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Abstract

We present a relaxation for the set partitioning problem that combines the standard linear
programming relaxation with a semidefinite programming relaxation. We include numerical
results that illustrate the strength and efficiency of this relaxation.
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1 INTRODUCTION

We present a relaxation for the set partitioning problem (denoted SP) that combines the standard
linear programming relaxation with a semidefinite programming (denoted SDP) relaxation. We
include numerical results that illustrate the strength and efficiency of this relaxation.

1.1 Background

The set partitioning problem, SP, can be described as follows.

Suppose we are given a set M with m elements; and let
M={M;:je N:={1,2,...,n}}

be a given collection of subsets of M such that the union contains M, i.e. UjenM; =
M. For each M;, there is an associated cost ¢; > 0. We want to find a subset F of
the index set N such that:

1. the union still contains M, U;erM; = M,
2. the sets are pairwise disjoint, M, " M; = ¢, fork #j € F;

3. and the sum of the costs ) ;. c; is minimized.

Let A = (a;;) be the m X n matrix with

G — 1 if element ¢ € M;
7] 0 otherwise.

This matrix A is called the incidence matriz of the collection M; each column of A is the
indicator vector for the set M. Each subset F' C N, for which the collection of sets {M;,j € F'}
satisfies conditions 1 and 2, is called a set partition of the set M. For a given set partition, we

let z € {0,1}" be defined by

)1 if jeF
771 0 otherwise.
Such an z represents the set partition.
The set partitioning problem can now be formulated as the following 0-1 integer programming

problem

woi= min ctz
(SP) subject to Az =¢e
z € {0,1}",

where e is the vector of ones. Without loss generality, we assume that the feasible set of (SP) is
nonempty and that A has full row rank. For each ¢ € {1,2,...,m}, we let

a; = (a1, aiz, . . ., Qi)

The i-th constraint, a;z = 1, guarantees that the i-th element is in exactly one set.



The set partitioning problem has been extensively investigated because of its special structure
and its numerous practical applications. The best known application is airline crew scheduling,
see e.g. the recent reference [14]. Other applications include: truck scheduling; bus scheduling;
facility location; circuit design and capital investment. (For applications and algorithms see e.g
Garfinkel and Nemhauser [11], Marsten [16], Balas and Padberg [4], Balas [3], Nemhauser and
Weber [17], Fisher and Kedia [10] Chan and Yano [6] and Hoffman and Padberg [15].)

Since the set partitioning problem is well-known to be NP-hard, many current approaches fo-
cus on finding a “near optimal” solution using various heuristic techniques. A natural candidate
for generating a lower bound is the linear programming relaxation.

Kip = min ctz
(SPLP) subject to Az =¢e
z > 0.

To improve the approximate solution for (SP), one can use cutting planes and/or branch-and-
bound techniques in conjunction with various bound improvement techniques. In addition,
various heuristics have been tried. (See Chu and Beasley [8] for a literature survey on exact
and heuristic algorithms for (SP).) We include the following related papers in the bibliography
[1, 2, 5,12, 13, 18]

The latex bib file can be obtained over WWW or with anonymous ftp using URL: ftp://orion.uwaterloo.ca/pub/

In this paper, we develop an SDP relaxation for the set partitioning problem. Our approach
is similar to that in [21, 22, 20]; i.e.: we derive a semidefinite relaxation from the dual of the
dual of a quadratic constrained quadratic program formulation of (SP); we employ a “gangster
operator” to efficiently model the 0-1 constraints in the relaxation; we project the feasible set
onto the minimal face of the semidefinite cone in order to guarantee a constraint qualification;
and we apply a primal-dual interior-point (p-d i-p) algorithm with an incomplete conjugate
gradient method to solve the SDP relaxation. In addition, we combine the SDP relaxation with
the standard LP relaxation and take advantage of block structures in the data.

2 SDP RELAXATION

To derive an SDP relaxation for SP, we reformulate the 0-1 integer programming model as a
quadratically constrained quadratic programming problem. Since the variables #; are restricted
to 0-1, we have z; = z?

