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Abstract5

We present several solution techniques for the noisy single source localization problem,6

i.e., the Euclidean distance matrix completion problem with a single missing node to locate7

under noisy data. For the case that the sensor locations are fixed, we show that this problem8

is implicitly convex, and we provide a purification algorithm along with the SDP relaxation to9

solve it efficiently and accurately. For the case that the sensor locations are relaxed, we study10

a model based on facial reduction. We present several approaches to solve this problem effi-11

ciently, and we compare their performance with existing techniques in the literature. Our tools12

are semidefinite programming, Euclidean distance matrices, facial reduction, and the generalized13

trust region subproblem. We include extensive numerical tests.14
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1 Introduction51

In this paper we consider the noisy, single source localization problem. The objective is to locate52

the source of a signal that is detected by a set of sensors with exactly known locations. Distances53

between sensors and source are given, but contaminated with noise. For instance, in an application54

to cellular networks, the source of the signal is a cellular phone and the cellular towers are the55

sensors. Our data is the, possibly noisy, distance measurements from each sensor to the source.56

The single source localization problem has applications in e.g., navigation, structural engineer-57

ing, and emergency response, [3, 4, 8, 24, 26, 38]. In general, it is related to distance geometry58

problems where the input consists of Euclidean distance measurements and a set of points in Eu-59

clidean space. The sensor network localization problem is a generalization of our single source60

2



problem, where there are multiple sources and only some of the distance estimates are known. The61

general Euclidean distance matrix completion problem is yet a further generalization, where sensors62

do not have specified locations and only partial, possibly noisy, distance information is available,63

e.g., [2, 13,15]. We refer the readers to the books [1,5,9,10] and survey article [27] for background64

and applications, and to the paper [18] for algorithmic comparisons. We also refer the readers for65

the related nearest Euclidean distance matrix (NEDM) problem to the papers [30, 31] where a66

semismooth Newton approach and a rank majorization approach is presented. The more general67

weighted NEDM is a much harder problem though. For theory that relates NEDM to semidefinite68

programming, see e.g., [12, 25].69

A common approach to solving an instance of the single source localization problem is a modi-70

fication of the least squares problem, referred to as the squared least squares (SLS) problem. We71

consider two equivalent formulations of SLS: the generalized trust region subproblem (GTRS) for-72

mulation; and the nearest Euclidean distance matrix with fixed sensors (NEDMF) formulation. We73

show that every extreme point of the semidefinite relaxation of GTRS may be easily transformed74

into a solution of GTRS and thus a solution of the SLS problem.75

We also introduce and analyze several relaxations of the NEDMF formulation. These utilize76

semidefinite programming, facial reduction, and parametric optimization. We provide theoretical77

evidence that, generally, the solutions to these relaxations may be easily transformed into solutions78

of SLS. We also provide empirical evidence that the solutions to these relaxations may give better79

prediction for the location of the source.80

1.1 Outline81

In Section 1.2 we establish our notation and introduce background concepts. In Section 2.1 we82

prove strong duality for the GTRS formulation of SLS and in Section 2.2 we derive the semidefinite83

relaxation (SDR ), and prove that it is tight. We also show that the extreme points of the optimal84

set of SDR correspond exactly to the optimizers of SLS. A purification algorithm for obtaining85

the extreme points is presented in Section 2.2.1. In Section 3 we introduce the NEDM formulation86

as well as several relaxations. We analyze the theoretical properties of the relaxations and present87

algorithms for solving them. The results of numerical comparisons of the algorithms are presented88

in Section 4.89

1.2 Preliminaries90

We now present some preliminaries and background on SDP and the facial geometry, see e.g., [17].
We denote by Sn the space of n×n real symmetric matrices endowed with the trace inner product
and corresponding Frobenius norm,

〈X,Y 〉 := trace(XY ) =
∑
ij

XijYij , ‖X‖F :=
√

trace(XX) =

√∑
ij

X2
ij .

Unless otherwise specified, the norm of a matrix is the Frobenius norm, and we may drop the91

subscript F . For a convex set C, the convex subset f ⊆ C is a face of C if for all x, y ∈ C, x, y ∈ f92

with z ∈ (x, y), (the open line segment between x and y) we have z ∈ f .93

The cone of positive semidefinite matrices is denoted by Sn+ and its interior is the cone of
positive definite matrices, Sn++ . The positive semidefinite cone is pointed, closed and convex.
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Moreover, the cone Sn+ induces a partial order on Sn, that is Y � X if Y −X ∈ Sn+ and Y � X if
Y −X ∈ Sn++ . Every face of Sn+ is characterized by the range or nullspace of matrices in its relative
interior, equivalently, by matrices of maximum rank. For S ⊆ Sn+ , we denote the minimal face of
S, face(S), the smallest face of Sn+ that contains S. Let X ∈ Sn+ have rank r with orthogonal
spectral decomposition.

X =
[
P Q

] [D+ 0
0 0

]T [
P Q

]T
, D+ ∈ Sr++ .

Then the range and nullspace characterizations of face(X) are,

face(X) = PSr++ P
T = Sn+ ∩ {QQT }⊥.

We say that the matrix QQT is an exposing vector for face(X).94

Sometimes it is helpful to vectorize a symmetric matrix. Let svec : Sn → Rn(n+1)/2 map the95

upper triangular elements of a symmetric matrix to a vector, and let sMat = svec−1.96

The centered subspace of Sn, denoted SC , is defined as

SC := {X ∈ Sn : Xe = 0},

where e is the vector of all ones. The hollow subspace of Sn, denoted SH , is

SH := {X ∈ Sn : diag(X) = 0},

where diag : Sn → Rn, diag(X):= (X11, . . . , Xnn)T . A matrix D ∈ SH is said to be a Euclidean
distance matrix, EDM if there exists an integer r and points x1, . . . , xn ∈ Rr such that

‖xi − xj‖22 = Dij , for all ij,

where ‖·‖2 denotes the Euclidean norm. As for the Frobenius norm, we assume the norm of a vector97

to be the Euclidean norm when the subscript is omitted. The set of all n× n EDMs, denoted En,98

forms a closed, convex cone with En ⊂ SH .99

The classical result of Schoenberg [32] states that EDMs are characterized by a face of the
positive semidefinite cone. We state the result in terms of the Lindenstrauss mapping, K : Sn → Sn,

K(X)ij := Xii +Xjj − 2Xij .

with adjoint and Moore-Penrose pseudoinverse,

K∗(D) = 2(Diag(De)−D), K†(D) = −1

2
Jn · offDiag(D) · Jn,

respectively. Here Diag is the adjoint of diag, the matrix Jn := I− 1
nee

T is the orthogonal projection100

onto SC , and offDiag(D) refers to zeroing out the diagonal of D, i.e., the orthogonal projection onto101

SH . The range of K is exactly SH and the range of K† is the subspace SC . Moreover, K(Sn+ ) = En102

and K is an isomorphism between SC and SH .103

The Schoenberg characterization states that K is an isomorphism between Sn+ ∩ SC and En,
see [2] for instance. Specifically,

K(Sn+ ∩ SC) = En, K†(En) = Sn+ ∩ SC .

Moreover, if D ∈ En and K†(D) = PP T has rank r with full column rank factorization PP T , then104

the rows of P correspond to the points in Rr with pairwise distances corresponding to the elements105

of D. For more details, see e.g., [2, 11,12,21,22].106

4



2 SDP Formulation107

We begin this section by formulating the SLS problem using the model and notation of [3]. We let108

n denote the number of sensors, p1, . . . , pn ∈ Rr denotes their locations, and r is the embedding109

dimension.110

Assumption 2.1. The following holds throughout:111

1. n ≥ r + 1;112

2. int conv(p1, . . . , pn) 6= ∅;113

3.
∑n

i=1 p
i = 0.114

The first two items in Assumption 2.1 ensure that a signal can be uniquely recovered if we have115

accurate distance measurements. If the towers are positioned in a proper affine subspace of Rr, and116

the signal is not contained within this affine subspace, then there are multiple possible locations for117

the signal with the given distance measurements. We assume that such poor designs are avoided in118

our applications. The third assumption is made so that the sources are centered about the origin.119

This property leads to a cleaner exposition in the NEDM relaxations of Section 3.120

We let d = d̄+ ε ∈ Rn denote the vector of noisy distances from the source to the ith sensor,

di := d̄i + εi, i = 1, . . . , n,

where d̄i is the true distance and εi is a perturbation, or noise. When the noise ε1, . . . , εn is not too
large, then a satisfactory approximation of the location of the source can be obtained as a nearest
distance problem to the sensors. Using the Euclidean norm as a metric, we obtain the least squares
problem

p∗LS := min
x∈Rr

n∑
i=1

(
‖x− pi‖ − di

)2
. (2.1)

This problem has the desirable property that its solution is the maximum likelihood estimator
when the noise is assumed to be normal and the covariance matrix a multiple of the identity,
e.g., [8]. However, it is a non-convex problem with an objective function that is not differentiable.
Motivated by the success in [3], the main problem we consider instead is the optimization problem
with squared distances

(SLS) p∗SLS := min
x∈Rr

∑n
i=1

(
‖x− pi‖2 − d2

i

)2
. (2.2)

Though still a non-convex problem, in the subsequent sections we show that a solution of SLS can121

be obtained by solving at most k ≤ r + 1 convex problems, see Theorem 2.7 below.122

2.1 GTRS123

The GTRS is an optimization problem where the objective is a quadratic and there is a single
two-sided quadratic constraint, [29, 33]. Note that this class of problems also includes equality
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constraints. If we expand the squared norm term in SLS and substitute using ‖x‖2 = α as in [3],
we get the equivalent problem

p∗SLS = min
x,α

{
n∑
i=1

(
α− 2xT pi + ‖pi‖2 − d2

i

)2
: ‖x‖2 − α = 0, x ∈ Rr

}
. (2.3)

In this formulation, we have a convex quadratic objective that is minimized over a level curve124

of a convex quadratic function. It follows that (2.3) is an instance of the standard trust region125

subproblem. Strong duality is proved in [29, 33]. For the sake of completeness, we include a proof126

of strong duality for our particular class of GTRS.127

Theorem 2.2. Let

PT :=
[
p1 p2 . . . pn

]T
, A :=

[
−2PT e

]
, Ĩ :=

[
Ir 0r×1

01×r 0

]
,

b :=

d
2
1 − ‖p1‖2

...
d2
n − ‖pn‖2

 , b̃ :=

(
0
−1

2

)
.

