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SIZING AND LEAST-CHANGE SECANT METHODS* 

J. E. DENNIS, JR.t AND H. WOLKOWICZt 

Abstract. Oren and Luenberger introduced in 1974 a strategy for replacing Hessian approxi- 
mations by their scalar multiples and then performing quasi-Newton updates, generally least-change 
secant updates such as the BFGS or DFP updates [Oren and Luenberger, Management Sci., 20 
(1974), pp. 845-862]. In this paper, the function 

w(A) - (trace(A)/n ) 

is shown to be a measure of change with a direct connection to the Oren-Luenberger strategy. This 

measure is interesting because it is related to the ?2 condition number, but it takes all the eigenvalues 

of A into account rather than just the extremes. If the class of possible updates is restricted to the 

Broyden class, i.e., scalar premultiples are not allowed, then the optimal update depends on the 

dimension of the problem. It may, or may not, be in the convex class, but it becomes the BFGS 

update as the dimension increases. This seems to be yet another explanation for why the optimally 

conditioned updates are not significantly better than the BFGS update. The theory results in 

several new interesting updates including a self-scaling, hereditarily positive definite, update in the 

Broyden class which is not necessarily in the convex class. This update, in conjunction with the 

Oren-Luenberger scaling strategy at the first iteration only, was consistently the best in numerical 

tests. 

Key words. conditioning, least-change secant methods, quasi-Newton methods, unconstrained 

optimization, sizing, scaling, Broyden class 

AMS subject classifications. 49M37, 65K05, 65K10, 90C30, 49S40 

1. Introduction. We consider quasi-Newton methods for the unconstrained op- 
timization problem 

min f(x), 
xER-I 

where f is twice continuously differentiable. The methods use a local quadratic model 
of the form 

f(Xc + s) e f (xc) + 'cs + stBcS, 

where xc is the current approximation to a minimizer x*, Bc is the current approx- 
imation to the true Hessian G at xc, and gc is the gradient at xc. We will use the 
notation that B` = H. Our particular interest is in the secant-type methods based 
upon approximating Newton's method by accumulating Hessian approximations us- 
ing gradient differences. These methods have the property that the next Hessian 
approximation B = B+ satisfies the secant condition 

Bs=y_9g+-gc or Hy=s-x+-xc. 
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Many of these methods accumulate Hessian information based on some measure of 
least change to the matrix containing the old information. The best known class of 
such approximations is the Broyden family of updates. The best known members 
of this family are the BFGS and DFP methods. These two updates arise using two 
different scaled Frobenius norms as the measure of least change. The BFGS update 
is more popular and has proven to be more efficient; see, e.g., [1]. This emphasizes 
the fact that scaling is important in least-change secant methods. We will not restrict 
ourselves solely to the Broyden family. 

Using the standard ?2 measure of conditioning ti, optimal updates in the Broyden 
family of rank-two updates have been found by Davidon [2]. Specifically, Davidon 
chooses a member B+ (q) of the Broyden class that minimizes s(HB+ (q)). Although 
it is common to call these methods optimally conditioned, we think it is more salient, 
as well as more in the mainstream of the subject, to view i'(HCB+(q)) as a measure 
of the change made in the Hessian approximation by the update. This is because we 
like to view ii as a measure of deviation of a matrix from a multiple of the identity. 

In this paper we will use a different measure 

(1.1) (A) trace(A) 
n det (A)1/n 

of the deviation of a matrix from a multiple of the identity. To us, this measure 
seems more relevant to the updating context than K. Furthermore, it is related to the 
measures and functions used in the proofs in [3], [4]. (For some interesting results on 
the specific measure 

(1.2) +(A) = trace(A) - log(det(A)) 

used in [4]; see [5]. In fact, it is shown there that the measure 4' gives rise to the 
BFGS and DFP updates.) We give some properties of w and relate it to i, in ?2. (For 
further relations between the measures w and K, see [6]. In fact, it is shown there 
that the w optimal updates are t- optimal.) In particular we show that the particular 
optimal column scaling that arises from our measure w is used in practice, because it 
is successful and easy to implement. However it is not the optimal scaling that arises 
from the measure r,. In ?3, we find least-change secant updates from the Broyden 
class using w(HCB+) and w(B,H+). These results are interesting, but they mainly 
serve as lemmas for our main results, which are given in ?5. The main results include 
very interesting connections between updates that minimize the measures w(HCB+) 
and w(BCH+) and the so-called Oren-Luenberger [7] scaling. 

In order to interpret the results of ?3, and to prepare for the results of ?5, we give 
some results on Oren-Luenberger scaling in ?4. Also, since Oren-Luenberger scaling, 
which we prefer to call sizing, is generally regarded as useful only in the first step of an 
iteration [8], we look for an alternative for subsequent iterations. The alternative we 
look for should accomplish the same task as sizing does, i.e., it should guarantee that 
the weak secant condition given below is satisfied so that the curvature information 
along the step is correct. However, it should avoid large changes in the spectrum. 
This leads us to some interesting weighted Frobenius norm problems for weak forms 
of the secant condition 

sTBs = ST or yTHY = YTS. 

These problems are solved with some surprises in ?4 by rank-one updates, which we 
call weak secant updates. Weak updating followed by weighted Frobenius updating 



SIZING AND LEAST-CHANGE SECANT METHODS 1293 

leads to a pair of Fletcher-dual members of the Broyden class which we have not 
seen identified before, but which resemble the Hoshino update [9]. These updates are 
self-scaling, hereditarily positive definite, but not necessarily in the convex class. In 
fact, one of these updates, in conjunction with inverse sizing at the first iteration only, 
proved to be the best update among the various updates we tested. Moreover, it is 
shown that weak secant updating followed by the BFGS update is equivalent to the 
BFGS update. This provides an explanation for why the Oren-Luenberger scaling is 
successful at only the first iteration. 

In ?5, we bring together sizing, and weak and strong least-change secant updating 
in w and in the traditional weighted Frobenius norms associated with the DFP and 
BFGS methods. This leads to even stronger connections between sizing, w-least- 
change secant updates, and the DFP and BFGS methods. In ?6, we consider the 
special two-dimensional example of Powell in [1] used there to illustrate that the 
BFGS behaves better than the DFP. We show that the w-least-change secant method 
for this special case is a sized DFP, or equivalently an inverse-sized BFGS, and we give 
the corresponding numerical results for the sized DFP. These results are better than 
for the BFGS. We also include numerical tests for the standard set of test problems 
given in [10]. The numerical tests show that the optimal 4 updates improve on the 
BFGS update and that replacing sizing, after the first sizing step, with the weak 
secant update improves convergence. This strategy leads to the self-scaling updates 
from ?4, which proved to be the best updates in our numerical testing. In fact, 
several of the updates presented in this paper are shown to consistently improve on 
the BFGS update. Our tests also showed that sizing is a fix for the DFP update and 
that sizing without any line search outperformed many updates with line search. The 
sizing methods were particularly successful when the initial estimates were far from 
the optimal solution. 