7, 1.e.

r=zoz,
where o denotes the Hadamard, or elementwise, product. In addition, since a;z = 1, for each
i€ {1,...,m}, we have

{k#7, ain=1, ajj =1} = z3z; = 0. (2.1)
Therefore (SP) is equivalent to the following.
wr= min c(zoz)
subject to A(zoz)=e
(SPQP) (a;2 —1)2 =0, for i€ {1,2,...,m}
(zoz)—2z=0

zpe; =0, if k # 7, and a;; = a;; = 1, for some <.



By adding a scalar z, we can eliminate the linear terms (homogenize) in the existing constraints
of the above problem.

p*=min cH(zoz)
subject to A(zoz)=e
(-1, a;) (20, 2")* (20, 2")(—1,0;)* =0, for i€ {1,2,...,m}
(zoz) —zoz =0
zrz; =0, if k # 7, and a;;, = a;; = 1, for some ¢
z2=1.

(SPQPH)

We now replace the quadratic terms with a matrix, i.e.we replace the rank one matrix (z, z*)!(zo, z*)
by the positive semidefinite matrix ¥ > 0 with Y € §,,41, the space of n +1 x n 4+ 1 symmetric
matrices. We get the following SDP relaxation.

f#spp ‘= min traceCY

subject to  trace (Diag([0,a;)Y) =1, i=1,...,m
(-1,¢,)Y(-1,a;)t =0, i=1,...,m
(PSDP) arrow (Y) = eg
Gs;(Y)=0
Y z 0’

where C = Diag ([0, ¢!]) is the diagonal matrix formed from the vector [0, ¢!], and the operator
G is a gangster operator, i.e. Gy : Spy1 — Spy1 shoots “holes” (or zeros) in a matrix. The 45
component is defined as

Yij if (4,7) or (5,9) €J

(G7(Y))is ::{ 0  otherwise. (2:2)

where the set
J = {(ka]) (if k 75] and a;, = a;; — 1 for some i};

the gangster operator is self-adjoint, G; = G;. The arrow operator, acting on the (n+1) X (n+1)
matrix Y, is defined as

arrow (Y) := diag (Y) — (0, (Yo,1.2)", (2.3)

where Y}, 1., is the vector formed from the last n? components of the first, or 0, row of Y and
diag denotes the vector formed from the diagonal elements; ey is the first unit vector. The
arrow constraint represents the 0,1 constraints by guaranteeing that the diagonal and 0-th row
(or column) are identical; the gangster operator constraint represents the constraints in (2.1);
and, finally, the assignment constraints Az = e are represented by the first two sets of constraints
in (PSDP).

Define the m X (n + 1) assignment constraint matriz
T :=[—e, Al
Each feasible Y satisfies Y > 0 and
(-1,a)Y(~1,a)t =0, i=1,...,m.



Therefore the range space and null space satisfy
R(T") C N(Y) or alternatively R(Y) C N(T).

Now let the null space of T' be spanned by the columns of a (n+1) x (n —m+ 1) matrix V, i.e.
let
N(T) = R(V).

This implies that Y = VZV? for some Z = Z* > 0, i.e. we are able to express each feasible Y
as VZV*. In order to solve large scale problems, a sparse representation of the null space of T
is useful. We use a simple technique, called Wolfe’s variable-reduction technique [19]. (For a
“sparsest” representation, see e.g. [9].)

Without loss generality, we assume that

T = [TB,Tn],

where T is a m x m matrix with full rank and T is a m X (n — m + 1) matrix. Then, the

matrix
-1
vV — -Tg'Tn
In—m—l—l
satisfies N'(T) = R(V).
We now take a look at the following interesting properties of the matrix VZV?®.

Lemma 2.1 For any arbitrary (n — m+ 1) X (n — m + 1) symmetric matriz

Zoo ‘ Zoy cee ZO(n—m)
7 Z10 le Zl(n—m) ,
Z(n—m)O Z(n—m)l s Z(n—m)(n—m)
letY =VZV? and write Y as
Yoo ‘ Yo ... Yo,
Yio | Y1 ... Yi,
Y= | . .
Y | Y1 ... Yun
Then:
a)
aiylzn,O :YOOa fOT‘ 1= 1a"'am;

b)

Yo; = ;Y1 j, for i1=1,....m, j=1,...,n.