(2.4)

Consider SLS in (2.2) and the equivalent form given in (2.3). Then:128

1. The problem SLS is equivalent to

(GTRS) p∗SLS = min{‖Ay − b‖2 : yT Ĩy + 2b̃T y = 0, y ∈ Rr+1}. (2.5)

2. The rank of A is r + 1 and the optimal value of GTRS is finite and attained.129

3. Strong duality holds for GTRS , i.e., GTRS and its Lagrangian dual have a zero duality gap
and the dual value is attained:

p∗SLS = d∗SLS := max
λ

min
y
{‖Ay − b‖2 + λ(yT Ĩy + 2b̃T y)}. (2.6)

Proof. The first claim that SLS can be rewritten as GTRS follows immediately using the substi-
tution y = (xT , α)T . For the second claim, note that by Assumption 2.1, Item 2, rank(PT ) = r.
Therefore, (PT )T e = 0 implies that

rank(A) = rank(PT ) + 1 = r + 1.

Now, since A has full column rank, we conclude that ATA is positive definite, and therefore the130

objective of GTRS is strictly convex and coercive. Moreover, the constraint set is closed and thus131

the optimal value of GTRS is finite and attained, as desired.132

That we have a zero duality gap for GTRS follows from [29], since this is a generalized trust
region subproblem. We now prove this for our special case. Note that

ATA =

[
4P TT PT 0

0 n

]
.
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Let γ = λmin(4P TT PT ) be the (positive) smallest eigenvalue of 4P TT PT so that we have ATA−γĨ � 0,
but singular. We note that the convex constraint yT Ĩy + 2b̃T y ≤ 0 satisfies the Slater condition,
i.e., strict feasibility. Therefore, the following holds, with justification to follow.

p∗SLS = min
y
{‖Ay − b‖2 : yT Ĩy + 2b̃T y = 0}

= min
y
{‖Ay − b‖2 − γ(yT Ĩy + 2b̃T y) : yT Ĩy + 2b̃T y = 0} (2.7)

= min
y
{‖Ay − b‖2 − γ(yT Ĩy + 2b̃T y) : yT Ĩy + 2b̃T y ≤ 0} (2.8)

= max
λ≥0

min
y
{‖Ay − b‖2 − γ(yT Ĩy + 2b̃T y) + λ(yT Ĩy + 2b̃T y)} (2.9)

= max
(λ−γ)

min
y
{‖Ay − b‖2 + (λ− γ)(yT Ĩy + 2b̃T y)} (2.10)

= d∗SLS

≤ p∗SLS.

The first equality follows from Item 1 and the second equality holds since γ(yT Ĩy + 2b̃T y) is133

identically 0 for any feasible y.134

For the third equality, let the objective and constraint, respectively, be denoted by

f(y) := ‖Ay − b‖2 − γ(yT Ĩy + 2b̃T y), g(y) := yT Ĩy + 2b̃T y = 0.

The optimal value of (2.8) is a lower bound for p∗SLS since the feasible set of (2.8) is a superset of
the feasible set of (2.7) and the objectives are the same. Now suppose, for the sake of contradiction,
that the optimal value of (2.8) is strictly less than p∗SLS. Then there exists ȳ satisfying,

g(ȳ) < 0, f(ȳ) < p∗SLS.

Let 0 6= h ∈ Null(∇2f(ȳ)). Then by the structure of ATA and construction of γ we see that

h =
(
h̄T 0

)T
with h̄ 6= 0. Moreover, we have,

lim
α→+∞

g(ȳ ± αh) = lim
α→+∞

g(ȳ)± 2αȳTh+ α2‖h‖2 = +∞. (2.11)

Now we choose η ∈ {±1} such that,

f(ȳ + ηαh) ≤ f(ȳ), ∀α ≥ 0.

These observations imply that that there exists ᾱ > 0 such that

g(ȳ + ᾱh) = 0, f(ȳ + ᾱh) ≤ f(ȳ) < p∗SLS,

a contradiction.135

We have confirmed the third equality. Now (2.8) is a convex quadratic optimization problem136

where the Slater constraint qualification holds. This implies that strong duality holds, i.e., we get137

(2.9) with attainment for some λ ≥ 0. Now if λ < 0 in (2.9) then the Hessian of the objective is138

indefinite (by construction of γ) and the optimal value of the inner minimization problem is −∞.139

Thus since (2.9) is maximized with respect to λ in the outer optimization problem, we may remove140

the non-negativity constraint and obtain (2.10). The remaining lines are due to the definition of141

the Lagrangian dual and weak duality. Strong duality follows immediately.142
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The above Theorem 2.2 shows that even though SLS is a non-convex problem, it can be for-143

mulated as an instance of GTRS and satisfies strong duality. Therefore it can be solved efficiently144

using, for instance, the algorithm of [29]. Moreover, in the subsequent results we show that SLS is145

equivalent to its semidefinite programming (SDP) relaxation in (2.15), a convex optimization prob-146

lem.147

We compare our SDP approach with the approach used by Beck et al [3]. In their approach
they have to solve the following system obtained from the optimality conditions of GTRS:

(AAT + λĨ)y = AT b− λb̃,
yT Ĩy + 2b̃T y = 0,

ATA+ λĨ � 0.

(2.12)

The so-called hard case results in ATA+ λ∗Ĩ being singular for the optimal λ∗ and this can cause148

numerical difficulties. We note that in our SDP relaxation, we need not differentiate between the149

‘hard case’ and ‘easy case’.150

2.2 The Semidefinite Relaxation, SDR151

We now study the convex equivalent of SLS. We analyze the dual and the SDP relaxation of
GTRS. By homogenizing the quadratic objective and constraint and using the fact that strong
duality holds for the standard trust region subproblem [34], we obtain an equivalent formulation of
the Lagrangian dual of GTRS as an SDP. We first define

Ā :=

[
ATA −AT b
−bTA bT b

]
, B̄ :=

[
Ĩ b̃

b̃T 0

]
. (2.13)

The Lagrangian dual of GTRS may be obtained as follows:

d∗SLS = maxλ miny‖Ay − b‖2 − λ(yT Ĩy + 2b̃T y)

= maxλ,s{s : ‖Ay − b‖2 − λ(yT Ĩy + 2b̃T y)− s ≥ 0,∀y ∈ Rr+1}
= maxλ,s

{
s :

[
yT , 1

] [
Ā− λB̄ − ser+2e

T
r+2

] [
yT , 1

]T ≥ 0,∀y ∈ Rr+1
}

= maxλ,s
{
s : λB̄ + ser+2e

T
r+2 � Ā

}
.

(2.14)

Here the first equality follows from the definition of the dual. The second and third equalities152

are just equivalent reformulations of the first one. For the last equality, let ỹ = [yT , y0]T and153

M = Ā − λB̄ − ser+2e
T
r+2 and suppose ỹTMỹ < 0 for some ỹ. If y0 is nonzero, we can get a154

contradition by scaling ỹ. If y0 is zero, by the continutity of ỹ → ỹTMỹ, we can perturb ỹ by a155

small enough amount so that the last element of ỹ is nonzero. This is a contradiction as in the156

previous case.157

We observe that (2.14) is a dual-form SDP corresponding to the primal SDP problem, e.g., [39],

(SDR)

p∗SDR := min 〈Ā,X〉
s. t. 〈B̄,X〉 = 0

Xr+2,r+2 = 1

X ∈ Sr+2
+ .

(2.15)

8



Now let F and Ω, respectively, denote the feasible and optimal sets of solutions of SDR. We define
the map ρ : Rr+1 → Sr+2 as,

ρ(y) =

(
y
1

)(
y
1

)T
. (2.16)

Note that ρ is an isomorphism between Rr+1 and rank 1 matrices of Sr+2
+ , where the (r+ 2, r+ 2)158

element is 1.159

Lemma 2.3. The map ρ is an isomorphism between the feasible sets of GTRS and SDR. More-160

over, the objective value is preserved under ρ, i.e., ‖Ay − b‖2 = 〈Ā, ρ(y)〉.161

Theorem 2.4. The following holds:162

1. The optimal values of GTRS, SDR, and (2.14) are all equal, finite, and attained.163

2. The matrix X∗ is an extreme point of Ω if, and only if, X∗ = ρ−1(y∗) for some minimizer,164

y∗, of GTRS.165

Proof. From Theorem 2.2 and weak duality, we have that

p∗SLS = d∗SLS ≤ p∗SDR. (2.17)

Moreover, since SDR is a relaxation of GTRS we get,

p∗SDR ≤ p∗SLS =⇒ p∗SLS = d∗SLS = p∗SDR.

Furthermore, from Theorem 2.2 the above values are all finite and the optimal values of GTRS and
(2.14) are attained. To see that the optimal value of SDR is attained it suffices to show that (2.14)
has a Slater point. Indeed, the feasible set of (2.14) consists of all µ, s ∈ R such that,[

ATA+ µĨ −AT b+ µb̃

−bTA+ µb̃T bT b− s

]
� 0.

Setting µ = 0 and applying the Schur complement condition, we have[
ATA −AT b
−bTA bT b− s

]
� 0 ⇐⇒ ATA− 1

bT b− s
AT b(AT b)T � 0, ATA � 0.