2. Preliminaries. Let A be an n x n symmetric positive definite matrix (denoted 
s.p.d.), with eigenvalues 

A, * > An > Oi 

and corresponding eigenvectors u1,.. , un. Then the usual ?2 condition number of A 
is given by 

ts(A) 

The condition number i(A) is used in perturbation analysis for matrix inversion; e.g., 
for the systems of linear equations Ax = b and Ax = b, we obtain bounds on the 
relative differences 

(2.1) 1 jib-bl < :-Ptl <K(A)jb bl 

See, e.g., [11]. This condition number acts as an upper bound on the amplification 
factor of the relative change in the right-hand side in bounding the relative change in 
the solution. Scaling A to reduce the condition number is a standard practice. See, 
e.g., [11]. 

It has often been noted that i, depends only on the largest and smallest eigenval- 
ues. We propose using the following measure which depends more uniformly on all 
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the eigenvalues: 

(A) d=trace(A)/n 

(We allow the argument A to be s.p.d. or the product of two s.p.d. matrices.) Just 
as the usual condition number t,(A) is a measure of how close A is to the pencil alI, 
where I is the identity matrix and a > 0, the function w(A) similarly measures the 
"distance" of A from aI. This measure takes all the eigenvalues of A into account 
and so is a more uniform or average indicator of the distance of A. Thus we can 
differentiate between two matrices with different spectrums but which have identical 
largest and smallest eigenvalues. Moreover, w(A) can be calculated in terms of the 
actual data of A rather than its spectrum and can be more easily differentiated and 
manipulated. This is evident in the optimal scaling derived in Proposition 2.1 (v) 
where w yields the optimal column scaling used in practice. The optimal scaling 
derived from N is not easy to implement or derive. 

We now give some useful properties of w and address some related issues. Here 
we restrict ourselves to the s.p.d. matrices and use the Loewner order, i.e., A > B 
means A - B is positive semidefinite. See [12, p. 475]. Remember that a function 
being pseudoconvex means: 

(y - X)tvf (X) > 0 7 f(y) > f(x). 

See [13]. 
PROPOSITION 2.1. The measure w(A) satisfies 

(i) 1 < w(A) < 8,(A) < ((Q'(A) + 1)2/,r(A)) < 4W7n(A), with equality in the first 
and second inequality if and only if A is a multiple of the identity, and equality in the 
last inequality if and only if 

(2.2) A2= ... = An-1 2 

(ii) w(aA) = w(A), for all a > 0. 
(iii) If n = 2, w(A) is isotonic with r(A). 
(iv) The measure w is pseudoconvex on the set of s.p.d. matrices, and thus any 

stationary point is a global minimizer of w. 
(v) Let V be a full rank m x n matrix, n < m. Then the optimal column scaling 

that minimizes the measure w, i.e., 

min w((VD)t(VD)), 

over D positive, diagonal, is given by 

Dii - lV 1 X i = 1, ..., n, 

where Vi is the ith column of V. 
Proof. That 1 < w(A) follows from the arithmetic-geometric mean inequality, 

while w(A) < ri(A) < ((s(A) + 1)2/ ,(A)) follows from the definitions. The equality 
conditions also follow directly from the definitions. To prove the last inequality in 
(i), we fix A1 and An and thus also i'(A). We now minimize w(A) by differentiating. 
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(Note (iv) in the proposition.) This yields the equality conditions (2.2). Substitution 
shows that 

min wT (A) - (ri(A) + 1)2 
4t,(A) 

If n = 2, 

(2.3) 2w (A) = iK(A)+ 1 = i,(A)1/2 + ,(A)-1/2 

The derivative of w(A) with respect to i.(A) can now be seen to be positive since 
i(A) > 1. 

The function det(A) is log concave and strictly increasing and the function det(A)1/n 
is concave and increasing. See, e.g., [12]. The trace function is linear and so convex. 
Thus, w is the quotient of a convex function by a concave function and so is pseudo- 
convex. Pseudoconvex functions have the property that every stationary point is a 
global minimizer. See [13]. 

To prove (v), let V be given. Then the arithmetic-geometric mean inequality 
yields 

(w((VD)t(VD)) trDtVtVD/n 
(det DtVtVD) l /n 

trVtVD 2/ni 

(det DtD)1/n (e )/ 

EIV,112D?./n (HIV,112 1/n 

(HIHIV, 12D1 )2 / kdet VtV) 

HIHIV:l12 A1/ 

( Vdet VtV J 

with equality if and only if IIV, 2D?- = constant, i = 1,... n. , 
Property (i) above shows that w(A) is a valid condition number; e.g., we can 

replace i.(A) by 4wn(A) in (2.1). As mentioned above, property (v) shows that the 
measure w predicts the best column scaling which is used in practice (see, e.g., [11]), 
and that it is not the one found by minimizing the measure i.. Moreover, the proof 
of (v) is particularly simple. (It is interesting to note that the measure w arose in an 
attempt to find an optimal scaling for A. In addition, w is equivalent to the potential 
function used by Karmarkar [14] for linear programming in the case where the problem 
is scaled so that the objective cost vector is a vector of ones.) 

We use w as a measure of "best" in determining some quasi-Newton updates. 
This leads to minimizing this measure subject to constraints. The following lemma 
shows, under very mild assumptions, that we do not have to worry about maintaining 
positive definiteness in our updates since they will solve problems like the one posed 
here. 

LEMMA 2.1. Given the s.p.d. matrix C, consider the quantity 

/b* = infB w(BC) 

subject to vtBv = y 

B s.p.d., BE Q, 
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where v 54 0 and -y > 0 are given, and Q is a closed set of symmetric matrices. Assume 
that a feasible B exists. Then the finite value ,u* is attained at some B* s.p.d. 

Proof. First note that 

(2.4) 1 < p* < , 

where a = w(BoC) < oo, and Bo is a feasible matrix. Choose {Bk} such that each 
Bk is feasible and 

(2.5) lim w(BkC) = AI*. k--oo 

If either A1(Bk) is unbounded above, or An(Bk) is not bounded away from zero, 
then supt'(Bk) = sup w(Bk) = oo, by Proposition 2.1 (i). However, this implies 
sup w(BkC) = oo, a contradiction. Thus we can assume that Bk -* B for some B E Q 
which is s.p.d. O 

In the sequel we consider the space of symmetric matrices as a subspace of the 
n x n matrices with the inner product 

(A, B) = trace(AB). 

The gradients of functionals restricted to this subspace are symmetric matrices. 

3. w-optimal rank-two updates. The results in this section are interesting, 
but the main reason we include them is for their use in ?5. We now consider the 
Broyden family of updates 

(3.1) Bo = B, - -t Bcsst Bc + t yy t+ (1 - k)stB,s wwt, 

where s = x+- xc is the step taken, y = g+- gc, the current approximation Bc to 
the Hessian is s.p.d., yts > 0, and 

1 1 
w t Y- stBs BS. 

