m(k)) - h/(m(k))t)\(k)
- [ ~h(z) ] ’

where 8, = z(*+1) — 2(¥) and §, = Ak+1) — X(*), The usual simplification, at this point, is to let
AE+1) — A(*) 4§y and d = §,, to obtain what we will refer to as the First-Order Newton Step,

V2L (2™, AF)) R (2) d —Vf(z®)
L R v A

h/(a)(k))t 0 N

V2 f(@®) + LAY V2hi(2®) K (2H) ] [ ; ]

This system produces a direction d and a new vector of Lagrange multipliers estimates A(*+1),
An important remark is that the system of equations FONS can also be derived as the
first-order necessary conditions of the quadratic program

QP min g¢(d)= f(z®)+ Vf(z®)id+ 1dtv2L(z®), AR)d
st. Li(d)= hi(z®)+Vhi(2®)d=0, 1<i<m,

hereafter known as the QP subproblem. Stationarity of the Lagrangean of QP yields the first
line of FONS, and feasibility yields the second line. This is why SQP is viewed as an extension
of Newton’s method to constrained optimization.

In addition, the success of the trust region strategy to unconstrained optimization has led to
the addition of a trust region constraint to the QP subproblem, ||d||? < 2. However, this can
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lead to infeasible subproblems. One solution is the shift proposed by Vardi [41], i.e. shifting the
linearized constraint to get a relaxed problem with constraints

aphi(e®)) + Vhi(zW)d=0, 1<i<m,

with relaxation parameter 0 < aj < 1 chosen so that the feasible set is nonempty. Since the
relaxation parameter has to be chosen in a heuristic fashion, another approach is to use the
two trust region subproblem introduced by Celis, Dennis and Tapia [8], and used thereafter
by a number of researchers (See Byrd, Schnabel and Schultz [7], Powell and Yuan [34], Yuan
[44], Williamson [42], El-Alem [11], Zhang [45].) i.e. the linear constraints are replaced by the
quadratic constraint

||hi(2®) + Vi (2*))2d||? < 6y,

As we will see later, in our semidefinite subproblem, the potential infeasibility is handled by
relaxing the homogenization constraint d3 = 1 to d2 < 1. This is related to the Vardi parameter
approach to guarantee feasibility of the subproblem yet there is no required heuristic to choose
the parameter. All is handled automatically, i.e. a best parameter is found when solving the
SDP subproblem, since the program will make dy as close to 1 as possible.

We must recognize some characteristics of the QP subproblem. A Taylor first-order approx-
imation of the constraint defines the feasible set while a second-order expansion of the objective,
to which we add second-order terms of the constraints, completes the problem definition. The
rational for these unexpected modifications is based on Newton’s method for the optimality
conditions.

We can forgo discussion of the line search either because a trust-region is used or under the
assumption that a full step is taken at each iteration. This is justified only if the initial estimate
z is close enough to the optimal solution z*. In general, the SQP linesearch approach relies on a
merit function ¢(z, A), reduced at each iteration and minimized when the system of first-order
conditions FONS is satisfied. In general, a well-behaved merit function has a local minimum
where the constrained problem has a solution and it must allow the line search to accept a full
step, at least asymptotically. Finding a proper merit function to achieve all the desired features
of an SQP algorithm is still an active area of research.

This line search procedure is expressed in the following algorithms as

o = linesearch(p(z®, A(M), d).

This is meant to suggest that the procedure minimizes, perhaps approximately, the merit func-
tion ¢, from the current iterate (a:(k), )\(k)), in the direction d, and returns the step length o«
corresponding to this one-dimensional minimization.