By Theorem 2.2, ATA is positive definite and a Slater point may be obtained by choosing s so that166

bT b− s is sufficiently large.167

Now we consider Item 2. By the existence of a Slater point for (2.14) we know that Ω is
compact and convex. Now we show that Ω is actually a face of F . To see this, let θ ∈ (0, 1) and let
Z = θX + (1− θ)Y ∈ Ω for some X,Y ∈ F . Since Z is optimal for SDR and X and Y are feasible
for SDR, we have

〈Ā, Z〉 = θ〈Ā, Z〉+ (1− θ)〈Ā, Z〉 ≤ θ〈Ā,X〉+ (1− θ)〈Ā, Y 〉 = 〈Ā, Z〉.

Now equality holds throughout and we have 〈Ā,X〉 = 〈Ā, Y 〉 = 〈Ā, Z〉. Therefore X,Y ∈ Ω and168

by the definition of face, we conclude that Ω is a face of F .169

Since Ω is a compact convex set it has an extreme point, say X∗. Now X∗ is also an extreme170

point of F , as the relation face of is transitive, i.e., a face of a face is a face. Moreover, since171

9



there are exactly two equality constraints in SDR, by Theorem 2.1 of [28], we have rank(X∗)(1 +172

rank(X∗))/2 ≤ 2. This equation is satisfied if, and only if, rank(X∗) = 1. Equivalently, X∗ = ρ(y∗)173

for some y∗ ∈ Rr+1. Now, by Lemma 2.3 and the first part of this proof we have that y∗ is a174

minimizer of GTRS .175

For the converse in Item 2, let y∗ be a minimizer of GTRS. Then by Lemma 2.3, X∗ := ρ(y∗)
is optimal for SDR. To see that X∗ is an extreme point of Ω, let Y,Z ∈ Ω such that

1

2
Y +

1

2
Z = X∗.

Since X∗ has rank 1 and Y,Z � 0, it follows that Y and Z are non-negative multiples of X∗. But176

by feasibility, X∗r+2,r+2 = Yr+2,r+2 = Zr+2,r+2 and thus Y = Z = X∗. So, by definition, X∗ is an177

extreme point of Ω, as desired.178

We have shown that the optimal value of SLS may be obtained by solving the nice convex179

problem SDR. Moreover, every extreme point of the optimal face of SDR can easily be transformed180

into an optimal solution of SLS. However, SDR is usually solved using an interior point method181

that is guaranteed to converge to a relative interior solution of Ω. In general, such a solution may182

not have rank 1. In the following corollary of Theorem 2.4 we address those instances for which183

the solution of SDR is readily transformed into a solution of SLS. For other instances, we present184

an algorithmic approach in Section 2.2.1.185

Corollary 2.5. The following hold.186

1. If GTRS has a unique minimizer, say y∗, then the optimal set of SDR is the singleton ρ(y∗).187

2. If the optimal set of SDR is a singleton, say X∗, then rank(X∗) = 1 and ρ−1(X∗) is the188

unique minimizer of GTRS.189

Proof. Let y∗ be the unique minimizer of GTRS . By Theorem 2.4 we know that ρ(y∗) is an190

extreme point of Ω. Now suppose, for the sake of contradiction, that there exists X 6= ρ(y∗) in Ω.191

Since Ω is a compact convex set it is the convex hull of its extreme points. Thus there exists an192

extreme point of Ω, say Y , that is distinct from ρ(y∗). By Theorem 2.4, we know that ρ−1(Y ) is a193

minimizer of GTRS and by Lemma 2.3, ρ−1(Y ) 6= y∗, contradicting the uniqueness of y∗.194

For the converse, let X∗ be the unique minimizer of SDR. Then X∗ is the only extreme point195

of Ω and consequently ρ−1(X∗) is the unique minimizer of GTRS, as desired.196

2.2.1 A Purification Algorithm197

Suppose the optimal solution of (2.15) is X̄ with optimal value p∗SDR = 〈Ā, X̄〉 and rank(X̄) = r̄198

where r̄ > 1. Note that we can not obtain an optimal solution of GTRS from X̄ since the rank199

is too large. However, in this section we construct an algorithm that returns an extreme point of200

Ω which, by Theorem 2.4, is easily transformed into an optimal solution of GTRS. We note that201

this does not require the extreme point to be an exposed extreme point.202

Let the compact spectral decomposition of X̄ be X̄ := UDUT with D ∈ S r̄++. We use the
substitution X = USUT and solve the problem (2.20), below, to obtain an optimal solution with
lower rank. Note that D � 0 is a strictly feasible solution for (2.20). We choose the objective
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matrix C ∈ S r̄++ to be random and positive definite. To simplify the subsequent exposition, by
abuse of notation, we redefine

B̄ ← UT B̄U, Ā← UT ĀU, Ē ← UT ĒU, (2.18)

where Ē := er+2e
T
r+2. We define the linear map A : Sr̄ → R3 and the vector b ∈ R3 as,

AS(S) :=

〈B̄, S〉〈Ā, S〉
〈Ē, S〉

 , bS :=

 0
p∗SDR

1

 , (2.19)

respectively. The rank reducing program is

min 〈C, S〉
s.t. AS(S) = bS

S ∈ S r̄+.
(2.20)

In Algorithm 2.1 we extend the idea of the rank reducing program and in the subsequent results203

we prove that the output of the algorithm is a rank 1 optimal solution of SDR.

Algorithm 2.1 Purification Algorithm

1: INPUT: AS as in (2.19) and X̄ ∈ Ω.
2: initialize: k = 1, A1

S := AS , S1 := X̄, U0 = I.
3: while rank(Sk) ≥ 2 do
4: Compute compact spectral decomposition, Sk = UkDk(Uk)T , with Dk ∈ Srk++.
5: Redefine AkS and bkS using Uk as in (2.18) and ensure that it is full rank.
6: Choose Ck ∈ Null(AkS) \ {0}.
7: Obtain Sk+1 ∈ arg min{〈Ck, S〉 : AkS(S) = bkS , S � 0}.
8: Update k ← k + 1.
9: end while

10: OUTPUT: X∗ := U0 · · ·Uk−1Sk(U0 · · ·Uk−1)T .

204

Lemma 2.6. Let k ≥ 1 be an integer and suppose that Ck, AkS, and bkS are as in Algorithm 2.1.
Then

Sk+1 � 0 ⇐⇒ Fk :=
{
S � 0 : AkS(S) = bkS

}
=
{
Sk+1

}
.

Proof. By construction, Dk ∈ Fk. Therefore,

Fk =
{
Sk+1

}
=⇒ Sk+1 = Dk � 0.

For the forward direction, assume that Sk+1 � 0 and, for the sake of contradiction, suppose that,
Sk+1 is not the only element of Fk. Then Sk+1 ∈ relint(Fk) and for any T ∈ Null(AkS) there exists
ε > 0 such that, {

Sk+1 + εT, Sk+1 − εT
}
⊂ Fk.

By the choice of Ck, there exists T ∈ Null(AkS) such that 〈Ck, T 〉 6= 0 and we may assume, without
loss of generality, that this inner product is in fact negative. Then,

〈Ck, Sk+1 + εT 〉 < 〈Ck, Sk+1〉,

contradicting the optimality of Sk+1.205
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Theorem 2.7. Let X̄ ∈ Sr+2
+ be an optimal solution to SDR . If X̄ is an input to Algorithm 2.1,206

then the algorithm terminates with at most rank(X̄) − 1 ≤ r + 1 calls to the while loop and the207

output, X∗, is a rank 1 optimal solution of SDR.208

Proof. We proceed by considering the trivial case, rank(X̄) = 1. Clearly X∗ = X̄ in this case, and
we have the desired result. Thus we may assume that the while loop is called at least once. We
show that for every Sk generated by Algorithm 2.1 with k ≥ 1, we have,

Xk := U0 · · ·Uk−1Sk(U0 · · ·Uk−1)T ∈ Ω. (2.21)

To this end, let us consider the constraint 〈B̄, Sk〉 = 0. By the update formula, (2.18), we have,

0 = 〈(U0 · · ·Uk−1)T B̄U0 · · ·Uk−1, Sk〉 = 〈B̄, U0 · · ·Uk−1Sk(U0 · · ·Uk−1)T = 〈B̄,Xk〉.

Similarly the other two constraints comprising Ak−1
S are satisfied by Xk and therefore Xk ∈ Ω.209

Now we show that the sequence of ranks, r1, r2, . . . , generated by Algorithm 2.1 is strictly
decreasing. It immediately follows that the algorithm terminates in at most rank(X̄) − 1 calls to
the while loop and that the output matrix X∗ has rank 1. Suppose, to the contrary, that there exists
an integer k ≥ 2 such that rk = rk−1. Then by construction, we have that rank(Sk) = rk = rk−1

and Sk is a Slater point of the optimization problem,

min{〈Ck−1, S〉 : Ak−1
S (S) = bk−1

S , S � 0}. (2.22)

Therefore, by Lemma 2.6 we have that Sk is the only feasible solution of (2.22). Now we claim that
Xk as defined above is an extreme point of Ω. To see this, let Y k, Zk ∈ Ω such thatXk = 1

2Y
k+ 1

2Z
k.

Since Y k and Zk are both positive semidefinite we have that

range(Xk) ⊇
{

range(Y k), range(Zk)
}
.

Thus there exist V k,W k ∈ Srk−1
+ such that,

Y k = U0 · · ·Uk−1V k(U0 · · ·Uk−1)T , Zk = U0 · · ·Uk−1W k(U0 · · ·Uk−1)T ,

and it follows that V k and W k are feasible for (2.22). By uniqueness of Sk we have that Y k =210

Zk = Xk and Xk is an extreme point of Ω. Then by Theorem 2.4, rank(Sk) = 1 and Algorithm 2.1211

terminates before generating rk, a contradiction.212

We remark that in many of our numerical tests the rank of X̄ was 2 or 3. Consequently, the213

purification process did not require many iterations.214

3 EDM Formulation215

In this section we use the Lindenstrauss operator, K, and the Schoenberg characterization to formu-
late SLS as an EDM completion problem. Recall that the exact locations of the sensors (towers)
are known, and that the tower-source distances are noisy. The corresponding EDM restricted to
the towers is denoted DT and is defined by

(DT )ij := ‖pi − pj‖2, ∀1 ≤ i, j ≤ n.
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Then the approximate EDM for the sensors and the source is

DTc :=

[
DT d ◦ d

(d ◦ d)T 0

]
∈ Sn+1.