If q = 1 we get the BFGS update and q = 0 yields the DFP update. The updates for 
0 E [0,1] are called the convex class. This is not the most common parameterization, 
but it is well known and it allows us to use results directly from [15] without reproving 
them here and uselessly lengthening the paper. 

If we form the Fletcher dual updates, i.e., we exchange the roles of y and s and 
let HC = B-1, then we get the inverse updates 

(3.2) H- = HC- ytH HcyytHc + tjsst + (1 - q)ytHcyvvt, 

where 

(3.3) v = 18 1 Hy ts- ytHyHcY. 

We now have that q = 1 and q = 0 yield the DFP and BFGS updates, respectively. 
Every member of the Broyden family of updates satisfies the secant condition, 

i.e., for every 4, 

Bps = y. 
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F'urthermore, let 

a = ytHcy, b = y's c = stBcs. 

Note that b2 < ac with equality if and only if Bj 1/2y and B1/2s are collinear, which 
is true if and only if y and BCs are collinear, which is true if and only if Hcy and s 
are collinear. From [15], Bo is s.p.d. if b > 0 and k < (ac/ac - b2). 

A i-optimal rank-two update is found in [2] by minimizing the measure I'(HcBk) 
over the Broyden family of rank-two updates. Note that the spectrum of a matrix 
product C1C2 is equal to the spectrum of C2C1 and i,(C) = i'(C-1). Consequently, 
we can replace HcB1 by any of BHc, B 1BC, BCB-1, B_ 1/2BCB? 1/2, etc. (See also 
[15, Chap. VII].) Related work is found in [16]. 

We now consider the problem of finding those updates in the Broyden family that 
minimize the measure w. The updates depend on n but begin to look like the BFGS 
and DFP updates for large n. In the following, we assume n > 2, Bc is an n x n s.p.d. 
matrix, s, y E Rn such that sty > 0, and y, BCs are linearly independent. If y and 
BCs are linearly dependent, then the entire Broyden family of updates (as well as the 
sized updates) reduce to the symmetric rank-one (SR1) update, or simply to just Bc. 
Otherwise, kSR1 = -(c/b - c) and kSR1 = -(a/b - a). Moreover, the inverse of the 
DFP update Bo is H1; the inverse of the BFGS update B1 is Ho. In general, 

(3.4) X t(X$) = 1 + q[(b2/ac) - 1] 

is a 1-1 and onto mapping (cf. [17]) that relates q and q for which B<, is s.p.d. 
and B-1 = H<. Note that the formula is undefined exactly when Bo is positive 
semidefinite and singular. (This formula corrects a typographical error in [15] and 

[17].) The mapping satisfies t(t(q)) = q and the convex class q E [0,1] * E [0,1]. 
LEMMA 3.1 [15, p. 111]. The matrix B 1/2B,BJ 1/2 has n - 2 unit eigenvalues 

and the two remaining eigenvalues are 

(3.5) A ) = fi2) ? (fi()2 - f2)1/2 

where 

(3.6) f1(?) = _a(b + c)-q$(ac-b2) a _0(ac-b2) 

2b2 f bq)~ bc 

We now present the w-optimal update from the Broyden family. Notice that the 
update depends on n and, for large n, the w-optimal update looks more and more like 
the BFGS update but is in the convex class only when a > b. 

THEOREM 3.1. The minimum over q of w (BJ 1/2BpB-J1/2) is attained at 

(3.7) q$*=1+ (a-b)b 
(1 -rn)(ac-b2) 

Furthermore, BO* is s.p.d. and 

(3.8) a>(?9*)= ac a-b 
\ac -b2 Jn (r-1)b +(a -b)' 
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Proof. From Lemma 3.1, 

