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1. Introduction

We consider the following mathematical programming problem:
p=inf{f(x): Ax=b, x =0}, (P)

where f: X - R is a differentiable functional on X, A: X - Y is a continuous linear
operator, X and Y are normed spaces, be Y, and S< X is a convex cone, i.e.
S+Sc S and ASc< S, for all A= 0. The cone S induces the cone partial order

x=zgy iff x—-yesS

Our study of the model (P) was stimulated by the following best interpolation
problem considered in [8]: let X, Y, ..., ¥, be given in L,[0, 1] with X=0; find x*
to solve

min{[x|3: (x, ¢.) = (£, ¥;),i=1,...,n,x=0}, (1.1)

where (-,) and || - ||, are the inner product and norm in L,, respectively. The
problem (1.1) is of type (P). In this paper we see that we can derive the explicit
solution of (1.1), given in [8], by using a Lagrange multiplier approach.

The property that distinguishes (P) is the linear programming type of constraints.
In the case that X and Y are finite dimensional spaces, S is a polyhedral cone, and
f(x)=c'x is a linear functional, then there exists a duality theory for (P), see e.g.
[1]. For example, if the dual program is defined as

d=sup{y'b: A'y'sgsc y e Y*} (D)
83
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where S* is the ‘polar cone’ of § and Y* is the dual space of Y, then, if p is finite,
we get that p = d, d is attained, and ‘complementary slackness’ between the solution
vectors holds. The well known ordinary linear program, where S is the nonnegative
orthant, falls into this case. Corresponding results for § not necessarily polyhedral
are given in [9]. These results require looking at the ‘faces’ of S unless a constraint
qualification holds.

Problems can arise if X and Y are not finite dimensional or if S is not polyhedral.

Example 1.1. Consider the nonpolyhedral problem in finite dimensions, where
X =R?,

S={xe R’ x,=0,2x;x,= x3}, (1.2)
and

A=[100], b=0, ¢'=(00 1).

Then p=0and x*=(0 0 0)"is clearly an optimum for (P). However, the constraint
in the dual program (D) is

0 1
0]-|0|y=5s"eS"=S, yeR, (1.3)
1 0

which is clearly inconsistent. This shows that d = —0 is the optimal value of (D).

Example 1.2. Consider the following best interpolation problem of type (1.1): let
n=2 and

1-2¢ if0s<t=<3,
0 ifi<r=1,

ll’l(t)={

l,/Z(I) = t9

. 0 ifosr=<i,
t)y=
o) {1 ifi<t=<i

The Kuhn-Tucker conditions for (1.1) for x™* feasible are:

x*=/\1¢1+/\2¢2+s+,
(1.4)

st=0, sTx*=0.
We see that x*=0 on [0, 3], the support of ¢, since (x*, ¥,) = (X, ;). Also A,>0,
since s"x*=0 and 0 x*=0. Thus A, <0, which still leaves (A4, + A,)(£)>0,
for t near 3, i.e. the system (1.4) is inconsistent. Note that the constraint x =0
is a very simple constraint. We obtain the same difficulty if we replace the
objective function f(x)=|x|3 with the linear objective function c'x, where
¢ =V (x*) = x*.
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Constraint qualifications for programs of type (P) are given in e.g. [5, 7]. They
usually require a ‘Slater point’, i.e. a feasible point x € int S. In the above example,
S is the nonnegative orthant in L, and has empty interior.

In Section 2 we present our constraint qualification and several equivalent formula-
tions. Section 3 contains the main result; see Theorem 3.1 and Corollary 3.1. Here
we see that the constraint qualification yields strong duality. In Section 4 we present
several examples including a proof of the explicit solution of the best interpolation
problem presented in [8]. In Section 5 we show how to extend our results when the
constraint qualification fails.

2. Preliminaries and the constraint qualification

In this section we discuss the constraint qualification to be used in our optimality
conditions. We also present several equivalent formulations. However, we first
introduce the notations and definitions needed in the sequel.