Recall that
PT =

[
p1 p2 . . . pn

]T ∈ Rn×r.

From Assumption 2.1 the towers are centered, i.e. eTPT = 0. This property is desirable due to216

the Schoenberg characterization which states that K is an isomorphism between Sn+ ∩ SC and En.217

Moreover, it allows for easy recovery of the towers in the last step of our algorithm by solving a218

Procrustes problem.219

Now let GT := PTP
T
T be the Gram matrix restricted to the towers, and note that

K(GT ) = DT , K†(DT ) = GT .

The nearest EDM problem with fixed sensors is

min
x∈Rr

1

2

∥∥∥∥∥K
([

PT
xT

] [
PT
xT

]T)
−DTc

∥∥∥∥∥
2

. (3.1)

For any x ∈ Rn let

dx :=

‖x− p
1‖2

...
‖x− pn‖2

 .

By simplifying the objective, we see that the NEDMP problem in (3.1) is indeed equivalent to
SLS , i.e.,

1

2

∥∥∥∥∥K
([

PT
xT

] [
PT
xT

]T)
−DTc

∥∥∥∥∥
2

=
1

2

∥∥∥∥K([ GT PTx
(PTx)T 0

])
−DTc

∥∥∥∥2

=
1

2

∥∥∥∥[DT dx
dTx 0

]
−
[

DT d ◦ d
(d ◦ d)T 0

]∥∥∥∥2

=
n∑
i=1

(
‖x− pi‖2 − d2

i

)2
.

The approach of [13] for the related sensor network localization problem is to replace the matrix[
PT
xT

] [
PT
xT

]T
in (3.1) with the positive semidefinite matrix variable X ∈ Sn+1 , and then introduce a

constraint on the block of X corresponding to the sensors. Taking this approach, we obtain nearest
Euclidean distance matrix with fixed sensors (NEDMF) problem,

(NEDMF)

VS := min 1
2 ‖Hc ◦ (K(X)−DTc)‖2 ,

s.t. HT ◦ (K(X)−DTc) = 0,
rank(X) ≤ r,
X � 0,

(3.2)
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where

HT :=

[
eeT − I 0

0 0

]
, Hc :=

[
0 e
eT 0

]
.

The objective of this (3.2) is exactly the objective of SLS (acting on the matrix variable) and
the affine constraint restricts X to those Gram matrices for which the block corresponding to the
sensors has exactly the same distances as PTP

T
T . That is, if

X =:

[
XT

xTc

] [
XT

xTc

]T
,

is feasible for (3.2), with XT ∈ Rn×r and xc ∈ Rr, then XT differs from PT only by translation and
rotation. Since neither translation nor rotation affect the distances between the rows of XT and xc
we translate the points in Rr so that XT is centered. This corresponds to the assumption that PT
is centered. Then we solve the Procrustes problem

min {‖XTQ− PT ‖2 : QTQ = QQT = I, Q ∈ Rr×r}, (3.3)

to obtain the rotation and thus have a complete description of the transformation from XT to PT .220

Applying the transformation to xc yields a vector feasible for SLS . Thus every feasible solution221

of (3.2), corresponds to a feasible solution of SLS . The converse is trivially true and we conclude222

that (3.2) is equivalent to SLS due to the rank constraint. We show in the subsequent sections223

that the relaxation where the rank and the linear constraints are dropped, may be used to solve224

the problem accurately in a large number of instances.225

3.1 The Relaxed NEDM Problem226

3.1.1 Nearest Euclidean Distance Matrix Formulation227

One relaxation of (3.2) is obtained by removing the affine constraint and modifying the objective228

as follows:229

(NEDM)

min
1

2
|| K(X)−DTc ||2

s.t. rank(X) ≤ r
X � 0.

(3.4)

Due to the semidefinite characterization of En+1 this problem is the projection of DTc onto the230

set of EDMs with embedding dimension at most r. The motivation behind this relaxation is231

the assumption that the distance measurements corresponding to the sensors are very accurate.232

Therefore, any minimizer of NEDM will likely have the first n points very near the sensors. As we233

show in the subsequent sections by introducing weights, we can obtain a solution arbitrarily close234

to that of (3.2).235

The challenge in problem NEDM is the rank constraint. A simpler problem is to first solve236

the unconstrained least squares problem and then to project the solution onto the set of posi-237

tive semidefinite matrices with rank at most r. This is equivalent to solving the inverse nearest238
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EDM problem:239

(NEDMinv)

min
1

2
||X −K†(DTc)||2

s.t. rank(X) ≤ r
X � 0.

(3.5)

Note that if the positive semidefinite constraint is removed, this problem is just the projection
onto the matrices with rank at most r. By the Eckart-Young theorem, this projection is a rank r
matrix obtained by setting the n − r smallest eigenvalues (in magnitude) of K†(DTc) to zero. In
the following lemma we show that for sufficiently small noise, the negative eigenvalue is of small
magnitude and hence the Eckart-Young rank r projection is positive semidefinite. We denote by
D ∈ Sn+1 the true EDM of the sensors and the source, that is

D :=

[
DT d̄ ◦ d̄

(d̄ ◦ d̄)T 0

]
. (3.6)

It is easy to see from the definitions of d̄ and ε that,

DTc = D + en+1ξ
T + ξeTn+1, where ξ :=

(
ε
0

)
.

Theorem 3.1. The rank of K†(DTc) is at most r + 2. Moreover, K†(DTc) has at most 1 negative240

eigenvalue with magnitude bounded above by
√

2
2 ‖Jn+1‖2‖ε‖.241

Proof. First we note that the norm of en+1ξ
T + ξeTn+1 is bounded above by the magnitude of the

noise:

‖en+1ξ
T + ξeTn+1‖ =

√√√√2
n∑
i=1

ε2
i =
√

2‖ε‖.

Next we observe that the matrix en+1ξ
T + ξeTn+1 has trace 0 and rank 2. Thus en+1ξ

T + ξeTn+1 has
exactly one negative and one positive eigenvalue. By the Moreau decomposition theorem, e.g. [23],
en+1ξ

T + ξeTn+1 may be expressed as the sum of two rank one matrices, say P � 0 and Q � 0, that
are the projections of en+1ξ

T + ξeTn+1 onto Sn+1
+ and −Sn+1

+ , respectively. Now we have,

K†(DTc) = −1
2Jn+1DTcJn+1

= −1
2(Jn+1DJn+1 + Jn+1QJn+1) + (−1

2Jn+1PJn+1),

where the first term in the last line is positive semidefinite with at least r and at most r+1 positive
eigenvalues (−Jn+1DJn+1 is a positive semidefinite matrix with rank r and −Jn+1QJn+1 is positive
semidefinite with rank at most 1); and the second term is negative semidefinite with at most one
negative eigenvalue. Using the Cauchy-Schwartz inequality it can be shown that for X,Y ∈ Sn,

‖XY ‖ ≤ ‖X‖‖Y ‖. (3.7)

By (3.7) and the fact that P is a projection of en+1ξ
T + ξeTn+1 onto −Sn+1

+ , we have∥∥∥∥−1

2
Jn+1PJn+1

∥∥∥∥ ≤ 1

2
‖Jn+1‖2‖P‖ ≤

1

2
‖Jn+1‖2‖en+1ξ

T + ξeTn+1‖ =

√
2

2
‖Jn+1‖2‖ε‖.
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It follows that K†(DTc) has rank at most r+ 2 and by the Courant-Fischer-Weyl theorem, e.g. [37],242

it has at most one negative eigenvalue whose magnitude is bounded above by
√

2
2 ‖Jn+1‖2‖ε‖, as243

desired.244

The following corollary follows immediately.245

Corollary 3.2. If ‖ε‖ is sufficiently small, the optimal solution of NEDMinv is the rank r Eckart-246

Young projection of K†(DTc).247

3.1.2 Weighted, Facially Reduced NEDM248

While we have discarded the information pertaining to the locations of the sensors in relaxing the249

problem (3.2) to the problem NEDM , we still make use of the distances between the sensors.250

Thus, to some extent the locations of the sensors have an implicit effect on the optimal solution251

of NEDM and the approximation NEDMinv from the previous section. In this section we take252

greater advantage of the known distances between the sensors by restricting NEDM to a face of253

Sn+1
+ by facial reduction.254

The true Gram matrix, K†(D), belongs to the set,

FT := {X ∈ Sn+1
c,+ : K(X)1:n,1:n = DT }. (3.8)

Now the constraint X � 0 in NEDM , may actually be refined to say X ∈ face(FT ,Sn+1
+ ) which255

is the following:256

(NEDMP )

min
1

2
|| K(X)−DTc ||2

s.t. rank(X) ≤ r
X ∈ face(FT ,Sn+1

+ ).

(3.9)

Moreover, we may obtain a closed form expression for face(FT ,Sn+1
+ ) in the form of an exposing

vector. To see this, consider the spectral decomposition of the sensor Gram matrix,

GT =:
[
U 1√

n
e WT

] [Λ 0
0 0

] [
U 1√

n
e WT

]T
, UTU = Ir, U

T e = 0, Λ ∈ Sr++.

Note that WTW
T
T is an exposing vector for face(GT ,Snc,+) since the following two conditions hold:

〈GT ,WTW
T
T 〉 = 0, rank(GT +WTW

T
T ) = n− 1 = max

X∈Snc,+
rank(X).