Alternatively, if the trust-region approach is used, then the full step returned from the
trust-region subproblem is either taken or discarded with a corresponding adjustment to the
trust-region radius. This modification of the trust-region is usually based on a ratio of the
actual to the predicted reduction of some merit function [12].
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SEQUENTIAL QUADRATIC PROGRAMMING FRAMEWORK

SQP(f,Vf,V2f, h,Vh; Vh; 2 \0)
do
d € argmin{V f(2®))td + 1d*V2 f(z®)d : h;(z®) + Vh;(z®)!d = 0,1 < i < m,d € R"}
o = linesearch(p(z®*), A(F)), d)
k1) — 2(k) 1 od
k=k+1
Estimate new Lagrange multipliers

until convergence
return(z(® A(%)

There are a few problems with this skeleton of an algorithm, problems that researchers have
struggled with and successfully solved in a number of ways over the years. We will highlight
some of these difficulties and see how a quadratically constrained subproblem handles them:
First, the QP subproblem can be infeasible or unbounded. The infeasibility can be dealt with
by taking a steepest descent step along the merit function. But the unboundedness requires
some modification of the subproblem. Adding a trust region will do, moving SQP closer to
second-order constraints and our way of thinking.

But there is more. The Lagrange multipliers are not, in the basic algorithm described above,
a by-product of the subproblem. Although the multipliers resulting from QP can be added to
the previous estimates used in the objective function, some authors suggest solving a separate
least square problem [16] to get a better approximation of the “true” Lagrange multipliers. An
alternative, again, is to change the subproblem.

5 Quadratic Approximations of Nonlinear Programs

Recall that the standard SQP subproblem approximated the objective function to second order
yet approximated the constraints only to first order. Some attempt is made to include curvature
information in the objective function but this is done using the Lagrange multipliers from the
previous iteration.

We wish a better balanced, yet tractable, subproblem where the feasible region is also a
second-order approximation. As the original subproblem considered was called the QP subprob-
lem, we will call this program the Q?P subproblem. Consider a vector z(F) € R™, an estimate
of the primal solution. Expand the functions of NLP by second-order Taylor polynomials and
express

NLP-Q*P min g¢o(d) = Vf(zM)td+ 1d'V2f(z*))d
st gi(d) = gi(z®)+ Vgi(e®)td+ 1dVg;(e™)d <0, 1<j<m.

Such a straightforward subproblem has often been considered, but has, just as often, been
discarded as unsolvable. One notable exception is an algorithm by Maany [24] developed, in-
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terestingly enough, because the standard SQP approach failed on the highly nonlinear orbital
trajectory problems they were studying. (See Dixon, Hersom and Maany [10].)

Before we attempt to solve the Q?P subproblem, we will precisely construct it and analyze
the properties it possesses that make it an attractive approximation to a nonlinear program.

5.1 Feasible region

The subproblem above differs from the traditional QP subproblem mostly in the feasible region
it describes. The objective function is correspondingly simplified not to include what would be
redundant constraint information.

Even if the feasible region of the quadratic approximation does not always include the original
feasible region, it is closer in some sense to that region, for the Taylor residual is smaller. Also,
since the second-order feasible region is within the linearly enclosed region, a bounded QP
subproblem implies a bounded second-order subproblem. But note that the reverse is false so
that Q?P may be bounded while QP is not.

As as aside, there is a sense in which the semidefinite relaxation yields a feasible set some-
where in between the linear and the quadratic approximations, since it is true that the projected
first column of the semidefinite feasible solutions is isomorphic to a relaxation of the feasible set
of the quadratically constrained program, as shown above in Section 3.

5.2 Second-order Lagrange multiplier estimates

In traditional SQP, the multipliers are essential in the formulation of the objective function,
they must therefore be reasonably accurate. Yet they are based on the previous iteration, unless
they have been updated after the linesearch.

We recall that a pair of vectors z* and A*, optimal for NLP, are related by the stationarity
equation,

Vi) + ) AiVgi(z®) =0.

This condition suggests that the optimal solution A of the least-square problem,
min {[|V £(2®) + 3 A:vgi(=®)|3 | A € R™},

might provide an appropriate estimate of the true multipliers. An estimate which improves as
z(*) approaches feasibility and the right active set is identified.