Proof. Since
TY =TVZVt=0,
we have, (—1,a;)Y =0, for each 1 < i < m.
O

This shows that the first two sets of constraints are redundant. Before we write our final
SDP relaxation, we present another lemma which helps get rid of more redundant constraints.

Lemma 2.2 LetY =V ZV? with Yoo = 1. Then
Gs7(Y)=0= arrow (Y) = eq.

Proof. Suppose Y = VZV*® and G;(Y) = 0. Let 5 € {1,2,...,n}. Then there exists
i € {1,2,...,m} such that a;; = 1. By Lemma 2.1, we have (a;1,...,0)Y1.n; = Yo;. This
implies that
Yij+ Y, Y=Y
k
k;éjvaik:l

From the definition of the gangster operator, we have

> Yii=0.
k

kZja;p=1

Therefore Y;; = Yp;.
a
Now replacing Y by VZV* in (PSDP) and getting rid of the redundant constraints, we have
the following final SDP relaxation for SP. We let J° = J U {(0,0)}.

Hspp = min trace VICVZ
(PSDPF) subject to G (VZV?) = Ey
Z =0,

where Z € S,,_ym41 and C = Diag (0, ¢*). The dual is

max Woo

(DSDPF) subject to  V*'G%,(W)V < VICV.

From Lemma 2.1 and Lemma 2.2, we can immediately derive the following.

Theorem 2.1 Let Z be any feasible solution of (PSDPF). Then (diag (VZV?))1., (the last n di-
agonal elements of the matriz VZV*), is a feasible solution of the linear programming relazation

(SPLP).
Proof. Let Z satisfy the hypothesis and Y = VZV*. Then G (Y) = Eyo and

Y;; >0, for i €{l,...,n}.



From Lemma 2.1 and Lemma 2.2, we have Y., = diag(Y) and Yy, = 1, and thus for each
ie{l,...,m},
CLi(Yll, . .,Ynn)t = aiYOtj = YOO =1.

a

Based on the theorem above and the fact that the objective value of the SDP relaxation is
(0, ct)diag (V ZV*), the following corollary follows.

Corollary 2.1 The lower bound given by the SDP relazation (PSDPF) is greater than or equal
to the one given by the LP relazation, i.e. pspp > Uip-

In addition, we now see that there is no duality gap between (PSDPF) and (DSDPF).
Theorem 2.2 Problem (DSDPF) is strictly feasible.
Proof. From Lemma 2.2, we have
Go(VZVY) =0 = arrow (VZV*) =0.
Therefore
N (G (V -V?)) C N(atrow (V - V).
In other words, their adjoint operators satisfy
R(V*Arrow (1)V) C R(V*G o ()V).
Therfore for y = —e € R™T1, there exists W such that
ViArrow (—e,)V = VG0 (W)V
and, by using Schur complements, we see that
ViG o (—aEy + W)V = Vi(—aEy — Arrow (e,))V < 0,

for a big enough. Therefore f(—aFEq + W) is strictly feasible for large enough 3.
O

From Theorem 2.2, we know that the dual problem satisfies the Slater condition. Therefore,
there is no duality gap between the primal problem (PSDPF) and the dual problem (DSDPF)
and, moreover, the primal optimal value is attained. However, the primal problem may not be
strictly feasible.

Example 2.1 Consider SP with constraints

1 =1
zy +zy +zz Fra=1
L1, T2, T3, Lq 2 0.

Observe that the feasible set is a singleton (1,0,0,0)". Note that for this problem n = 4 and
m =2, soV is a b X 3 matriz. Thus, for any feasible solution of its final SDP relazation
Z € Ps, the diagonal of VZV* is (1,1,0,0,0)'. This means that rank (VZV?) < 2, which
implies that rank (Z) < 2. Therefore, the final SDP relazation is not strictly feasible.