We now extend WTW
T
T to an exposing vector for face(FT ,Sn+1

+ ).257

Lemma 3.3. Let W T := [W T
T 0]T and let W := W TW

T
T + eeT . Then,258

1. W TW
T
T exposes face(FT ,Sn+1

c,+ ),259

2. W exposes face(FT ,Sn+1
+ ).260

Proof. This statement is a special case of Theorem 4.13 of [16].261
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Note that face(K†(D),Sn+1
+ ) ( face(FT ,Sn+1

+ ) since,

rank(K†(D)) + rank(W ) = r + n− r < n+ 1.

Through W we have a ‘nullspace’ characterization of face(FT ,Sn+1
+ ). However, the ‘range space’

characterization is more useful in the context of semidefinite optimizaiton as it leads to dimension
reduction, numerical stability, and strong duality. To this end, we consider any (n + 1) × (r + 1)
matrix such that its columns form a basis for null(W ). One such choice is,

V = Jn+1

[
PT 0
0 1

]
=

[
PT − 1

n+1e

0 1− 1
n+1

]
. (3.10)

To verify that the columns of V indeed form a basis for null(W ), we first observe that rank(V ) = r+1262

and secondly we have,263

WV =

([
WTW

T
T 0

0 0

]
+ eeT

)[
PT − 1

n+1e

0 1− 1
n+1

]
=

[
WTW

T
T PT −

1
n+1WTW

T
T e

0

]
+ eeT

[
PT − 1

n+1e

0 1− 1
n+1

]
= 0.

It follows that
face(FT ,Sn+1

+ ) = Sn+1
+ ∩W⊥ = V Sr+1

+ V T . (3.11)

Thus we may replace the variable X in NEDMP by V RV T for R ∈ Sr+1
+ . To simplify the notation,264

we define the composite map KV := K(V · V T ). Moreover, we introduce a weight matrix to the265

objective and obtain the weighted facially reduced problem, FNEDM ,266

(FNEDM )

Vα := min
1

2
||Hα ◦ (KV (R)−DTc)||2, (=: f(R,α))

s.t. rankR ≤ r,
R � 0.

(3.12)

Here Hα := αHT + Hc and α is positive. Let us make a few comments regarding this problem.267

When α = 1 the weight matrix has no effect and FNEDM reduces to NEDMP . On the other268

hand, when α is very large, the solution has to satisfy the distance constraints for the sensors more269

accurately and in this case FNEDM approximates (3.2). In fact, in Theorem 3.9 we prove that270

the solution to FNEDM approaches that of (3.2) as α increases.271

We begin our analysis by proving that Vα is attained.272

Lemma 3.4. Let α > 0. Then273

1. null(Hα ◦ KV ) = {0},274

2. f(R,α) is strictly convex and coercive,275

3. the problem FNEDM admits a minimizer.276
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Proof. For Item 1, under the assumption that α > 0, we have Hα ◦ KV (R) = 0 if, and only if,277

KV (R) = 0. Recall that K is one-to-one between the centered and hollow subspaces and K(0) = 0.278

By construction, range(V · V T ) is a subset of the centered matrices. Hence H ◦ KV (R) = 0 if, and279

only if, V RV T = 0. Since V is full column rank, V RV T = 0 if, and only if, R = 0, as desired.280

Now we turn to Item 2. The function f(R,α) is quadratic with a positive semidefinite second281

derivative. Moreover, by Item 1, the second derivative is positive definite. Therefore f(R,α) is282

strictly convex and coercive.283

Finally, the feasible set of FNEDM is closed. Combining this observation with coercivity of284

the objective, from Item 2, we obtain Item 3.285

We conclude this subsection by deriving the optimality conditions for the convex relaxation of286

FNEDM , which is obtained by dropping the rank constraint.287

Lemma 3.5. The matrix R ∈ Sr+1
+ is optimal for the relaxation of (3.12) obtained by ignoring the

rank constraint if, and only if,

0 � ∇f(R) = V T
(
H∗α ◦ K∗

[
(Hα ◦ K)(V RV T )−Hα ◦DTc

])
V, 〈∇f(R), R〉 = 0.

In addition, R is optimal for (3.12) if rankR ≤ r.288

Proof. From the Pshenichnyi-Rockafellar conditions, R is optimal if, and only if, ∇f(R) ∈ (Sr+1
+ −

R)+, the nonnegative polar cone. This condition holds if, and only if, for all X ∈ Sr+1
+ and α > 0,

we have
0 ≤ 〈∇f(R), αX −R〉 = α〈∇f(R), X〉 − 〈∇f(R), R〉.

which implies that α〈∇f(R), X〉 ≥ 〈∇f(R), R〉 for every α > 0. Since α may be arbitrarily large we
get that 〈∇f(R), X〉 ≥ 0 for all X ∈ Sr+1

+ . Therefore, we conclude that ∇f(R) ∈ (Sr+1
+ )+ = Sr+1

+ .
Moreover, setting X = 0, we get,

0 ≤ 〈∇f(R), 0−R〉 = −〈∇f(R), R〉 ≤ 0,

hence orthogonality holds.289

3.1.3 Analysis of FNEDM290

In this section we show that the optimal value of FNEDM is a lower bound for the optimal value291

of SLS. Moreover, the this lower bound becomes exact as α is increased to +∞.292

In the SLS model, the distances between the towers are fixed, while in the NEDM model (3.4),293

the distances between towers are free. The facial reduction model allows the distances between the294

towers to change but the towers can still be transformed back to their original positions by a square295

matrix Q ∈ Rr×r. Note that Q does not have to be orthonormal, so it is possible that QQT 6= I.296

Theorem 3.6. Let PT be as above, V as in (3.10), and let P be a centered matrix with,

P =

[
T
cT

]
, T ∈ Rn×r, c ∈ Rr.

Then there exists a matrix Q ∈ Rr×r such that PTQ = JnT if, and only if,

PP T ∈ V Sr+1
+ V T .
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Proof. Since P is centered,
0 = P T e = T T e+ c.

Substituting into the equation PTQ = JnT we get,

PTQ = JnT = T − 1

n
eeTT = T − 1

n
ecT ,

which yields the following expression for P ,

P =

[
PTQ+ 1

nec
T

cT

]
. (3.13)

Now by (3.11) we have,

PP T ∈ V Sr+1
+ V T ⇐⇒ PP T ∈ Sn+1

+ ∩W⊥ ⇐⇒ P TW = 0.

Applying (3.13) we verify that the last statement in the equivalence holds,

P TW = P T (W TW
T
T + eeT )

= P TW TW
T
T

=
[
QTP TT + 1

nce
T c

] [WT

0

]
W

T
T

=

(
QTP TT WT +

1

n
ceTWT

)
W

T
T

= 0,

as desired.297

For the other direction, let

V1 :=

[
PT 0
0 1

]
,

and recall that V = Jn+1V1. Suppose PP T belongs to the face V Sr+1
+ V T . Then P = Jn+1V1M for

some M ∈ R(r+1)×r. We show that if Q ∈ Rr×r denotes the first r rows of M , then PTQ = JnT . To
this end, let J̄ = [Jn 0] and observe that J̄P = JnT . Moreover, since J̄ is centered, J̄Jn+1 = J̄ .
Then,

JnT = J̄P = J̄Jn+1V1M = J̄V1M = JnPTQ = PTQ,

as desired.298

Theorem 3.6 indicates that when using the facial reduction model FNEDM we can use a least299

square approach to exactly get back the original positions of the sensors. This approach will be300

discussed in section 3.2 along with the Procrustes approach.301

In the following, we show that the optimal value of the problem in (3.12) is not greater302

than the optimal value of the SLS estimates (2.2) or (3.2). We also prove that the solution303

to FNEDM approaches that of (3.2) as α increases.304

19



Lemma 3.7. Consider the problem,305

VT := min
1

2
||Hc ◦ (KV (R)−DTc)||2 (=: h(R))

s.t. HT ◦ (KV (R)−DTc) = 0

rankR ≤ r
R ∈ Sr+1

+ .

(3.14)

Then VT is finite and satisfies VT = VS.306

Proof. That VT is finite, follows from arguments analogous to those used in Lemma 3.4.307

For the equality claim, it is clear that VS ≤ VT . To show that VS ≥ VT , consider X that is308

feasible for (3.2). First we show that X may be assumed to be centered. To see this, consider309

X̂ = JnXJn. Note that X̂ is the orthogonal projection of X onto Sc and it can be verified that310

X̂ = K†K(X). Now it is clear that X̂ � 0 and that K(X̂) = K(X). Moreover, since Jn is singular311

we have, rank(X̂) ≤ rank(X). Therefore, X̂ is also feasible for (3.2) and provides the same objective312

value as X.313

Now there exists T ∈ Rn×r and c ∈ Rr such that,

X =

[
T
cT

] [
T
cT

]T
.

Then, from the tower constraint of (3.2) we get the implications,

K(TT T ) = DT =⇒ K†K(TT T ) = K†(DT ) =⇒ JnTT
TJn = PTP

T
T .

Thus, there exists an orthogonal Q such that JnT = PTQ. By Theorem 3.6 we have X ∈ V Sr+1
+ V T

314

and it follows that VS ≥ VT .315

Lemma 3.8. Let 0 < α1 < α2. Then,

Vα1 < Vα2 < VT .

Moreover, the first inequality is strict if DTc is not an EDMwith embedding dimension r.316

Proof. For the first inequality, let R � 0 be such that rank(R) ≤ r. Then,

f(R,α1) =
1

2
‖Hα1 ◦ (KV (R)−DTc)‖2

=
1

2
‖(α1HT +Hc) ◦ (KV (R)−DTc)‖2

=
1

2
α2

1‖HT ◦ (KV (R)−DTc)‖2 +
1

2
‖Hc ◦ (KV (R)−DTc)‖2

≤ 1

2
α2

2‖HT ◦ (KV (R)−DTc)‖2 +
1

2
‖Hc ◦ (KV (R)−DTc)‖2

= f(R,α2).