In the section of their book devoted to the identification of accurate multipliers, Gill, Murray
and Wright [16] pursue this further and suggest aiming for second-order multiplier estimates:
The approach is to let d = z* — z(*) and expand the stationarity condition of NLP, around z(*),
by a Taylor polynomial of first order to get

V™) + V2 i (™)d+ Y Xi(Vaiz™) + V2g:(2*)d) + o1 d|*) = 0,
or, using the Lagrangean,

V®) + 92L®, ) d+ Y A Vgie®) + o(]|d]]?) = 0.
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Gill, Murray and Wright note at this point that it is impossible to estimate A* directly from
the above equation for two reasons: First, d is unknown; second, components of A* are buried
inside the Hessian of the Lagrangean. They reason that the best available multipliers A and an
approximating step d used in a least-square problem such as

min {||V £(2%)) + V2L, M)+ 3" mVaia ™)} | n € K™},

would provide a vector 5, deemed a second-order estimate of A* if d is sufficiently small and A
is, at least, a first-order estimate of A*.

This is where the QP subproblem yields interesting information. From stationarity of NLP-
Q?P, at optimal vectors d and ), we obtain

ViE®)+ V2 LE®,Nd+ Y Vi) =o.

These optimal multipliers A therefore solve the second-order least-square problem for the given
d. One of the two concerns of Gill, Murray and Wright, namely that the correct multipliers are
buried in the Hessian of the Lagrangean is implicitly taken care of. We need only to assume
that z(®) is close to z* to conclude that the multipliers obtained from the Q2P subproblem are
second-order estimates of the true optimal multipliers. Without solving an additional least-
square problem, Q?P yields valuable dual variables in tandem with primal updates.

5.3 Optimality conditions

We now turn our attention to the vector d obtained from Q?P, to qualify its value as a primal
update. In traditional SQP, the usual guarantee is convergence to a point satisfying first-order
conditions for NLP. In SQ?P, we can claim a somewhat stronger result involving second-order
conditions. In this section we assume that the strong constraint qualification holds for NLP: at
optimality, the gradients of the active constraints are linearly independent.

Lemma 5.1 Assume that z\*) is feasible for NLP. If the NLP-Q?P subproblem is solved by
d = 0 with multipliers ), then the pair of vectors z\¥) and X satisfies the first-order conditions
and second-order conditions of NLP. Conversely, if 2*) and X satisfy the first and second-order

necessary conditions of NLP. Then the pair of vectors d = 0, A satisfy the first and second-order
conditions of NLP-Q?P.

This implies that the Q?P subproblem does better than the QP subproblem since they both solve
the first-order conditions but only the former guarantees second-order optimality conditions.
This is expected of a trust-region approach.

At this point we have some of the characteristics of the NLP-Q?P subproblem. It may be
worthwhile to repeat that an algorithm iterating exclusively on feasible points is possible. But
one strength of SQP, in most of its variations, is not to require feasibility until convergence.

5.4 Additional constraint

There is an interesting avenue to explore, the addition of another constraint, a trust-region,
around our best current solution, excluding the previous stationary point to which the algorithm
had converged.
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The additional constraint, a trust-region constructed to exclude the spurious stationary
point, convexifies the Lagrangean and reduces the gap between our convex primal-dual approach
and the original non-convex problem.

Lemma 5.2 Suppose that z is a primal optimal solution to NLP-Q? P with associated Lagrange
multipliers Ay, ..., Am. Then there exists a quadratic constraint that, added to the problem, will
yield a convex Hessian of the Lagrangean while retaining ¢ as an optimal solution.

This is barely scratching the surface of what can be done with this approach and is not meant as
a proof that the additional constraints guarantees convergence, especially since the right choice
of radius for the additional trust-region has not been found. But the fact that is may be possible
to eliminate the duality gap, and therefore solve the original problem by solving the relaxation,
is appealing.

6 Quadratically Constrained Quadratic Programming

Now that a reasonable subproblem is defined and its solution is known to be useful, we combine
it to our previous work on semidefinite relaxations to fully describe the SQ?P approach.
The original problem under study is

NLP min{f(:e) lg(z) <0,z € R”}.