w(Bj1/2B BB1/2) = (2f1(q) + n - 2)/n c c 
~~~~(f2(4))1/n 

We can now substitute using (3.6), differentiate, and solve for /*, the critical point. 
This yields (3.7). Since w is pseudoconvex and both fi and f2 are linear in q, q* is 
the global minimizer. The w-optimal update is s.p.d. because it is easy to show that 
for n > 2, 0k < (ac/ac - b2). (This also follows from Lemma 2.1 with the appropriate 
choice of the closed set Q.) O 

COROLLARY 3.1. The minimum over 4 of W(B'12H?B1/2) is attained at 

(c-b)b 

* =_ - + 1n)(ac -b2)' 

Furthermore, H- is s.p.d. and 

(3.9) t($) ac ~ c- b 
ac - (scb2) (n- 1)b +(c -b)' 

Proof. The update formulas (3.1) and (3.2) are obtained by exchanging the roles 
of y and s, i.e., the secant condition can be expressed as B'os = y or Hoy = s, where 
q and q5 are related by (3.4). This is equivalent to exchanging the roles of a and c in 
Theorem 3.1. 0 

Note that, although i'(A) = n(A-1), whenever A-1 is defined, this is not the case 
for the measure w. Therefore, the optimal update obtained in Theorem 3.1 is not, in 
general, the same as the update obtained in Corollary 3.1, nor are the values of the 
measure w equal. The following table summarizes the results. 

w-optimal rank-two updates. 

Measure 
-(a-b)b 

w(Hc/2Bo H(2) k = 1 + a-b)b = = +(= (1-n)(ac-b0) 

(for optimal 0) (1-n)(ac-b ) ((1) nc)(_ _1) 

v(BC /2HB /2 (1-n)(ac-b2) + (c-b)b 
4)~ ~~0 0 ())() { (cbb ib t* = 1 + (1-n)(ac-2 (for optimal ) 1+ 1+ n)(ac-b2) aJ ) (_ac1) 

In general, to find an optimal 0, we minimize the measure w(Hcl/2B,,HC1/2) over B'o 
and then use Stoer's formula to find the corresponding sb = i(q*). Conversely, an 

optimal q refers to the measure w(Bc 2H?Bc2). Notice that for large n, q* is near 

1, which corresponds to the DFP, and q* is in the convex class only when c > b. 

4. Sizing and weak secant updating. This section provides some preliminary 
results on the effect of sizing. It serves as a preliminary introduction to ?5. We 
also introduce shifting (weak secant updating) to replace sizing, in an attempt to 
better preserve accumulated Hessian information. In fact, the Broyden class update 
in Theorem 4.4 (ii) proved to be the best update in our numerical tests. The Broyden 
family, Bo, of rank-two updates satisfies the secant condition and preserves positive 
definiteness whenever yts > 0 for q < (ac/ac - b2). If B+ is any symmetric matrix 
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that satisfies the secant condition B+s = y, then we are guaranteed that the curvature 
information in B+ along the step s is approximately correct, i.e., 

(4.1) Vf(x + s) = g+ = g + Gs + 0(11sll2) 

and 

(4.2) stGs yts = stB+s, 

(4-3) ytG'ly ts = ytH+y. 

We refer to the above two equations as the direct and inverse weak secant conditions. 
(Our numerical results at the end of this paper show that the weak secant conditions 
improve on sizing. Since the writing of this paper, related numerical tests have been 
done in [18] which also show that these conditions, in conjunction with improved spec- 
tral information, can be used to obtain very successful nonsecant method updates.) 
By choosing updates that minimize a measure such as w(B+), K(B+), or IIB+ - BcI IF, 
we attempt to guarantee that the new directional information does not destroy too 
much information already built up in Bc. Note that the measure w does this uniformly 
over all the eigenvalues while ,' only deals with the two extreme eigenvalues. However, 
the low-rank updates correct the curvature information of B+ in one direction at a 
time. Therefore when B, has large eigenvalues, the new update B+ can become ill 
conditioned (cf. [19, p. 275]). This can be corrected by sizing B,. More precisely, 
B, is to be replaced by (yts/stB,s)B, before updating (cf. [20]). Conversely, if H, 
is replaced by (yts/ytHcy)H, before updating, then we are sizing H[ We now find 
the w-optimal q and b to determine a member of the Broyden family that is obtained 
after sizing. For each sizing, we obtain two "optimal" matrices and their inverses. 
Again we see that the BFGS and DFP updates play a role. 

THEOREM 4.1. If B, +- (b/c)B, then the optimal q5 and corresponding q = ( 
are given by 

(4.4) + 1 
-n' 

and 

(4.5) X-t(+*)= 1 
(n - 1) +(n -2)((b2/ac) - 1)' 

respectively. Similarly, if H - (c/b)Hc, then the optimal ' and corresponding 4 = 

t( are 

(4.6) 1 

and 

(4.7) 0. 

All values are in the convex class. The optimal 0* gives the DFP update if n = 2 and 
approaches the BFGS update as n grows. For every n, the optimal 0* gives the DFP 
update. If Bc *- (a/b)BC, then the optimal * = 1 and the BFGS update is optimal. 
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Similarly, if H, +- (b/a)H,, then the optimal q* and corresponding = t() are 
given by 

(4.8) + 
1 

and 

( ) (0*) X 
(n-1)+(n-2)((b2/ac)-1)' 

respectively. This is always in the convex class. The optimal q$* is the BFGS update. 
The optimal q$* is also the BFGS update, if n = 2, but it approaches the DFP update 
as n grows. 

Before giving the proof, we summarize the results in some tables. We prematurely 
include the result of Theorem 4.4 that the q values are the same after weak updating. 
(Note that the BFGS update is the w-optimal rank-two update both after inverse 
sizing or after weak inverse sizing, while the DFP update is the w-optimal update 
after sizing or weak sizing.) 

w-optimal rank-two updates after sizing Bc bB- (or direct shift). 

Measure f 

| a(Hptim /'OH) I - 1 + ' t(k*) -?' = (n-1)+(n-2)((b2/ac)-1) 

w(B 12 H~B 1'2) (P)'= P 

(for optimal P) 

w-optimal rank-two updates after inverse sizing Hc b Hc (or weak inverse update). 

Measure 0' 

(for optimal f) 

IwaS(B"/2H,/>B"cl/2) | 1(#f*)= 4) = (n-1)+(n-2)((b2/ac)-1) |b = 1 + -n 
(for optimal O))I 

Proof. Since B +- (b/c)B, we see that 

b ca b - b, ac+ -c = b, a - ca 
c b 

Thus Theorem 3.1 yields 

+ ((ca/b)-b)b 1 + 1 
(1 -n) (ac -b2) 1 - n 

Applying (3.8) then yields (4.5). If B-1 - (b/a)B-1 or B - (a/b)B, we have 
b- b - b, a b- (a/b)c, and (3.7) yields 

(b-b)b 
(1-rn)(ac-b2) 

Using Corollary (3.1) instead of Theorem 3.1 completes the proof. O 
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Sizing Bc (or Hc) can cause a drastic change in all the eigenvalues of BC so that, 
although G and BC may have had a relatively good overlapping of their spectra, they 
no longer do. After the first sizing step, which should be done to avoid possible ill 
conditioning, a better strategy might be to shift the spectrum by a rank-one update 
and thus avoid a drastic change in the whole spectrum. If we want to size both BC 