Note that the inequality is strict if, and only if, ‖HT ◦ (KV (R)−DTc)‖ is positive. This holds for317

all R, if DTc is not an EDM with embedding dimension r.318
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For the second inequality, we first observe that,

VT = min f(R,α2)

s.t. HT ◦ (KV (R)−DTc) = 0

rank(R) ≤ r
R � 0.

Now VT and Vα2 are both optimal values of f(R,α2) over their respective domains, but the domain319

for VT is smaller than that of Vα2 . Hence, the second inequality holds.320

Theorem 3.9. For any α > 0, let Rα denote the minimizer of FNEDM . Let {α`}`∈N ⊂ R++ be321

a sequence of increasing numbers such that Rα`
→ R̄ for some R̄ ∈ Sr+1. Then Vα ↑ VT and R̄ is322

a minimizer of (3.14).323

Proof. First we note that Rα is well defined by Lemma 3.4. Now, from Lemma 3.8, we have that
Vα is monotonically increasing and bounded above by VT . Hence there exists V ∗ such that,

Vα ↑ V ∗ ≤ VT . (3.15)

Next, we show that R̄ is feasible for (3.14). Since Sr+1
+ is closed and the rank function is lower

semicontinuous, we have rank(R̄) ≤ r and R̄ � 0. Moreover, for every ` ∈ N,

Vα`
= f(Rα`

, α`) =
1

2
α2
` ||HT ◦ (KV (Rα`

)−DTc)||2 + h(Rα`
)

Rearranging and taking the limit we get,

0 ≤ lim
`→+∞

1

2
α2
` ||HT ◦ (KV (Rα`

V T )−DTc)||2 = lim
`→+∞

Vα`
− h(Rα`

) = V ∗ − h(R̄). (3.16)

The last equality follows from the continuity of h. Since the limit in (3.16) exists we get,

0 = lim
`→+∞

||HT ◦ (KV (Rα`
)−DTc)|| = ||HT ◦ (KV (R̄)−DTc)||, (3.17)

by continuity. Thus R̄ is feasible for (3.14) and we have h(R̄) ≥ VT . On the other hand, from
(3.16) we have h(R̄) ≤ V ∗. Combining these observations with (3.15) we get,

h(R̄) ≤ V ∗ ≤ VT ≤ h(R̄). (3.18)

Now equality holds throughout (3.18) and the desired results are immediate.324

3.1.4 Solving FNEDM325

The solution set of the unconstrained version of (3.12) can be stated in terms of the Moore-Penrose
generalized inverse of Hα ◦ KV , denoted by (Hα ◦ KV )†. Indeed, the solution to the least squares
problem is,

RLS := (Hα ◦ KV )†(Hα ◦DTc) ∈ argmin f(R). (3.19)

In this subsection we explore the relationship between the optimal solution of FNEDM and the326

eigenvalues of RLS . In general the Moore-Penrose inverse may be difficult to obtain, however, the327

following result implies that RLS may be derived efficiently and it is the unique minimizer of f .328
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Lemma 3.10. Let RLS be as in (3.19). Then, RLS is the unique minimizer of f and

RLS = ((Hα ◦ KV )∗(Hα ◦ KV ))−1(Hα ◦ KV )∗(Hα ◦DTc).

Proof. That RLS is the unique minimizer of f follows from strict convexity as in Item 2 of329

Lemma 3.4. Moreover, by Item 1 of Lemma 3.4, we have null(Hα ◦ KV ) = {0} which implies330

that (Hα ◦ KV )† is the left inverse. The desired expression for RLS is obtained by substituting the331

left inverse into (3.19).332

Note that (Hα ◦KV )∗(Hα ◦KV ) admits an r× r matrix representation. Thus if r is small, as in333

many applications, the inverse of (Hα ◦ KV )∗(Hα ◦ KV ), and consequently RLS , may be obtained334

efficiently.335

We consider three cases regarding the eigenvalues of RLS , each of which corresponds to a336

different approach to solving FNEDM .337

Case I: RLS � 0 and rank(RLS) ≤ r.338

Case II: RLS /∈ Sr+1
+ .339

Case III: RLS � 0.340

In the best scenario, Case I, we have that RLS is the unique minimizer of FNEDM . In this case341

FNEDM reduces to an unconstrained convex optimization problem. Moreover, we have a closed342

form solution for the minimizer, RLS . In Case II, the minimizer of FNEDM may also be obtained343

through a convex relaxation as is indicated by the following result.344

Theorem 3.11. Let R? denote the minimizer of the relaxation of FNEDMwhere the rank con-345

straint is removed. If RLS /∈ Sr+1
+ , then R? is a minimizer of FNEDM .346

Proof. Let R? denote the optimal solution of FNEDM without the rank constraint. Note that347

R? exists by arguments analogous to those in Lemma 3.4. If rank(R?) ≤ r, then clearly R? is a348

minimizer of FNEDM . Thus we may assume that R? � 0.349

Since RLS is the unique minimizer of f , we have f(RLS) < f(R?). Moreover, by strict convexity350

of f , every matrix R in the relative interior of the line segment [RLS , R
?] satisfies f(R) < f(R?).351

Now since R? � 0 there exists R̄ ∈ relint[RLS , R
?] ∩ Sr+1

+ . Then, R̄ is feasible for the relaxation352

of FNEDM where the rank constraint is removed. However, f(R̄) < f(R?), contradicting the353

optimality of R?.354

In Case III we are motivated by the primal-dual approach of [30,31] and the penalty approach355

of [19, 30, 31]. Let h = [1, · · · , α]T , we notice that Hα ◦ Y = hhT ◦ Y = Diag(h)Y Diag(h) if356

diag(Y ) = 0. Let T = Diag(h), it is easy to see that (3.12) is equivalent to the problem:357

min
1

2
||T (Y −DTc)T ||2

s.t. diag(Y ) = 0,

〈Jn+1Y Jn+1,W 〉 = 0,

− Jn+1Y Jn+1 � 0,

rank(Jn+1Y Jn+1) ≤ r.

(3.20)

22



As in [30,31], we define Kn+1
+ (r) := {Y ∈ Sn+1| − Jn+1Y Jn+1 � 0, rank(Jn+1Y Jn+1) ≤ r}, and let358

B (Y ) = 0 represent the linear constraints diag(Y ) = 0 and 〈Jn+1Y Jn+1,W 〉 = 0. Then (3.20) may359

be written as,360

min
1

2
||T (Y −DTc)T ||2

s.t. B (Y ) = 0

Y ∈ Kn+1
+ (r),

(3.21)

If B consists only of the diagonal constraint and T = I, then (3.21) is exactly the problem considered361

in [30,31], where a sufficient condition for strong duality was presented. In the subsequent results,362

we present an analogous dual problem for the general constraint B (Y ) = 0.363

Lemma 3.12. The Lagrangian dual of (3.21) is

−min
y

1

2
‖
∏

Kn+1
T (r)

(TDTcT + B ∗(y))‖2 − 1

2
‖TDTcT‖2, (3.22)

where Kn+1
T (r) = {Y ∈ Sn+1| − Y � 0 on {Te}⊥, rank(Jn+1T

−1Y T−1Jn+1) ≤ r}364

Proof. The Lagrangian function L : Sn+1 × Rn+2 → R of (3.21) is,365

L(Y, y) =
1

2
‖T (Y −DTc)T‖2 − 〈B (Y ), y〉

=
1

2

(
‖T (Y − (DTc + T−1B ∗(y)T−1))T‖2 + ‖TDTcT‖2 − ‖T (DTc + T−1B ∗(y)T−1)T‖2

)
.

(3.23)

we then write the dual object function θ : Rn+2 → R as,366

θ(y) := min
Y ∈Kn+1

+ (r)
L(Y, y) (3.24)

=
1

2
‖
∏

Kn+1
T (r)

(TDTcT + B ∗(y))− (TDTcT + B ∗(y))‖2 (3.25)

−1

2
‖TDTcT + B ∗(y)‖2 +

1

2
‖TDTcT‖2 (3.26)

= −1

2
‖
∏

Kn+1
T (r)

(TDTcT + B ∗(y))‖2 +
1

2
‖TDTcT‖2 (3.27)

From equation (3.26) to equation (3.27) we need to prove the triangle equality holds, i.e.,

‖
∏

Kn+1
T (r)

(TDTcT + B ∗(y))− (TDTcT + B ∗(y))‖2 + ‖
∏

Kn+1
T (r)

(TDTcT + B ∗(y))‖2

= ‖TDTcT + B ∗(y)‖2.

To this end, consider any matrix X ∈ Sn+1 and let
∏

(X) be a nearest point in Kn+1
T (r) to X.

Since Kn+1
T (r) is a cone, the ray θ

∏
(X) for all θ ≥ 0 is contained in the set Kn+1

T (r). Moreover this
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ray is convex and
∏

(X) is the nearest point to X from this ray. Now we can use orthogonality:∏
(X)−X is orthogonal to

∏
(X)− 0. Then the triangle inequality follows:

‖
∏

(X)−X‖2 + ‖
∏

(X)‖2 = ‖X‖2.

The Lagrangian dual problem is then defined by,

Vd := max θ(y) = −min
y

1

2
‖
∏

Kn+1
T (r)

(TDTcT + B ∗(y))‖2 − 1

2
‖TDTcT‖2, (3.28)

as desired.367

In [30,31] it is shown that the Lagrangian dual has compact level sets and therefore the optimal368

value is finite and attained. The dual problem (3.28) can be solved by the semi-smooth Newton369

approach proposed in [30].370

In [30, 31], the authors proposed a rank majorization approach where strong duality is guar-371

anteed if the penalty function goes to zero. The approach can be readily modified to replace the372

diagonal constraint by the linear constraint B and to include the diagonal weight matrix T . The373

strong duality result and global optimal condition can also be carried out to our problem (3.21).374

The drawback of this approach is the slow convergence when n is large. Therefore, in our facial375

reduction model we prefer to stay in Sr+1 rather than Sn+1 since the dimension is lower. Hence376

we develop a rank majorization approach in Sr+1 in the following:377

To penalize rank, we consider the concave penalty function,

p : Sr+1 → R, p(R) := 〈I,R〉 −
r∑
i=1

λi(R). (3.29)

Note that p is non-negative over the positive semidefinite matrices and

R � 0, rank(R) ≤ r ⇐⇒ p(R) = 0 R � 0.