We consider the program

p=inf{f(x): Ax=>b, xe S} (P)

introduced in Section 1. We let X* and Y* denote the continuous dual spaces of
X and Y respectively, both equipped with the w*-topology. Given any set K in
X, the polar cone of K is the set

Kt={x'e X*: x'x=0if xe K}. 2.1)

Here x'x denotes the bilinear form in the duality between X and X*. Correspond-
ingly, if K'is in X*,

K*=[xeX:x'x=0ifx'e K'}. (2.2)
Note that
K++ = cone K, (2.3)

the closure of the convex cone generated by K. The annihilator of a set L, in X or
X*, is denoted by L* and is defined by

L*=L*n(-L)".
The feasible set of (P) is
F={xeX: Ax=b,xe S}.
We assume that F#@. We let # be any generating set for S*, i.e.
cone ?=S". (2.4)
Then, if S is closed, x € S is equivalent to the constraints

stx=0 ifsTe®
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The equality set of constraints is
P~ ={s"eP: Ax=b, xc S implies s x =0}. (2.5)

This notation differs slightly from that in the literature in that the constraint Ax=b
is not included in 2~. (See e.g. [2,3,4].)

We assume that the linear operator A is continuous. We let A’, Z(A) and ¥ (A)
denote the adjoint, range space and null space of A respectively. We use dim to
denote dimension.

We will employ the following constraint qualification in Section 3.

cone(F—S)=X. (CQ)

We will refer to it as (CQ).
We now present several equivalent formulations. Here R, denotes the nonnegative
real line and R, b is the set of all nonnegative multiples of b.

Proposition 2.1. The following five statements (2.6a)-(2.6e) are equivalent:

cone(F—S) = X, (2.6a)
(SNA(R,b))-S=X, (2.6b)
P=c{o}, (2.6¢)
S*A Ft={0}, (2.6d)
S* A (—F)* ={0}. (2.6¢)

Moreover, each of the above implies the following two equivalent statements:

(S> R+) +N(A’ —b) = (X’ R)s (2'6f)

St A’
(R+) NR (—b) ={0}. (2.6g)

Proof. That (a) and (b) are equivalent is clear. Now suppose that (a) holds. Let
s7eST, t=0 and

5" A’y
( . ) =1i:n(_b);;), yhanetin Y*,

If x € F, then

s"x=(lim A'y,)x =lim y, Ax=lim y,b=—~t=<0.

But s"x=0, since xc F, so t=0=s"x. Thus

sY(F-8)=0, (2.7)
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which, by (a) implies that s* =0, i.e. we have shown that (a) implies (g). That (f)
and (g) are equivalent follows from the fact that

(KAL)*=K*+L*

for closed convex cones K and L. Note that K= K™, when K is a subspace, and
that Z(B’)* = ¥(B), for any continuous linear operator. Now (a) fails if and only
if there exists 0# x’'€ X* such that

x'(F~$)<0, (2.8)

if and only if x’ F<0 and x'S=0 if and only if (¢) fails. That (c¢) is equivalent to
both (d) and (e) is clear from (2.5). Recall that F< S. O

It is not true that (g) (or (f)) implies (c) (or its equivalents) in general. For, let
A=[} 7], b=0, and S =span{(1,0)’}. Then R(A')~ S ={0} while

S*AF*=8STn(SnN(A) =span{(0, 1)} n R*# {0}.

The set ?~ in (2.6¢) is defined differently in the literature. For, consider the
abstract convex program

min{f(x): g(x) <50, xe 2}
where g: X > Y is S-convex and £ = X is convex. Then, see e.g. [3],
P ={sTeP: xe, g(x)<s0implies s" g(x)=0}. (2.9)

(If we set g = I, the identity operator, and £ = {x: Ax = b}, then the two definitions
coincide.) For the ordinary convex program in finite dimensions, 2~ =@ is equivalent
to Slater’s condition (see e.g. [2]), i.e. there exists X € {2 such that g(X) <0.

In finite dimensions we conclude the following stronger statement.

Corollary 2.1. If X is finite dimensional, or S* is w¥-compactly based, then each of
the five statements (2.6a) to (2.6e) is equivalent to

d5ecint S suchthat AX=5b. (2.10)

Proof. Let us show the equivalence with (2.6d). First suppose X is finite
dimensional. If (2.10) holds, then s*£>0 for all 0#s"e S, i.e. (2.6d) holds.
Conversely, if (2.10) fails, then, since X is finite dimensional, either int S=0 and
there exists 0# e S < S N F*, or int S~ F=¢ and we can apply the Hahn-
Banach Theorem to find 0# ¢ € S* N (—F)*. Since F = S, we conclude that ¢ € ST
F*.