and HC simultaneously, we can use a rank-two update. Consequently, we will consider 
finding the "closest" matrix to BC that satisfies the weak secant conditions. 

The next few results hold some surprises for experts in the field. 
THEOREM 4.2. Let u, v be nonzero vectors in Rn, and let A, M be symmetric 

matrices with M s.p.d. Then, 

A= A (UTTv - vTAv)MVVTM 
(VTMV)2 

uniquely solves 

min IHWT(A-A)WHJF 

subject to vTAv = UTV 

independent of W such that M1 = (WWT). Moreover, if A is s.p.d. and M = A, 
then A is s.p.d. if and only if u'v > 0. 

Proof. First note that A is feasible, and let C be any other feasible matrix. 
Set x = W-1v. Then WT(A - A)W = (VT(C - A)V/XTX) *(XXT/XTX). Thus, 
IIWT(A - A)WIIF = I(xT(WT(C-A)W)x/xTx)l < IIWT(C - A)W112. Now if 
A = M is s.p.d. then A is s.p.d. if and only if the rank-one update WTAW = 

I + (uTv - vTAv/(vTMv)2)W-lvvTW-T is s.p.d. The latter is s.p.d. if and only if 

0 < 1 + trace (VTAv)2 WIVVTWT, 

which is equivalent to (vTAv - uTv/(vTAv)2)vTAv < 1, which is true if and only if 
uTV > 0. E 

Now we apply this theorem to direct shifting and then to weak inverse updating, 
i.e., to shifting B and then to shifting H. We use the terms Greenstadt and DFP to 
refer to the choice of W. In fact, Greenstadt never considered least changes to Bc, 
only to H,. 

COROLLARY 4.1. The direct weak Greenstadt update 

1 T T ST 
(4.10) B= B+ (T B Bs) + - - STB,s)BssTB 

uniquely solves 

min - WT -Bc)WIIF 

subject to sTBS = yTS 

for any square W such that Hc = WWT. Moreover, B is s.p.d. if and only if yTs > 0. 
Also, the direct weak DFP update 

(4.11 B = Bc + 1 T T T (4.11) (- =B s)- s Bs 



1302 J. E. DENNIS, JR. AND H. WOLKOWICZ 

uniquely solves 

min IIWT(B - BC)cWIIF 

subject to 8tf3 = yTs 

for any square W such that (WWT)-1s = y. 
It is surprising that (4.10) is a hereditarily positive definite update, but (4.11) 

is not. This is directly opposite the case for strong secant methods with the same 
weighted Frobenius norms, since (4.11) corresponds to the DFP secant update. Now 
we will see in the next corollary that the same twist holds for weak inverse updating; 
the Greenstadt inverse update is hereditarily positive definite, but the BFGS is not, 
as we found with the first two randomly generated examples in MATLAB that we 
tried. 

COROLLARY 4.2. The inverse weak Greenstadt update 

H (THc + 
I 
H (YTs -YTHCY)HCYYTHC 

uniquely solves 

min IIW"(H - HC)WIIF 

subject to yTfHy = y s 

for any square W such that Bc = WWT. Moreover, H is s.p.d. if and only if yTs > 0. 
Also the weak BFGS update 

- ~~1 T THY T 
=HC+(T s) (Y s-yHY)ssT 

uniquely solves 

min 1WT (H - HC)WIIF 

subject to yTfty = y s 

for any square W such that (WWT)-1y = s. 
If we try to find the "best" update with respect to our measure w that satisfies 

the spectral conditions (4.2) and (4.3), then we just scale Bc or Hc since the value of 
w(BHc) or w(B-1Bc) will be one. It is interesting that if we let a > 0 and apply the 
following theorem to aBc, we get (aBc)+ = oB+. 

THEOREM 4.3. The update B that solves 

min w (Hc512BH5112) (or w) (B /2B1 BY) 

subject to st13s = yts 

is 

(tBs 
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Proof. Since Hc-52BHc-2 - (yts/stBs)I, we have obtained the minimum of r, 
and w, i.e., w = 1 = ,. [1 

COROLLARY 4.3. The update B that solves 

min w(BcYB-1BY2) (or w(BcY2B-1BY) 

subject to ytB-ly = yts 

is obtained from 

-ytHcy (4.13) BY3 cYBc. 
yt8 

Optimal updates for weak secant equations. 
Measure Optimal Optimal inverse 

IIHC1/2(B - B)HC1/2IIF B = Bc + + (b - c)BcsstBc B-1 = Hc + c-bb t 
(constraint stBs = yts ) c 

JIBY12 (B--1 - Hc)B'12II a-b t-H+1 | lll2(- H FB/t B = Bc + --C-yy b-1 = Hc + 1(b -a)HcyytHc| (Constraint ytHy = y ts ) a ay~b-a)cyH 

W(H112BHY12 ) 
|(or w(B1/2B3B1/2) ) B = bBc B-1 = cB1 

(constraint stBs - yts 
w(BY12i3 B 1B/2- 

(or (14'2BHc2)) B = a B-1 B5 
(constraint ytHy = yts ) 

In Theorem 4.1 we presented the optimal rank-two updates in the Broyden family 
obtained after sizing and using the measure w. We now show that we obtain the same 
optimal q$* (and q$*) to strongly update the weakly updated matrix. This does not 
mean that the corresponding B+ matrices will be the same, it just means they are 
obtained from the sized or weakly updated Bc (or Hc) using the same formula from 
the Broyden class. 

THEOREM 4.4. The optimal q$* and q$* expressions in Theorem 4.1 are unchanged 
if we replace sizing Bc (Bc +- (b/c)B and Hc +- (c/b)Hc) with the direct weak Green- 
stadt update (4.1) of Corollary 4.1 and we replace inverse sizing HC(Hc +- (b/a)Hc 
and Bc +- (a/b)Bc) with the inverse weak Greenstadt update (4.2) of Corollary 4.2. 

Proof. Suppose that we apply the direct weak update. Then the Sherman- 
Morrison formula yields 

Hc-+cb 88 H =Hc+ +ss, 
bc 

which implies 

&-a+ -(c-b). 
c 

We also have b - b and c - b. Therefore, Theorem 3.1 yields 

(a-b)b 
(1 -n)(&a-b2) 

=1 + (a+b-b --b)b 
(1 - n)((a + (cb) )b - b2) 

1 -n =1+ 
1-n 
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Similarly, the optimal q$* = 1, since b = a. By exchanging the roles of H, and Bc, we 
see that the weak inverse update yields 

1 
Nb* 1+1-n'bQ=1. [1 

We now apply the weighted Frobenius norm measures after weak updating. Al- 
though we do not restrict the updates to the Broyden class, we get a new Fletcher-dual 
pair of updates in the Broyden class. These symmetric updates are hereditarily posi- 
tive definite but not always in the convex class. The new updates are (iii) and (iv) in 
the following theorem. Note that (iii) reduces to the DFP update after sizing, while 
(iv) reduces to BFGS after inverse sizing. 

THEOREM 4.5. The following are equivalent updating sequences. The first four 
are hereditarily positive definite. 

(i) The result of a direct weak Greenstadt update or a weak BFGS update followed 
in either case by a BFGS update is a BFGS update. 

(ii) The result of an inverse weak Greenstadt update or a weak DFP update fol- 
lowed in either case by a DFP update is a DFP update. 

(iii) The result of a direct weak Greenstadt update followed by a DFP update is 
the k = 1 - (b/c), k = 1/((b/a) - ((b2/ac) - 1)) update from the Broyden class. 

(iv) The result of an inverse weak Greenstadt update followed by a BFGS update 
is the k = 1 - (b/a), k = 1/((b/c) - ((b2/ac) - 1)) update from the Broyden class. 

The following sequences may not be hereditarily positive definite. 
(v) The result of a weak DFP update followed by a BFGS update is the q$ = (c/b), 

= (ab - ac/ab - ac + b2) member of the Broyden class. 

(vi) The result of a weak BFGS update followed by a DFP update is the q$ = (a/b), 