At some point z(¥) possibly infeasible, we expand every function by second-order Taylor poly-
nomials and construct the subproblem

NLP-Q?P min go(d) = Vf(a®)td+ 1atv2f(z®))d
st ai(d) = gi(2®)+Vg(e®)d+ 3d'Vig(zM)d <0,  1<i<m
dtd < §2.

We added a trust-region to guarantee a bounded subproblem, in cases of non-convex objective
functions.

Note that, for simplicity, we assume that our constraints are nonlinear. Linear constraints
have to be treated differently, essentially squared, see [32]. Equivalently, linear constraints can
be eliminated or mapped to a linear constraint in matrix space.

Homogenization, obtained by adding a component dy to the vector d, together with the
constraint d2 = 1, allow the semidefinite relaxation,

PSDP min{<P0,Y> | (Eoo,Y)=1,(P;,Y)<a;,1<i<m,(P,Y)<é,Y ¢ Si“},

where
0 V(z®)t o 0 Vgi(z®)t 0
Py=| Vf(®) V2fz®) o0 |, P=| Vg(®) Vg@®) 0|, a= —2hi(m(k)),
0 0 0 0 0 0
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and where Eyy and P; have their usual definitions,

1 0 0 0
St

But this relaxation, can possibly be infeasible if the current estimate is too far from the feasible
region. To overcome this difficulty in SQP, Vardi suggested a heuristic shift of the linear con-
straints. We can do a related shift of our second-order constraints by allowing the additional
component dy to take values between zero and one. That is, we change d% = 1 to d3 < 1.

This additional relaxation allows for a feasible subproblem. Of course we would want dj to
be as close to 1 as possible and examination of the subproblem shows that it automatically tries
to make dy ’large’. We need no heuristic to choose a Vardi-type parameter.

Once into the semidefinite cone, this additional relaxation corresponds to a change from
<E00,Y> =1to <E00,Y> S 1.

The dual program is then either

DSDP max{—,u—)\ta | Py+ uEoo+ Y NP+ AtPr = 0, p € R,A> 0},

=1
or

DSDP max{—)\o — Xa|Py+AoEoo+ > NP+ ArPr = 0,4 > o},
=1

whether the Vardi shift is included in the primal.

Solving one of the above primal-dual pair PSDP,DSDP, in the case of gap-free NLP, is
enough since, as we have seen, the first column is optimal for the quadratic approximation. But,
in general, we need an appropriate merit function to ensure sufficient decrease at each step and
guarantee global convergence of the algorithm, whether we use a line search or a trust-region
strategy.

The choice of merit function for SQP algorithms varies considerably. For infeasible iter-
ates there is a need to balance improvement in the objective function and movement towards
feasibility.

We will come back, briefly, to the merit function when we investigate convergence of the
algorithm but we first complete its description. After solving the Q?P subproblem for a direction
d # 0, the next iterate is obtained by 2(+1) = 2(*) 4+ d. This new point serves for the expansion
of a new problem by second-order polynomials and we iterate until the subproblem yields d = 0.
As with any trust-region based algorithm, we adjust the trust-region radius according to the ratio
of predicted improvement to actual improvement. At the end, we have a solution satisfying both
first and second-order conditions of NLP. Somewhat more formally, here is the SQ*P algorithm.
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SEQUENTIAL QUADRATICALLY CONSTRAINED PROGRAMMING FRAMEWORK

SQ’P(f,Vf,V*f,gi,Vgi, Vg, z()
do
Y € argmin{(Py,Y) : (B,,Y) < a;, (B, Y) =1,Y € ST}
(1, )\(k+1)) € argmax{—p — > Aa; : P+ > AP, + pEg = 0, A > 0}

d= Pr(Y)
241 — 2(k) 4 ¢
k_ o) —p(ttl)

"= 0(@®) g (kD)

if (rf < %
5=35/4

elseif (r* > 3) and [|z(+1) — z(¥)|| =
6 =26

fi

k=k+1

while (||d|| > ¢€)
Find maximal d € N'(V2L) such that g(2® 4 d) < 0
2 = () L g4

return(z®  A(%)

6.1 Semidefinite relaxation solution

If the NLP-Q?P subproblem is convex, or more generally, if it is an instance without duality
gaps, then solving the semidefinite relaxation, which can be done in polynomial time, will be
enough since the primal semidefinite solution will be rank one. We will have a pair of primal-dual
vectors satisfying the sufficient conditions for optimality of Q?P.