Now, if $* is w*-compactly based, i.e. §*=cone(P), with 02 ? convex and
w*-compact, and X* is not necessarily finite dimensional, then the result follows
from Lemma 2.2 and Corollary 2.1 in [4]. O

Note that the finite dimension assumption can be replaced by nonempty relative
interior.
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3. Main results

We now develop the duality theory for the program (P). We first consider the
special case when f(x) is linear, i.e. f(x)= c’x, for some ¢’ in X*. In this case the
dual program we consider is

d =sup{by’: A'y'sgc,y e Y*} (D)
We obtain conditions for the optimal values to be equal, ice. p=d, and for d to be

attained (see Theorem 3.1). The following lemma uses the closure condition (3.2)
as a constraint qualification.

Lemma 3.1. Suppose that p is finite and f(x)=c'x, ¢'€ X*, in (P). Define

B=(A, —b), K=(;+>, (3.1)
and let

R(BY+ K" be closed. (3.2)
Then

p=d and d is atiained by some y*e Y*.
Moreover, if p=c¢'x* with x* ¢ F, then
(A'y*—c)x*=0.

Proof. We homogenize the problem. The optimality of p yields
Ax—th=0, (x,t)e (S, Ry) implies c¢'x—tp=0. (3.3)

Note that if 1=0, Ax=0, 0# x€ S, and ¢'x <0, then p=—c0; while if t>0, xS,
then A(t 'x)=b which implies ¢’(t"'x)= p. Now let a=(c’, —p), y =(;). Then the
above becomes

By =0, ye K implies ay=0.
Thus
ac (N(B)nK)*=W+K*CW since0e K*
=R(B)+K* by(3.2). (3.4)
Therefore
c=Ay+s*, —p=—by'+t, (s",1)e(S",R,), ye Y*,

ie. ¢'=g+A'y’ and p<by'. That p= by’ is clear by weak duality, so we conclude
p=d =by'. Moreover, if p is attained at x*, then

d=p=c'x¥*=¢'x¥*—y'(Ax*~b) sincex*cF,
=(c'-A'y)x*+y'b=d,
ie. (c—A'y)x*=0. O
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To apply the lemma we need to find conditions which guarantee the closure
condition in (3.2). We will apply the following closure conditions; see e.g. [6, pp.
104, 105].

Lemma 3.2. Let X be a Hausdorff linear topological space and let A, B be closed
convex subsets of X. If A is locally compact and the recession cones C,n Cg={0},
then B — A is closed in X. (Here the recession coneof aset Ais Co={xe X: x+ A< A}.)

0

Corollary 3.1. Let N be a finite dimensional subspace of X and P a closed convex
cone in X such that N~ P={0}. Then N+ P is closed in X. O

We now present several conditions which guarantee the closure condition (3.2).
We denote:
I cone(F-S)=X,
II S%is locally compact,
III dim R(A) is finite, (3.5)
IV S is polyhedral (the intersection of a finite number of closed halfspaces),
V R(A') is closed.

Theorem 3.1. Suppose that p is finite and f(x)=c'x, ¢’ X* in (P). If one of the
Jfollowing three statements holds:

(a) 1, I and V,
(b) T and 111,
(¢) III and 1V,

then
p=d and d is attained by y*e Y*. (3.6)

In addition, if p = ¢'x™ with x* ¢ F, then

(A'y* — ¢")x* = 0 (complementary slackness). (3.7)
Proof. By Lemma 3.1, we need only show that the closure condition (3.2) holds.
By Proposition 2.1, (d) condition I implies that

R(BYn K" ={0}. (3.8)

For, suppose that (})e R(BYnK",i.e. A'y,,=z,~>ze S " and —by, =1t,>t=0. But
then if x € F, we see that

0<xz =lim xz, =lim(Ax)y, =lim by, = —t <0,

i.e. ze F* which, by (2.6d), implies z=0.