‘ ‘nrow ncol nzero LP SDP‘

small01 14 34 108 1864  1864*
small02 16 46 139 2259  2259*
small03 27 97 234 17327 18324
small04 33 192 584 4503  4503*
small05 44 277 770 21706 21706*

tiny04 6 27 72 1035 1091
tiny01 3 6 9 17.5 25.00
tiny05 7 35 70 1215 1257

Table 1: Numerical Results

3 NUMERICAL TESTS

The algorithm (a p-d i-p approach) we use to solve the SDP relaxation is very similar to the one
in [21, 22, 20] for the quadratic assignment and graph partitioning problems. An incomplete
conjugate gradient method is used to solve the large Newton equations that arise at each iteration
of the algorithm.

As we have seen from the geometrical discussion above, the algorithm may have to deal
with those problems whose primal SDP relaxation are not strictly feasible and whose dual SDP
relaxation can not attain their optimal value. Since the main purpose of our algorithm is to
find good lower bounds, we apply an infeasible primal-dual interior-point algorithm. Because
the dual problem is strictly feasible and only has inequality constraints, the linesearch can
easily maintain dual feasibility. Therefore, a lower bound can always be obtained from the dual
objective value.

The purpose of our numerical tests is to illustrate that the lower bound given by our algorithm
for the SDP relaxation is better than the one given by LP relaxation. In addition, after solving
the relaxation, the diagonal of the matrix Y from the SDP relaxation satisfies the constraints
of the linear programming relaxation.

Our numerical tests for small problems are based on real data for bus scheduling ??777ref!11777
problems. The results are summarized in Table 1. The columns under nrow, ncol and nzero are
for the number of rows, columns and nonzero elements, respectively. The last two columns show
the lower bounds by LP and SDP relaxations, respectively. A lower bounds marked with a star
means that the lower bound is equal to the optimal objective value.

4 SDP RELAXATION FOR LARGE SPARSE PROBLEMS

4.1 An SDP Relaxation with Block Structure

As we see from the introduction, the set partitioning problems are usually derived from real world
problems such as scheduling problems. These problems can be of very large size (> 10,000) and
very sparse.



Currently, an approximate solution for a large size set partitioning problem can be obtained
by solving a corresponding large sparse linear programming relaxation and the information from
the primal and dual optimal solutions are used to decide which columns, or sets M, should be
chosen for the partition. Since the diagonal of an SDP solution is a feasible solution of the LP
relaxation, we expect that this solution can help in making the choices. On the other hand, it
is hard to solve SDP problem of large size, e.g. over 10,000. In order to make SDP relaxation
more competitive with LP to solve the large sparse problem, we have to find a way to exploit
the sparsity of the set partitioning problem. In this section, we relax part of the variables of the
set partitioning by SDP, while we treat the others with an LP relaxation.

Consider a large sparse set partitioning problem

* : t

p= min c'e
(SPL) subject to Az =¢e
z € {0,1}"

By permuting the rows and columns of A, we can rewrite A as

Fr 0 ... 01O
0 F, ... 010
0 0 ... F,| O
Gi Gy ... G, | H
where for each i € {1,...,k}, F; is m; X n;, G; is mg X n;, H is mg X ng, and

mi+...+mp+mg=m; n1+...+n+ng =n.

The sparsity pattern of the matrix A is illustrated in Figure 2.
Corresponding to each submatrix F;, i € {1,..., k}, we define

[ t

_ 1 t _ 1 ni

zp, = (¢p;,-.-,¢5,) and 2y = (zy,...,z5")
such that .
= ( B, ... 2B, TN ) .