This takes care of the convex case and of many non-convex cases. In other cases, we can
move along the nullspace of the Lagrangean until we hit one of the constraints. This is possible
since the the first column of the semidefinite relaxation is feasible for NLP-Q?P. This nullspace-
restricted step improves the objective value even if it does not lead to an optimal solution.

7 SQ’P Viewed as a Higher-Order Newton Method

We now investigate the convergence of an iterative algorithm developed within the SQ?P frame-
work. The interesting point is that, as SQP could be viewed as a Newton method applied to
the optimality conditions of NLP, so can SQ?P; except that the Q? Psubproblem corresponds to
a higher-order Newton step.

To sketch the asymptotic convergence rate, we will make the standard simplifying assump-
tion: When z(®) is close to 2*, the active constraints of the Q?P subproblem are the same as the
active constraints of NLP. That we have identified the active, and therefore the inactive con-
straints for NLP at z*, allows us to ignore inactive constraints and change the active constraints
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to equalities. Therefore, under this assumption, we need consider only the equality-constrained
program

NEP min{f(a:) | h(z) =0,z ¢ R“}.

We rewrite the stationarity condition of the Lagrangean as

VL@, A®) = | V.L(z), \0) |- V() + 1 (z)A |=o

VaL(z®), AR) h(z(*))

Newton’s method can be used to solve a system of nonlinear equations as the one above.
From the definition of £, a second-order Newton step can be written as a nonlinear system of
equation in 8, and §). The manner in which we write it has little to do with a method of
solution. It has everything to do with the comparison we wish to make between three systems
of equations: from a second-order Newton method, from the SQ?P step, and from the standard
SQP step.

First, here is the second-order Newton step,

S AVA(®) + (V2f(2®) + S MV2hi(®) 6, + H3(6,,6)) | _ [ V(=)
[ B (2()6, + 16t (2())6, ] - [ —h(z®) ] ’

where we have grouped the third-order derivatives of f and h under the name H;. We can
contrast this step to stationarity of the Lagrangean of NLP-Q?P,

S AVRi(2R) + (V2 F(2®) + S N V2hi(2®™) 6, | [ -V F(z®)
[ B (2()68, + 16t (2())6, ] - [ —h(z(®) ] ’

and to stationarity of the Lagrangean of the QP subproblem or, equivalently, of a first-order
Newton step,

S AVR(20) + (V2 F(2®) + S N V2hi(2™)) 6, | [ -V F(z®)
| s -1 S|

The main difference between the stationarity of NLP-Q?P and a second-order Newton’s method
lies in the third derivative terms missing in the former. But the second-order terms related
to the curvature of the constraints are present and this is where we expect SQ?P to overtake
SQP, namely when the original problem has highly curved constraints. Viewed differently, the
NLP-Q@Q?P subproblem produces a first-order step towards stationarity and a second-order step
towards feasibility.

Under suitable conditions, the asymptotic g-quadratic convergence rate follows from sta-
tionarity of NLP-Q?P, as expressed above, and from the convergence of a second-order Newton
method.