If 111 holds then dim R (A’) is also finite and so R(A’) is closed. Since III or V
must hold, let us show that R(A’) closed implies R(B’) closed. Suppose that y, € Y*
and A'y,, -z, by,~>t, ie. B'y,>(}). Then there exists y'e Y* such that A’y =z



90 J.M. Borwein, H. Wolkowicz / A simple constraint qualification
First, suppose that AX =b, X X. (Recall that we have assumed F#.) Then

t=1lim by!, =1lim(A%)y, =lim £(A’y),) = £A'y' = by’,

i.e. B'y,—> B'y =2z Then R(B’) is closed.

Since R(B’) is closed, we see that (3.8) together with II or III satisfies the
hypotheses of Lemma 3.2 or Corollary 3.1. Thus (3.2} holds. If statement (c) holds,
then the closure condition is always satisfied since K™ is finitely generated. [J

Note that we do not have to assume F # @ in the above. For if bg Z(A), then
N(A) < N(b). Let t=by" and let n'e N¥(A")/N(b) such that bn'=t—1i Then we
again see that B(y'+n’) = ().

To obtain symmetric duality between the primal and dual programs (P) and (D),
we need an additional assumption. We shall employ the following generalized
Farkas’ lemma of Craven and Koliha.

Lemma 3.2 [5, Theorem 2]. Suppose that A(S) is closed in Y. Then the following are
equivalent:

Ax=>b, xS is consistent; (3.9a)
A'y'e ST implies by'=0. [O (3.9b)

Theorem 3.3. Suppose that f(x)=c'x, ¢'e X, and that A(S) is closed. If one of the
three statements (a), (b) or (c¢) in Theorem 3.1 holds, then
(i) if one of the problems is inconsistent, then the other is inconsistent or unbounded ,
(ii) let the two problems be consistent with x € F and y' feasible for (D), then

c'x= by’ (weak duality); (3.10)

(iii) if both (P) and (D) are consistent, then their optimal values are equal and
(D) has an optimal solution (strong duality);

(iv) if x and y' are feasible for (P) and (D) respectively, then they are optimal if
and only if

(c'=A'y)x=0.

Proof. Suppose that (P) is inconsistent. Then by Lemma 3.3, there exists ¢’ Y*
such that A'¢’e —S* and b¢’'>0. Thus, if (D) is consistent, then it must be
unbounded. Conversely, if (P) is consistent and bounded, then Theorem 3.1 implies
that D is consistent and bounded. This proves (i).

If both programs have feasible solutions x and y’ respectively, then

cx=cx+y(b—Ax)=(c'-A'y)x+y'b=y'b, (3.11)

which proves (ii).
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Now, if x and y’ are feasible solutions as above, then both programs are bounded
by (ii) and so Theorem 3.1 implies that p = d, d is attained in (D) and complementary
slackness holds. This proves (iii) and necessity in (iv). Sufficiency in (iv) follows
from (ii) and

ps=c'x=c'x+y'(b—Ax) sincexeF,
=(c'-Ay)x+y'b
=y'b by (3.11),
=d. a

The general symmetric dual pair, with closed cones S and T,
min{c*x: Ax= b, x =50}, (P)
max{by*: A'y*<g c*, y*=,+0} (D)

can be treated by the above results by replacing the constraints in (P) with [A—I]x
(3)=b, x=50, y=10. For (P) to be the dual of D one needs to assume that X and
Y are reflexive Banach spaces, see e.g. [7].

The above results immediately yield a characterization of optimality for (P) if f
is a convex function.

Corollary 3.2. Suppose that p is finite and f is convex and Fréchet differentiable in
(P). If one of the three statements (a), (b) or (c) of Theorem 3.1 hold, then x*c F

solves (P) if and only if the ( Kuhn-Tucker type) system
Vf(x*)—A'y*=s",
(3.12)
sTx*=0, steS', y*eY*

is consistent, where Vf(x*) denotes the derivative at x*.
Proof. Let ¢'=Vf(x*). The feasible point x* solves (P) if and only if it solves the
linearized program

inf{c'(x —x*): Ax=5b, xc S}. (3.13)