= (cb - ac/cb - ac + b2) member of the Broyden class. 

Proof. The proofs are much the same, so we will do only (i) and (iv) since they 
seem to be the most interesting updates. 

The direct weak Greenstadt update is 

- b -c T (b - c' 
B = B, + 2 BcssTB, and Bs = 1 + BCs with b= stBs. 

c c 

The weak BFGS is 

H C + b ssT and s-Hy=s-Hcy( b;)s= (lba)s HCY. 

In the first case, 

b b B+ = B - b B+ 

B ssTB yyT 
= Bc + -~ Bc B 

c2 b 
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In the second, 

H (s-fy)8T + s(s- ly)T _ pT(S - fly)s8T 

b-a ssT ((1- b)8 _Ht)sT + s((l ba)8 Hy)T 

b b +b 

=H + (s - HCy)sT + S(S- Hcy)T + (ba - 2ba) T 

which is the BFGS update of Hc. The proof of (iv) is as direct. 
The inverse weak Greenstadt update of Hc is 

Hl = Hc +(b a) HCYYTHC -~~~~ (ba a2HyyH 

and Hy = (1 + (b - a/a))Hcy, s - Hy = s - Hcy - (b - a/a)Hcy. So, following with 
a BFGS update, 

H+ Hi + (s - ly)sT + s(s - _fy)T _ yT(S -y)ss 
b b 

b - a HCYYTHC + (s - HcY)sT + S(S - Hcy)T 
a2 b 

( bab)(Hcy8T + SyTHC) ? b-a,,T 

= Hc +(s-HcY)sT + S(S-Hcy)T _ b-a T 

+ 
(b-a)(~Lg Y ac - 

afi 
b - b a + b b 

The first three terms are the BFGS and the last is 

(b-a) -_ = Hy) ( - H) - a vv T 

where v is given by (3.3). Now use (3.2) with q$ = 0 for the BFGS portion and we get 

H+ = Hc - -H_YTH + !88T +avvT + (--1 avvT 
a ba 

which is (3.2) with 1 - = 1 + (b/a) - 1 = (b/a), and (iv) is proven. Note that 
hereditary positive definiteness follows from the corresponding property for the BFGS 
and DFP updates and from the above two corollaries. [1 

Other combinations of weak updating and updating yield Broyden class updates, 
e.g., direct weak Greenstadt update followed by optimal q$ yields the Broyden class 
update with k = 1 - (b/(n - 1)c) (compare with (iii) above). 

5. w-optimal updates. In ?3 we found the "best" rank-two updates in the 
Broyden class, i.e., the rank-two updates parametrized by q$ and q$ in (3.1) and (3.2) 
that minimize the measure w. However, if we do not restrict ourselves to rank-two 
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updates but only to maintaining positive definiteness and the secant equation, then 
we obtain a different result. We see that the best w update of B, in the case ac $& b' 
is obtained by inverse sizing B, and then applying the BFGS update. Similarly, the 
best possible inverse update is obtained by sizing and operating on H, with DFP. 
The two updates are different although the optimal values of w are ultimately equal. 
The proofs use the results from ?3. Note that the measure w is scale invariant. These 
results are parallel to the results in [5] where it is shown that the measure (1.2) in [4] 
(not scale invariant) gives rise to the BFGS and DFP updates. 

We continue to assume that yts > 0 and that y and Bs are linearly independent. 
THEOREM 5.1. Assume B, is s.p.d. and ac $/ b2. Then for 

b 
a = -, 

a 

the BFGS update of (1/a)Bc, 

T T s - aIIy H+ = aH, + s u + , uS= b 

is the unique solution of 

min w(HcB+) 

subject to B+s = y, B+ s.p.d. 

In addition, the Lagrange multiplier for the secant equation is uniquely 

2(s - aIIcy) 
abn(det(HcB+))l/n' 

while 

trace(HcB+)' b2 

Proof. First, we note that an optimal B+ s.p.d. exists from Lemma 2.1. The 
Lagrangian for our problem is 

L(A, B+) = g(B+) + At(B+s -y), 

where 

g -+ trace(HcB?) 
n(det(H )) 1/n (det(B+)) 1/n 

and A E Rn is the Lagrange multiplier. The stationary point is optimal by Proposition 
2.1 (v). The Lagrange multiplier exists since the constraints are linear. We now apply 
the necessary conditions of optimality. Uniqueness follows since we get a unique 
solution to the necessary conditions. For simplicity of notation, we multiply the 
Lagrangian by the constant n(det(Hc))1/n and remove this constant from A at the 
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end. Now 

AtB+s = trace(AtB+s) 

= trace(B+sAt) 

= trace(AstB+) 

= trace(sAtB+) 

= trace ( 2 B+) 

by adding the previous two equivalences and dividing by 2. Therefore the gradient 
of the linear functional AtB+s = ((sAt + Ast/2), B+) on the subspace of symmetric 
matrices is 

sAt + Ast 
2 

Using the cofactor expansion of the determinant along a row of the matrix, i.e., 
det(A) = Ej akj (_l)k+j det(A(k,j)) where A(k,j) denotes the submatrix of A ob- 
tained by deleting row k and column j, we see that the gradient of det(B+) is adjB+, 
the (symmetric) matrix of signed cofactors. We will also need Cramer's rule, i.e., 

B+-1 = (1/det(B+))adj B+. 
We can now differentiate the Lagrangian with respect to B+, equate the derivative 

to 0, and solve for B+. 

_____ trace( H~B+) (eB'11 dB1sAt + Ast 
0= (det B+)2/n {(e +)j c n ( +)n( i+)} 2 

or 

(5.1) 0 n H - B1 + n(det B+)l/n sAt + Ast 
trace( HcB+) + trace( HcB+) 2 

Let 

(5.2) n -- n(e ~1~A. 
trace( HcB+) U 2 trace( HcB+) 

Then (5.1) becomes 

(5.3) B;-1 = eHc + siit + iist, 

and so we must show that a = a and i = u as defined in the theorem. Since B+- y =s 
we obtain 

(5.4) aiHcy + siuty + jisty = s 

or 

(5t5) -s sty 
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Let 

(5.6) /3= y 
Sty 

and substitute (5.5) in (5.4). We get 

sty y s syH- y _ SSt13y + SSSy __ t_ y = 

Sty Sty sy sy 

or 

-s(2st,3y) + s (1 - YteHcy) - 

Therefore, 

(5.7) fl25tY(1 YtcHy)H 

FRom (5.5), (5.6), and (5.7), we conclude 

Sty (s- a-Hcy) s y-y aHlcY ) 
Sty- 2 (Sty)2 ) 

We can now substitute for u in (5.3) and obtain 

B-+ = dHc + iist + saHt 

sst dcxHYSt sst sst y ta-Hc y = ceHc + +- 
Sty Sty 2sty 2sty sty 

(5.8) sst sytdHc sst sst ytafHcy 
sty sty 2sy 2sty sty 

sst axH yst + sytdHc sstytaH y 
= dHc+ + t 

sty s y (st y)2 

Note that (5.8) is the BFGS update of (aHc) and is equivalent to (3.2) with q = 0 
(cf. [19, p. 269]). Since the update B+ is the best possible for our measure and since 
it is a rank-two update of (1/)Bc, we conclude that (1/a) is the constant that makes 
the BFGS update the best among all rank-two updates, which includes the Broyden 
class. We can now apply Theorem 3.1, i.e., we want q$ in (3.7) to be one in order to 
get the BFGS update. Since b > 0, this is equivalent to scaling Bc so that the new a 
equals b, i.e., ytaHcy = b or 

b 
ae=-. 

a 

The values for the Lagrange multiplier A and for a- are given in (5.2). The optimal 
value 

w(HcB+) = w((dHc)B+), 
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by Proposition 2.1(i). Therefore, B+ is the BFGS update of the sized Bc, i.e., q$ = 1, 
= b, b= b, c= ac/b, and Lemma 3.1 yields 

w(a-HcB+) - (2fi(1) + n-2)/n 
(f2 (1)) 1/n 

(2+n-2)/n 
(b2/ac)l/n E 

COROLLARY 5.1. Assume Bc s.p.d. and ac $4 b2. Then for 

b 
a = -_ 

C 

the DFP update of aBc, 