Hence, p is an appropriate penalty function for the rank constraint of FNEDM. Now we consider378

the penalized version of FNEDM ,379

(PNEDM )
min

1

2
||Hα ◦ (KV (R))−DTc)||2 + γp(R),

s.t. R � 0.
(3.30)

where γ is a positive constant. The objective is a difference of convex functions and the feasible380

set is convex. The literature on this type of optimization problem is extensive and the theory381

well established. In particular, the well-known majorization approach guarantees convergence to a382

matrix satisfying the first order necessary conditions for PNEDM, i.e., a stationary point. See for383

instance [35,36].384

The majorization approach is outlined below in Algorithm 3.1. Central to the approach is the385

observation that p is majorized by its linear approximation, since it is concave. In the algorithm,386

∂p(R) denotes the subdifferential of p at R. Thus at every iterate, the convex subproblem (3.31)387

is solved to obtain the next iterate.388
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Algorithm 3.1 Majorization Algorithm

1: INPUT: R0 � 0, γ >> 0, 1 > ε > 0
2: initialize: k = 0, err = 1
3: while err > ε do
4: Choose Uk ∈ ∂p(Rk)
5: Obtain Rk+1,

Rk+1 ∈ argmin
R�0

1

2
||Hα ◦ (KV (R))−DTc)||2 + γ(p(Rk) + 〈Uk, R−Rk〉) (3.31)

6: Update err ← ‖Rk+1 −Rk‖, k ← k + 1
7: end while

Theorem 3.13. Suppose Algorithm 3.1 converges to a stationary point R̄, and that rank(R̄) = r.389

Then R̄ is a global minimizer of FNEDM restricted to face(R̄).390

Proof. By [35,36], the stationary point R̄ satisfies the following condition:

(∇f(R̄, α) +NSr+1
+

(R̄)) ∩ (γ∂p(R̄)) 6= ∅. (3.32)

Under the assumption rank(R̄) = r, we have R̄ = V

[
Λ 0
0 0

]
V T where Λ = Diag(λ1, ..., λr) with

λ1 ≥ ... ≥ λr > 0 being the eigenvalues of Z and V TV = I. Let V = [V1, V2] with the columns of
V1 being the eigenvectors corresponding to λ1, ..., λr. We have

NSr+1
+

(R̄) = {V
[
0 0
0 t

]
V T : t ≥ 0}

and

∂p(R̄) = I −
[
V1

0

] [
V T

1 0
]

= V

[
0 0
0 1

]
V T .

Therefore we have ∇f(R̄, α) = V

[
0 0
0 γ − t

]
V T .391

Due to the convexity of f(R,α), for any R̂ ∈ face(R̄), we have

f(R̂, α) ≥ f(R̄, α) + 〈∇f(R̄, α), R̂− R̄〉 = f(R̄, α) + 0.

Hence our claim is proved.392

3.1.5 Identifying Outliers using l1 Minimization and Facial Reduction393

In this section, we address the issue of unequal noise, where a few distance measurements are394

outliers, i.e., much more inaccurate than others. We use l1 norm minimization to try and identify395

the outliers, and remove them to obtain a more stable problem. We assume that we have many396

more towers available than is necessary, so that removal of a few outliers leaves us with towers that397

still satisfy Assumption 2.1.398
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Problem (3.12) is equivalent to minimizing the residual of an overdetermined linear system in399

the domain of an SDP cone. Let z := svec(R) for R ∈ Sr+1. Abusing our previous notation, let400

b := svec(Hα ◦DTc) and let A denote the matrix representation of Hα ◦KV . Then z ∈ R(r+1)(r+2)/2
401

and b ∈ Rn(n+1)/2. In practice, n is much larger than r+1, so A will have more rows than columns.402

In other words, we have an overdetermined system. Under this new notation, problem (3.12) is403

equivalent to,404

min ‖δ‖
s.t Az − b = δ

sMat(z) � 0

(3.33)

To motivate the compressed sensing approach, suppose that only the outlier measurements are405

noisy and that the remaining measurements are accurate. If z̄ denotes the true solution, then406

Az̄ − b is sparse and we consider the popular l1 norm minimization problem,407

min ‖δ‖1
s.t Az − b = δ

sMat(z) � 0.

(3.34)

Aside from the positive semidefinite cone (3.34) is a compressed sensing problem. To see this, note408

than δ+ b = Az if, and only if, δ+ b ∈ range(A). Let N be a matrix such that range(A) = null(N).409

Then δ+ b = Az if, and only if, δ+ b ∈ null(N). Therefore the constraint, Az− b = δ is equivalent410

to Nδ = −Nb which is exactly the compressed sensing constraint.411

The problem (3.34) differs from the classical compressed sensing model in the positive semidefi-412

nite constraint. However, in our numerical tests, we have found that adding the positive semidefinite413

constraint greatly increases the success rate in identifying outliers. In compressed sensing, If the414

matrix N satisfy the so-called restricted isometry property, then the sparse signal can be recovered415

exactly [7, Theorem 1.1]. However, there are no practical algorithms available right now to check416

if a given matrix satisfies the restricted isometry property. If δ0 is the solution to (3.34) and most417

of the elements of δ0 are 0, then the non-zero elements indicate the outlier measurements.418

Thus far, we have assumed that most of the measurements in b are exact and a few have large419

error. Now let us revert to the original assumption of this section: that most elements of b are420

slightly inaccurate and few elements are very inaccurate. If the positive semidefinite constraint is421

ignored, then the identification of outliers is guaranteed to be accurate assuming that N satisfies422

the restricted isometry property. To be specific, if δ# represents the optimal solution of (3.34)423

without the positive semidefinite constraint, then ||δ# − δ0||l2 ≤ CS · ε where CS and ε are small424

constants, [6, 7]. The specifics for our outlier-detection algorithm are stated in Algorithm 3.2.425

3.2 Recovering Source Position from Gram Matrix426

After finding the EDM from our data, we need to rotate the sensors back to their original positions
in order to recover the position of the source. This is done by solving a Procrustes problem. That
is, suppose that the, appropriately partitioned, final EDM, corresponding Gram matrix and points
are,

Df =

[
D̄f df
dTf 0

]
, Gf = PfP

T
f ∈ Sn+1, Pf =

[
P̄f
pTf

]
∈ RN+1,r.
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Algorithm 3.2 Removing Outliers

1: INPUT: Matrix of sensor locations, PT , and vector of noisy distances, d, from sensors to the
source.

2: Solve the following l1 norm minimization problem

min ‖KV (R)−DTc‖1,
s.t. R � 0.

(3.35)

3: Obtain δ := (KV (R)−DTc)1:n,n+1.

4: Normalize: δ ← 1
‖δ‖2 δ.

5: Remove pi from PT and di from d for all i satisfying δi ≥ 1√
n

.

6: OUTPUT: Sensor matrix PT and distance vector d with outliers removed.

Assuming P̄f and the original data PT are both centered, we now have two approaches.427

The first approach solves the following Procrustes problem using [20, Algorithm 12.4.1]

minQ ‖PT − P̄fQ‖2F
s.t. QTQ = Ir.

(3.36)

The optimal solution can be found explicitly from the singular value decomposition of P̄ Tf PT . If428

P̄ Tf PT =: UfΣfV
T
f , then the optimal solution to (3.36) is Q∗ := UfV

T
f . The recovered position of429

the source is then pTc = pTfQ
∗ .430

The second approach is to solve the least square problem

minQ ‖PT − P̄fQ‖2F
s.t. Q ∈ Rr×r. (3.37)

The least square solution is Q̄ = P̄ †fPT . Recall that P̄ †f is the Moore-Penrose generalized inverse of431

P̄f . The recovered position of the source is then pTc = pTf Q̄ .432

4 Numerical Results433

To compare the different methods, we used randomly generated data with an error proportional to434

the distance to each tower. The proportionality is given by η. This gives435

Dn+1,i = Di,n+1 =
[
d̄i (1 + εi)

]2
, (4.1)

where D is the generated EDM and ε ∈ U(−η, η). The outliers are obtained by multiplying (4.1)436

by another factor θ for a small subset of the indices.437

We let M denote the set of optimization methods to be tested. Then for M ∈M, the relative
error, cMre , between the true location of the source, c, and the location obtained using method M ,
denoted cM , is given by

cMre =
‖cM − c‖
‖c‖

. (4.2)
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The data is then found by calculating this error for all the methods and varying the error η in438

equation (4.1) and the amount of sensors n. For each pair (n, η), one hundred instances are solved.439

The methods in the tables are labelled according to the models with some additional prefixes.440

To be specific, the L and P prefixes represent the different ways used to obtain the position of the441

source, c. By L we denote the least square approach of (3.37) and P represents the Procrustes442

approach in (3.36). We choose α = 1 in FNEDM and the constant γ for PNEDM in (3.30) is443

chosen to be 1000.444

We report some results in the following table.445

Error factor η η = 0.002 η= 0.02 η = 0.2

# Sensors 5 10 15 5 10 15 5 10 15

L-NEDM 0.0045 0.0014 0.0010 0.0408 0.0140 0.0120 0.3550 0.1466 0.1153

P-NEDM 0.0025 0.0013 0.0010 0.0231 0.0133 0.0117 0.2813 0.1385 0.1171

SDR 0.0024 0.0014 0.0010 0.0223 0.0137 0.0119 0.2739 0.1373 0.1164

L-FNEDM 0.0042 0.0013 0.0010 0.0356 0.0141 0.0119 0.2910 0.1395 0.1061

P-FNEDM 0.0024 0.0013 0.0010 0.0237 0.0134 0.0118 0.2623 0.1360 0.1088

Table 4.1: The mean relative error cMre of 100 simulations for varying amount of sensors and error
factors with no outliers for dimension r = 3.