By Theorem 3.1, we conclude that the system (3.12) is consistent. Note that we can
replace ¢'(x—x*) in (3.13) with c'x, since ¢’x* is a fixed constant.
Conversely, if (3.12) holds and x € F, then

cx=c'x+y*(b—-Ax)=(c'—A'y*)x+y*b
=Zy*b=y*b+(c'— A'y*)x*
=¢'x*+ y*(b— Ax*) = ¢'x*,

i.e. x* solves (3.13) and so also (P). O
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4. Examples and applications

In this section we present several examples illustrating the theory including
examples where the (CQ) in Theorem 3.1 fails. The model program (P) appears
naturally in many situations. OQur work was stimulated by the approximation theory
problem presented in Example 1.2 and solved in Example 4.1.

Example 4.1. We consider the problem of finding the ‘best’ interpolant discussed
in [8], where a nonnegativity constraint is added to eliminate undesirable inflection
points. The problem reduces to the following model in L,[0, 1]. Let X, ¢y, ¢, ..., &,
in L,[0, 1] be given with £=0. Find x* in L,[0, 1] which solves

min{|| x| (x, ;) =(%, ), i=1,..., n,and x =0}. (4.1)
Define the linear operator A: L,> R" as
Ax = (,Vi), yi = (x’ ‘/li)’ (4'2)

and let b= (b,*), bi = (.f, (tbi)‘
Thus we see that (4.1) is a problem of type (P). Let us assume that - < {0}. Note
that a solution x™* exists, since it is the closest point in a convex set to the origin,

and also note that Corollary 3.2 is applicable. Thus x* € F solves (4.1) if and only

if
x*=Ay*+st, sTx*=0, steST, y*eR"

Now this says that x* is the positive part of A'y*. In other words, if we define,
almost everywhere,

A'y*(t) if A'y*(t)>0,
o 43
(A'y*).(1) {0 otherwise, -

then we have shown, in the case ™ < {0}, that the solution x* of (4.1) is the unique
solution of the system

A(A'y*).=b, y*eY* (4.4)

We complete this problem by considering the case P~ ¢ {0} in Example 5.1. Note
that P~ # {0} in Example 1.2.

Example 4.2. Consider the simple program
1
p=inf{c’x: J x(t)dt=1, x(t)?O}.
0

Here X = L,[0, 1] and S ={x: x = 0} has no interior. But our constraint qualification
holds, i.e. we see that ~ < {0} by considering the functional e(t) =1. We can apply
Theorem 3.1 and solve the trivial dual program

d=max{ye R: y—c¢(t)=0,a.e.in[0, 1]},
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i.e. p=d is the (essential infimum) ess-inf ¢(¢) in [0,1]. We can now conclude
several facts. First p = d is finite if and only if ¢ is essentially bounded below. Also,
since complementary slackness holds, i.e. since (y* — ¢(1))x*(t) =0, y* = ess-inf ¢(t)
must hold if p is attained. We see that p is attained if and only if the measure

pwit:c()=y*}=a>0
and in this case

x*(1) = {1/0( if C(t)fy*,

0 otherwise.
Example4.3. Let X = L,[0,1],1<p=<o0,and S={x€ X: x> 0a.e.} be the nonnega-
tive orthant in X. Consider the mixed equality-inequality constrained program.

p=inf{c'x: Ajx=b,, A,x=b,, x=,0}, (PEI)

where A;: X > R™, and m; is a positive integer i=1,2. Then, the ‘Slater type’
condition

e X st. Aix=b;, A,£>b,,£>0 ae. (4.5)

is a constraint qualification for (PEI). This can be seen by adding slack variables
to the second constraint, thus changing (PEI) to a program of type (P), and then
applying Theorem 3.1. Note that if E is a measurable subset of [0, 1] with positive
measure, then the Lebesgue integral

L |x(6)|* dpu(2) >0,

for 1< g =<o00. This implies that P~ < {0}, i.e. (CQ) holds.

The Slater constraint qualification, which requires X cint S, is more restrictive
than (4.5) even in L, where int S is nonempty. Also, it can be shown that (CQ) is
in fact equivalent to (4.5). These facts remain true when the interval [0, 1] is replaced
by a o-finite measure space.