~~~~y - aBcs 
B+ = aBc +uy, +u, 11= U b 

is the unique solution of 

min w(BcH+) 

subject to H+y = s, H+s.p.d. 

In addition, the Lagrange multiplier for the secant equation is uniquely 

2(y - aBcy) 

abn(det(BcB1l))1/n ' 

while a = (n/trace(H+Bc)), and the value of the measure is equal to the value in 
Theorem 5.1. 

Proof. We need only exchange the roles of Bc and Hc in the theorem and note 
that the optimal value does not change. [1 

This theorem and corollary state that we obtain the same updated matrix B+ 
whether we apply the w optimal q$* formula to Bc or the sized Bc, or indeed any 
TBC, of > 0. Therefore, the w-optimal update of TBC is also the inverse sized BFGS 

update of Bc. Similarly, the w-optimal inverse update of THC is the sized DFP update 
of HC. 

6. Concluding remarks and numerical tests. In this paper we studied the 
measure w as it relates to the derivation of updates of the Hessian in least-change 
secant methods. We have seen, in ?5, that sizing of the Hessian arises naturally from 
this measure. In particular, the inverse-sized BFGS and sized DFP are the optimal 
w updates, over all s.p.d. updates that satisfy the secant equation. In ?3 we found 
the optimal values, with respect to the measure w, of the parameter q$ that define the 
Broyden family of rank-two updates. We have also considered weak secant updating in 
place of sizing in ?4. The motivation for this is to avoid large changes in the spectrum 
after the first sizing step. It is interesting to note that our numerical tests on the 
standard set of test problems in the literature (see below) show that the best update 
method is given by inverse sizing at the first step, with weak inverse updating at the 
subsequent steps, in conjunction with the optimal q$ at each step. By our results in 
?4, this is equivalent to inverse sizing at the first step only and using the update in 
Theorem 4.5 (iv), i.e., the Broyden class update with k = 1/((b/c) - ((b2/ac) - 1)) or 
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= 1 - (b/a). The most robust methods in terms of failures due to overflow or too 
many iterations were the two w-optimal updates. In fact, they were the most robust 
even when tested without any line search, i.e., with direct prediction step length one. 

Before considering the numerical tests on the standard set of test problems, we 
consider the following special two-dimensional problem. Powell [1] shows that the 
DFP update performs far worse than the BFGS update when applied with direct 
prediction steps to the simple quadratic function 

f(x) 
= 2 (x + x2). 

He shows that the DFP was far less effective than the BFGS at reducing large eigen- 
values. Of course, sizing can reduce large eigenvalues immediately. In this respect, 
sizing can be considered a "fix" for the DFP. This is corroborated in the follow- 
ing numerical data which compares Powell's data with sized DFP and sized BFGS. 
The initial Hessian approximation is the diagonal matrix diag(1, A1), while the initial 
point is x1 = (cos bi sin,b1)t, where the parameters A1 and 41 are given in Tables 6.1- 
6.4. The numbers represent the number of iterations needed to obtain the condition 

I ixk+1 I < EllxIii. The numbers in brackets are for the sized updates. 

TABLE 6.1 
Number of iterations for the BFGS (sized BFGS) when e = lo-4. 

1b1 20 deg 40 deg 60 deg 70 deg 80 deg 85 deg 87 deg 88 deg 
A1 
10 5 (9) 6 (10) 7 (7) 8 (6) 7 (3) 6 (9) 5 (9) 4 (9) 

100 5 (10) 7 (14) 8 (16) 9 (10) 10 (7) 10 (6) 9 (7) 9 (6) 
104 5 (14) 7 (27) 8 (30) 9 (20) 11 (12) 12 (8) 13 (11) 14 (13) 
106 5 (19) 7 (15) 8 (15) 9 (34) 11 (14) 12 (10) 13 (8) 14 (6) 
109 5 (12) 7 (14) 8 (17) 9 (10) 11 (8) 12 (21) 13 (10) 14 (8) 

TABLE 6.2 
Number of iterations for the DFP (sized DFP) when e 10-4. 

P1 20 deg 40 deg 60 deg 70 deg 80 deg 85 deg 87 deg 88 deg 
A1 
10 6 (8) 10 (5) 14 (5) 16 (5) 14 (5) 9 (4) 7 (6) 6 (7) 

100 8 (8) 15 (5) 29 (6) 47 (6) 89 (8) 106 (8) 84 (7) 59 (6) 
1000 10 (8) 19 (5) 45 (6) 83 (7) 230 (8) 549 (10) 855 (10) 1000 (10) 
104 12 (8) 24 (5) 60 (6) 119 (7) 380 (9) 1141 (10) 2420 (11) 4102 (12) 
106 15 (8) 34 (5) 92 (6) 181 (7) 752 (9) 3482 (10) 5162 (11) 9194 (11) 

TABLE 6.3 
Number of iterations for the BFGS (sized DFP) when e - 10-6. 

,01 20 deg 40 deg 60 deg 70 deg 80 deg 85 deg 87 deg 88 deg 
A1 
10 6 (9) 7 (6) 9 (6) 9 (5) 8 (5) 7 (7) 6 (7) 5 (8) 

100 6 (9) 8 (6) 9 (7) 10 (8) 11 (8) 11 (7) 11 (7) 10 (7) 
104 6 (9) 8 (6) 10 (7) 11 (9) 12 (10) 14 (10) 15 (10) 15 (11) 
106 6 (9) 8 (6) 10 (7) 11 (9) 12 (10) 14 (11) 15 (11) 16 (12) 
109 6 (9) 8 (6) 10 (7) 11 (9) 12 (10) 14 (11) 15 (11) 16 (12) 

From Theorems 4.1 and 5.1 and Corollary 5.1, the sized DFP, inverse-sized BFGS, 
optimal q and inverse optimal q$, are all equal in the case n = 2. (In fact, Propo- 
sition 2.1 (iii) implies that they are also equal to the optimally conditioned sized 
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TABLE 6.4 
Number of iterations for the BFGS (sized DFP) when e = 10-9. 

,P1 20 deg 40 deg 60 deg 70 deg 80 deg 85 deg 87 deg 88 deg 
A1 
10 7 (10) 9 (7) 10 (7) 10 (7) 10 (6) 8 (5) 7 (8) 6 (9) 

100 7 (10) 9 (7) 11 (7) 12 (7) 13 (9) 13 (9) 12 (8) 11 (8) 
104 7 (10) 9 (7) 11 (7) 12 (8) 14 (10) 15 (11) 16 (12) 17 (13) 
106 7 (10) 9 (7) 11 (7) 12 (8) 14 (10) 15 (11) 16 (12) 17 (12) 
109 7 (10) 9 (7) 11 (7) 12 (8) 14 (10) 15 (11) 16 (12) 17 (12) 

symmetric rank-one update.) This clearly appears to be the best update in the above 
tables. We now decrease e. The following results show that we do not appear to lose 
asymptotically when we use the w optimal updates in the case n = 2. 