For global convergence of the algorithm from an arbitrary starting point we use the following
simple merit function \

1

o(2®, AB) = H VL(z®, Ak

gt (@™

—+

2

2
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where
oF (2 = {gi(w(’“)), if gi(2*) > 0;
* 0, if g;(2®)) < 0,
i.e. we strive for stationarity and feasibility.
The derivative, in the direction d, satisfies

d'Vee®,A¥) = &'V2LW, AW) 13 " dgH (aW)vg(a®),
which, since the solution of NLP-Q?P, d satisfies the system
VL™ A+ ve® ARy = o
20V (e M)d+ VW) + ie¥) < o,

implies dtho(a:(k), )\(k)) <0, 1i.e., dis a descent direction for the merit function. Notice that this
descent property does not rely on convexity. It therefore applies to general nonlinear programs.

8 TIllustration

Example 8.1 contrasts the iterations of SQP and SQ?P on a very small problem. The full step
was taken at each iteration for the traditional SQP, and the trust-region used in SQ?P was
always large enough not to be binding, to better illustrate the directions.

Example 8.1 Illustrative comparison of SQP and SQ*P.

min{—ml—m2|mi’—m2§0, mi’—l—m%—lSO}

15 T T T T T 15

Start

N

0.5 0.5

0

L L L L 0 L
0 05 1 15 2 25 3 0 0.5 1 15

Figure 1: Iterations of SQP on Example 8.1, Figure 2: Iterations of SQ?P on the same ez-
from initial point (3 3)t. As the first itera- ample. The horizontal scale is changed to high-

4 1
tion demonstrates, the direction given by the light the value of the direction provided by the
QP subproblem can be poor. Q?P subproblem.
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9 Conclusion

The modern popular approach to optimization is via a local quadratic model. However, this
(true) quadratic model is a quadratic constrained quadratic program and is generally intractable.
Current approaches make two modifications to obtain a tractable subproblem: they use linear
approximations to the constraints rather than quadratic; and they use an approximation of the
Hessian of the objective function in order to maintain the information from the current Lagrange
multiplier estimates and also obtain a true convex subproblem. Thus they solve a convex QP
subproblem. This well known approach is called SQP. This approach has the added advantage
that it can be considered to be Newton’s method acting on the optimality conditions. However,
there are several drawbacks and difficulties that researchers have had to deal with.

In this paper we have developed an approach which deals directly and transparently with the
true quadratic model. We solve a relaxation of the true quadratic model using the best tractable
approximation that we know of, i.e. we solve the Lagrangean relaxation of the quadratic model.
We do this using SDP. We call this the SQ?P approach.

This approach can be considered to be a higher order Newton method on the optimality
conditions. More importantly, this approach avoids many of the difficulties of SQP, e.g. the
Maratos effect, unboundedness and infeasibility of the subproblem, sufficient accuracy of the La-
grange multipliers. We have presented a simple example that illustrates how SQ?P outperforms
SQP.

There still remains many questions before this becomes a viable alternative to SQP. Semidef-
inite programming is a relatively new area and only recently have large sparse problems been
solved, e.g. [46] and [4] where problems with 10000 variables have been solved.
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10 Notation
Key

NEP

=

NLP

UNC

TRS
NonLinDualSDP-TRS
LinDualSDP-TRS
()

Sﬁ“
LinPrimalSDP-TRS
QP

Hom-Q?’P
Hom-Matrix- Q*P
Dual-Q*P
SDP-Q’P

Pr

FONS

QP

NLP-Q*P

PSDP

DSDP

Description

General nonlinear equality program.

Partial order of the semidefinite cone.

General nonlinear inequality program.

General unconstrained program.

Trust-Region Subproblem.

Nonlinear dual semidefinite formulation of TRS.
Linear dual semidefinite formulation of TRS.
Generalized Moore-Penrose inverse

Space of positive semidefinite matrices

Linear primal semidefinite formulation of TRS.
Quadratic objective, quadratic constraint program in R™*!,
Q?P homogenized, in R™*1,

Q*P homogenized, in Si""l.

Dual of Q?P.

Semidefinite relaxation of Q*P.

Projection of semidefinite relaxation solution to original space.

First-Order Newton Step.

Traditional subproblem.

Quadratic subproblem for NLP.

Semidefinite relaxation of NLP-Q?P.
Semidefinite dual to the relaxation of NLP-Q?P.
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