5. Duality without the constraint qualification

We now extend our results to include the case when our constraint qualification
(CQ) may fail, i.e. when P~ & {0}. The structure of our problem allows for the finite
dimensional type of approach used in [3]. This approach uses the faces of the cone
S. We also complete Example 4.1.

Definition 5.1. (a) K is a face of a convex cone S if K is a convex cone, and

51, $,€ 8, s;+s,€ K implies s, s,€ K. (5.1)
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(b) S7 denotes the (unique) smallest face of S which contains the feasible set F.
(Note that S is just the intersection of all the faces of S which contain F.)
Now consider the ‘enlarged’ dual program

(D) d=sup{by: A'y'<g~c', y € Y*}, (5.2)

i.e. we replace S* with the larger dual cone /™.
We shall see that using (D) rather than (D) enables us to allow 2~ & {0}. We

first present the following preliminary result connecting ?~ and §.
Proposition 5.1. The statement

§'=8§ (5.32)
implies

P St (5.3b)
If the relative interior (in S—8) ri S #0, then (b) implies (a).
Proof. Suppose (b) fails,i.e. 0% ¢ P~, ¢ £ S*. Then K ={¢}* n S is a proper face
of S. Thus

S'cKcS.

Conversely, suppose that ri S # ¢ and S/ is a proper face of S. Since S’ is a proper
face, we see that

S A1 S=9.
The Hahn-Theorem yields 0# ¢ € X* such that

¢s>0 forallseriS, ¢s<0 forall¢peS
Since S’ <= S, we conclude that

S'c{p} nScS, (5.4)
ie.peP,p2S". O

If S is finite dimensional, then the above Proposition states that (5.3)(a) and (b)
are equivalent. We now present the duality result without (CQ).

Theorem 5.1. Suppose that (CQ), i.e. statement (3.5)], is replaced by the following:

I' replace the dual program (D) with (15), the optimal value d with 3,
and ST with /.

Then Theorem 3.1 and Corollary 3.2 still hold.
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Proof. Since Fc S/, we see that the optimal value p, of the original program (P),
satisfies the new program

p=inf{f(x): Ax=b,xe S, xc U}, (P)

where the subspace U =S’ — S/ replaces the space X. We now see that ?~ < {0} as
a subset of U*. For if ¢ e P~ U*, then S’ <{¢}* which implies ¢ =0 since
U =58 -’ Therefore, we can apply our results to (P), where we consider f and
A to be f and A restricted to U. let us only consider Theorem 3.1. Corollary 3.2
follows similarly.

We get the dual program

d=sup{by: A'y'<g+¢, y'e Y*}. (D)

Here ¢’ is ¢ restricted to U and A’: Y* - U*. We know from Theorem 3.1, when
p=d, d is attained and complementary slackness holds. The proof is completed if
we show that A'y'< g+ & if and only if A'y'<g+c’, where we consider §'* both in
X* and in U* depending on the context. But this clearly holds since (A'y')|y
(restricted to U) equals (A|;)'y". (Notethat & — A'y'=s* € 8"« U*iffs(c'— A'y') =
0, for all se &, iff sc'—(As)y'=0, for all se &, iff s(c'—A'y")=0, for all se &
since A=A on &) O

Corollary 5.1. Suppose that 1ri S #( and that statement (CQ), i.e. (3.5)], is replaced
by the following:

I" P <S8
Then Theorem 3.1 and Corollary 3.2 still hold.

Proof. The result follows from the Theorem since Proposition 5.1 yields $'=S. [

Example 5.1. We now complete the derivation of the explicit solution of the best
interpolation problem begun in Example 4.1. Theorem 5.1 implies that the solution
x* satisfies

x*=Ay'+s* ste s, sTx*=0. (5.5)

Let T~ be the maximal set, by set inclusion, such that it has positive measure and
x€ F implies x=0 a.e. on T~. Then
§'={x=0:x=0a.. on T}, §™* ={x:x=0a.. on[0,1]/T"}.

Since x*=0 on T~, and since, as in Example 4.1, x*=(A'y'), on [0,1]/T", we
see that

x*(1) = (AY)()xr (1) (5.6)

where yr is the characteristic function of T=[0,1]\T", i.e. (5.6) and Ax*=b
characterizes the solution x*. This corresponds to the solution given in [8].
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