We have also tested over 30 variations of methods on the quartic problem from 
[3] and the standard set of 18 test problems from [10]. The tests were done on a SUN 
SPARC station 1 using a MATLAB translation of the codes in [21]. We include some 
of the results below. The updating methods we include are: 

1. BFGS. 
2. Optimal Q. 
3. Optimal q$. 
4. Size at first step only; optimal +. 

5. Size at first step only; optimal Nb. 
6. Inverse size at first step only; optimal . 
7. Inverse size at first step only; optimal b. 
8. Size at first step only; direct shift subsequently; optimal q$. 
9. Size at first step only; direct shift subsequently; optimal q. 

10. Inverse size at first step only; weak inverse update subsequently; optimal sb. 
(equivalently, inverse size at the first step only and use the Broyden class update with 

1/((b/c) - ((b2/ac) - 1)), 1 - (b/a), from Theorem 4.5 (iv)). 
11. Inverse size at first step only; weak inverse update subsequently; optimal b. 
12. Inverse size; BFGS. 
13. Size; DFP. 
14. Inverse size at first step only; BFGS. 

Note that there is a Broyden class description for the various combinations of shifting 
and optimal q updating in the above methods. We have only included the q value for 
method 10, as this is our best method in the following testing. 

We have three groups of tests. These groups are distinguished by the type of line 
search used. 

Group 1. Line search with sufficient decrease only (from [21]). 
Group 2. Line search with sufficient decrease and curvature condition (from [21]). 
Group 3. Direct prediction only, i.e., no line search. 

Each group consists of 12 series of tests where each series is distinguished by the scaling 
used for the initial estimates of the solution. We have scaled the initial estimates with: 
.1, .5, 1, 2, 3, 4, 5, 6, 7, 8, 10, 20. Each series consists of the 14 methods and the 19 
problems. We have used the priority theory of Lootsma and Saaty as done by Hock 
and Schittkowski in [22]. More precisely, for each series of tests, let 

Si = {j : problem j is solved successfully by method i}. 

The priority theory is based on a pairwise comparison of the method iteration and 
function evaluation count on the various problems. For example, let tij be the iteration 
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count of method i on problem j and define the matrix R = (rik) by 

'rik =ZiESinSk tii 

ZiESinSk tkj 

The matrix R is an approximation of the (reciprocal) matrix P = (Pik) with Pik = 

(Wi/Wk), where the entries wi are the true expected values for the iteration count 
of method i on a problem. We normalize so that the sum of the expected values 
E wi = 14, and set w = (wl ... wm)T. Thus, if all 14 methods were equivalent, the 
expected number of iterations would be one for each method. The matrix P is a 
rank-one positive matrix with Pw = Nw, i.e., w is the unique positive eigenvector 
corresponding to the largest eigenvalue N. We determine the positive eigenvector 
corresponding to the largest positive eigenvalue of the approximating matrix R. After 
normalization, this vector w determines the scores presented below to estimate the 
performance criterion. (Please see [22] for more details.) 

We now present some of the numerical results for the 14 methods. The following 
tables contain the scores for the number of iterations, function evaluations and failures 
for each of the 14 methods, after taking the average over all of the 12 different scalings. 
Note that we do not include function evaluations for group 3 as no line search is used. 

GROUP 1. Line search with sufficient decrease. 

Methods: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Iters.: .862 .862 1.38 .776 1.42 .769 1.35 .922 1.24 .725 1.31 .801 .805 .784 
Fn. eval.: .887 .878 1.34 .794 1.37 .787 1.31 .926 1.21 .746 1.3 .805 .859 .802 

Fails.: 4.17 4.33 4.33 4.00 3.75 3.42 3.25 5.17 5.25 3.167 3.92 1.92 2.42 3.08 

order of best methods for iterations: 10 6 4 14 12 13 2 1 8 9 11 7 3 5 
order of best methods for function evaluations: 10 6 4 14 12 13 2 1 8 9 11 7 3 5 

order of best methods for failures: 12 13 14 10 7 6 5 4 11 1 2 3 8 9 

GROUP 2. Line search with sufficient decrease and curvature condition. 

Methods: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Iters.: .888 .863 1.4 .763 1.38 .731 1.35 .953 1.29 .67 1.33 .812 .815 .743 
Fn. eval.: .910 .876 1.36 .778 1.34 .751 1.31 .951 1.25 .721 1.29 .824 .875 .761 

Fails.: 4. 4. 4.33 3.83 4. 3.5 3.33 4.33 4.42 3.42 3.42 2. 2.08 3.25 

order of best methods for iterations: 10 6 14 4 12 13 2 1 8 9 11 7 5 3 
order of best methods for function evaluations: 10 6 14 4 12 13 2 1 8 9 11 7 5 3 

order of best methods for failures: 12 13 14 7 10 11 6 4 1 2 5 9 3 8 

GROUP 3. No line search. 

Methods: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Iters.: 1.02 .917 1.39 .733 1.39 .753 1.35 .921 1.15 .692 1.36 .717 .771 .83 
Fails.: 6.17 5.58 6.08 5.08 4.42 4.58 3.84 8.17 7.67 5.75 5.25 3.75 4.75 4.42 

order of best methods for iterations: 10 12 4 6 13 14 2 8 1 9 7 11 3 5 
order of best methods for failures: 12 7 5 14 6 13 4 2 11 10 3 1 9 8 

We now present the averages, for each method, of the different orders from the 
above three groups of results. 
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Averages over the orders. 

Methods: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Iters.: 8.33 7. 13.3 3.33 13.7 2.67 11.7 8.67 10. 1. 11.3 4. 5.67 4.33 
Fn. eval: 8. 7. 13.5 3.5 13.5 2. 12. 9. 10. 1. 11. 5. 6. 3.5 

Fails.: 10.3 9.67 12. 7.67 7. 6. 3.67 13.7 13. 6.33 8. 1. 3.33 3.33 
Total: 9. 8. 12.9 5. 11.1 3.75 8.75 10.7 11.1 3. 10. 3.13 4.88 3.75 

The best method, with respect to iterations and function evaluations, in each 
group of tests, was method 10, i.e., inverse sizing at the first step only and using the 
selfscaling Broyden class update from Theorem 4.5 (iv). Thus this new selfscaling 
update from the Broyden class appears to be very interesting. Also, the methods 
using optimal q were better than the ones using BFGS. This confirms the conjecture 
that the weak sizing after the first step is a correction for sizing. It also shows that 
the optimal q is an improvement over BFGS. The methods using optimal q$ did very 
well. The sized methods 12 and 13 also did very well. This shows that sizing is a 
fix for the DFP method even for higher-dimensional problems, just as it was for the 
two-dimensional Powell example given above. Moreover, the sizing methods did the 
best when it came to failures. This is particularly evident when no line search was 
used. Thus the sizing seems to help the robustness of the updates. 
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