Error factor η η = 0.005 η= 0.05 η = 0.15

# Sensors 5 10 15 5 10 15 5 10 15

L-NEDM 0.0101 0.0033 0.0027 0.0970 0.0328 0.0262 0.2473 0.1037 0.0786

P-NEDM 0.0070 0.0031 0.0027 0.0610 0.0320 0.0262 0.1925 0.1041 0.0760

SDR 0.0071 0.0031 0.0027 0.0576 0.0322 0.0261 0.1933 0.1030 0.0779

L-FNEDM 0.0090 0.0032 0.0026 0.0800 0.0311 0.0255 0.2151 0.1001 0.0769

P-FNEDM 0.0069 0.0031 0.0027 0.0536 0.0310 0.0258 0.1914 0.1000 0.0772

Table 4.2: The mean relative error cMre of 100 simulations for varying amount of sensors and error
factors with no outliers for dimension r = 3.

From Table 4.1 and 4.2 we can see generally P-FNEDM has the smallest error, and occasionally446

L-FNEDM is better. Also we can see that as the number of towers n increases, the relative error447

cMre decreases which is expected as we have more sensors, the location of the source should be more448

accurate.449

To compare the overall performance of all the methods, we use the well known performance450

profiles, [14]. The approach is outlined below.451

For each pair (n, η) and one hundred solved instances, we calculate the mean of the relative
error cMre for method M . We denote this

cn,η,M = mean over 100 instances, for n towers, with error factor η and method M .

We then compute the performance ratio,

rn,η,M =
cn,η,M

min{cn,η,M : M ∈M}
,

and the function,

ψM (τ) =
|{(n, η) : rn,η,M ≤ τ}|

|M|
.
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(a) η = [0.002, 0.02, 0.2]

(b) η = [0.0005, 0.001, 0.005, 0.01, 0.05, 0.15]

Figure 4.1: Performance Profiles for ψM (τ) with n = [5, 10, 15], r = 3, no outliers.

The performance profile is a plot of ψM (τ) for τ ∈ (1,+∞) and all choices of M ∈ M. Note that452

rn,η,M ≥ 1 and equality holds if, and only if, the solution obtained by M is best for the pair (n, η).453

In general, smaller values of rn,η,M indicate better performance. The function ψM (τ) measures how454

many pairs (n, η) were solved with a performance ratio of τ or better. The function is monotonically455

non-decreasing and larger values are better.456

The performance profiles can be seen in Figure 4.1a and 4.1b, the P-FNEDM approach has457

the best performance over all 5 methods. Also using the Procrustes approach (3.36) is better than458

using the least squares approach (3.37). Allowing the sensors to move in FNEDM model is better459

than fixing the sensors in SDR or making the sensors completely free in NEDM for recovering the460

location of the source.461
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We also generate the data with outliers. In FNEDM , the outliers are detected and removed462

using the `1 norm approach described in Section 3.1.5. We report the results with outliers added463

in the following Table 4.3 and Table 4.4.464

Error factor η η = 0.001 η= 0.01 η = 0.1

# Sensors 7 12 16 7 12 16 7 12 16

L-RNEDM 0.8076 0.6189 0.4579 0.8695 0.6376 0.4738 0.8006 0.5935 0.4068

P-RNEDM 1.0319 0.6789 0.4755 1.0819 0.6869 0.4677 0.9939 0.6374 0.4312

SDR 1.0618 0.7150 0.5398 1.0825 0.6981 0.5343 0.9968 0.6732 0.4983

L-FNEDM 0.1358 0.0546 0.0388 0.1556 0.0525 0.0402 0.2308 0.0799 0.0710

P-FNEDM 0.1364 0.0546 0.0388 0.1588 0.0527 0.0401 0.2150 0.0799 0.0708

Table 4.3: The mean relative error cMre of 100 simulations for varying amount of sensors and error
factors with 1 outlier for dimension r = 3. Outlier factor θ ∼ U(5, 10)

Error factor η η = 0.001 η= 0.01 η = 0.1

# Sensors 7 12 16 7 12 16 7 12 16

L-RNEDM 0.7035 0.5299 0.3909 0.7686 0.5186 0.3905 0.7219 0.5296 0.4271

P-RNEDM 0.9533 0.5838 0.4488 0.9160 0.5817 0.4371 0.9324 0.6183 0.4739

SDR 0.9337 0.5386 0.4623 0.8905 0.5600 0.4390 0.8927 0.5917 0.4663

L-FNEDM 0.5777 0.1032 0.0571 0.5637 0.0961 0.0560 0.5860 0.1409 0.0878

P-FNEDM 0.5740 0.1033 0.0561 0.5388 0.0925 0.0544 0.5619 0.1380 0.0864

Table 4.4: The mean relative error cMre of 100 simulations for varying amount of sensors and error
factors with 2 outliers for dimension r = 3. Outlier factor θ ∼ U(3, 6)

From Table 4.3 and 4.4 we can see clearly that when outliers are added, the FNEDM outper-465

forms both SDR and NEDM with a big improvement, as the outliers can be removed. It is also466

consistent with our previous conclusion that using the Procrustes approach (3.36) is better than467

using the least squares approach (3.37).468

5 Conclusion469

We showed that the SLS formulation of the single source localization problem is inherently convex,470

by considering the semidefinite relaxation, SDR, of the GTRS formulation. The extreme points471

of the optimal set of SDR correspond exactly to the optimal solutions of the SLS formulation and472

these extreme points can be obtained by solving no more than r+ 1 convex optimization problems.473

We also analyzed several EDM based relaxations of the SLS formulation and introduced the474

weighted facial reduction model FNEDM. The optimal value of FNEDM was shown to converge475

to the optimal value of SLS by increasing α. In our numerical tests, we showed that our newly476

proposed model FNEDM performs the best for recovering the location of the source. Without477

any outliers present, the performance of each method improves as the number of towers increases.478

This is expected since more information is available. All the methods tend to perform similarly479

as the number of towers increases but the facial reduction model, FNEDM, using the Procrustes480

approach performs the best.481

Finally, we used the `1 norm approach in Algorithm 3.2, to remove outlier measurements. In482

Table 4.3 and Table 4.4 we demonstrate the effectiveness of this approach.483
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Index

DT , 12484

DTc , 13485

GT := PTP
T
T , 13486

HT , 14487

Hc, 14488

Hα := αHT +Hc, 17489

Jn := I − 1
nee

T , 4490

Jn, orthogonal projection onto SC , 4491

PT , 13492

XT , 14493

Diag, 4494

En, EDM cone, 4495

F , feasible set of SDR, 8496

int , interior, 5497

K, Lindenstrauss mapping, 4498

K∗, adjoint, 4499

K†, Moore-Penrose pseudoinverse, 4500

M, set of methods used, 28501

Ω, optimal solutions of SDR, 8502

SC , centered subspace of Sn, 4503

SH , hollow subspace of Sn, 4504

conv, convex hull, 5505

diag(X), 4506

η, 27507

face(X), 4508

face(C), minimal face of C, 4509

offDiag(D), 4510

D, 15511

∂, subdifferential, 24512

ρ, map to rank 1 matrices, 8513

sMat, svec−1, 4514

svec, vectorize a symmetric matrix, 4515

svec−1, sMat, 4516

FNEDM ), 17517

PNEDM ), 24518

c, cell/source, 5519

cn,η,M , 28520

d = d̄+ ε ∈ Rn, distances (noisy), 5521

d∗SLS, 6522

e, vector of all ones, 4523

f(R,α), 17524

h(R), 19525

n, 5526

n, number of sensors, 5527

p∗SLS, 5, 6528

r, embedding dimension, 5529

rn,η,M , performance ratio, 28530

xTc , 14531

EDM cone, En, 4532

EDM, Euclidean distance matrix, 4533

FNEDM , weighted facially reduced problem,534

17535

GTRS, generalized trust region subproblem, 5,536

6537

NEDMP , nearest EDM problem with fixed sen-538

sors, 13539

NEDMF, nearest Euclidean distance matrix with540

fixed sensors, 2541

NEDM, nearest Euclidean distance matrix, 3542

SDP, semidefinite program, 8543

SDR, semidefinite programming relaxation, 8544

SLS, squared least squares, 2545

NEDMP , 16546

NEDMinv, 15547

NEDM, 14548

adjoint, K∗, 4549

cell, c, 5550

centered, 5551

centered subspace of Sn, denoted SC , 4552

cone of positive definite matrices, 3553

cone of positive semidefinite matrices, 3554

convex hull, conv, 5555

distances (noisy), d = d̄+ ε ∈ Rn, 5556

embedding dimension, r, 5557

Euclidean distance matrix, EDM, 4558

exposing vector, 4559

face of C, 3560

feasible set of SDR, F , 8561

Frobenius norm, 3562

generalized trust region subproblem, GTRS, 6563

hollow subspace of Sn, SH , 4564
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interior, int , 5565

Lindenstrauss mapping, K, 4566

minimal face of S, face(S), 4567

Moore-Penrose pseudoinverse, K†, 4568

nearest EDM problem with fixed sensors, NEDMP ,569

13570

nearest Euclidean distance matrix with fixed sen-571

sors, NEDMF, 2572

nearest Euclidean distance matrix, NEDM, 3573

number of sensors, n, 5574

optimal solutions of SDR, Ω, 8575

orthogonal projection onto SC , Jn, 4576

performance ratio, rn,η,M , 28577

semidefinite program, SDP, 8578

semidefinite programming relaxation, SDR, 8579

set of methods used, M, 28580

single source localization problem, 2581

source, c, 5582

squared least squares, SLS, 2583

subdifferential, ∂, 24584

trace inner product, 3585

vector of all ones, e, 4586

vectorize a symmetric matrix, svec, 4587

weighted facially reduced problem, FNEDM ,588

17589
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