Similarly, we define

cs; = (cB,, - - .,c%ii)t, and ey = (e, - - ., )’

such that
c= ( B, - - -CB,CN )

For each i € {1,...,k}, we write

1 11 In;
E: : pu— : .. S
en m; 1 MmNy



Figure 1: Sparsity Pattern of Matrix A

Figure 2: Sparsity Pattern



Similarly, for each 7 € {1,..., k}, we write

G} Gl ... G
Gi=| © |= Do )
G} N
H? HY ... Hwn
H= : = : : :
H™G H™el . H™enH

and define an index sets for gangster operators

— . f . _F’ijp:_l;’ijq:]_or
Ji:=14(p,q): p < ¢ for some j Gt it — 1 )

We rewrite (SPLP) as

pr= min Siy e zp; + ey
subject to  Fyzp, = en,;, i€ {1,...,k}
GlazBl +... —I—Gka}Bk + Hey = €me

TBys:-y LB, TN € {0,1}”.

An equivalent quadratically constrained quadratic programming formulation can then be ex-
pressed as follows

*

pr= min SF ek ep ozp, + cyzn oy
subject to Fizp, ozp, = e,
(Flzp, —1)2=0, for je{1,2,...,m},
zp,oxp, —zp;, =0,
ep.2p =0, for any pair (p,q) € J;
for 1€ {1,...,k}
Gizp,ozp, + ...+ Grep, ozp, + Heyoan = e.
By adding, for each 7 € {1,...,k}, a scalar J:OBZ,, we homogenize the above problem as follows
p= min P cp,ep; oxp; + cyry oy
subject to Fizp, ozp, = e,
(-1, Fz])(mOB,’ mtB,)t(mOB,’ thi)(_la Fij)t =0,
for 7 €{1,2,...,m;},
zp,orp; — a:OBia:Bl. =0,
(:BOB,)2 = 1’
ep.2%. =0, for any pair (p,q) € J;
for 1€ {1,...,k}
Gizp,ozp, + ...+ Grep, ozp, + Heyoan = e.

11



In the above quadratically constrained quadratic programming, we replace the rank-one matrix
(J)OBi, J:tBi)t(a:B ,J:B ) by the matrix ¥; for each i € {1,...,k}, and also Xy X% by Yy. Then we
obtain an SDP relaxation as follows

HLR = min Yic1 ¢, (diag (Y;))1m, + ciydiag (Yn)
subject to  Fi(diag (Y))lml = emy;

(-1, FJ)Y( L,F) =0, for je{1,2,...,m},
arrow (Y;) = 0,
(Y;)OO — 1a
gJ,(}/;) =0,
for i€ {1,... k}
Shy Gilding (Y91, + Holing (Yar) = e
Y, = 0,....Y, = 0,Yy = 0,

where Y; € P41 fori € {1,...,k} and Yy € P,,,,. Since the coefficient matrices for Yy are all
diagonal, we can always write Yy = Diag(z), where # € R™ 2 > 0. For each ¢ € {1,...,k},
we define an operator A; : Py, 41 — R"™¢ such that

Ai(Y:) := Gi(diag (Yi))1:n,-

Then we have the following equivalent problem.

PLR = min Sy c, (diag (Y3)) 1, + ciyz
subject to (dlag( i1 = €m;,
(- 1,Fi])Yz( L,F) =0, for je{1,2,...,m},
arrow (Y;) = 0,

(Y;)OO - 1a
gJ,(}/;) =0,
for i€ {1,... k}

Zz 1"41( )—|—HJ)—€
Ys, = 0,...,Yp, = 0,z > 0.

For each ¢ € {1,..., k}, we construct a (n; + 1) X (n; — m; + 1) matrix V; such that the null
space of [—e,,;, F;] is spanned by the columns of V;. We follow the same procedure as that in
the above section, i.e., for i € {1,..., k}, we replace Y; by V;X; V! and get rid of the redundant
constraints. We denote C; := Diag (0, ci3,). Note that ¢} (diag (Y;))1:n, = trace (Diag (0, cj)Ys).
Then we have the following final SDP relaxation.

Hip = min Zle trace VitCiViXi + cfva:
subject to Zle A (ViX; V) + He = ey,
G(X;)=E},, for i€ {l,... k}
X;>0,..., Xg =0, >0,

(LPSDPF)

where, for 7 € {1,...,k}, X; € Ppn,_m,+1 and the operator ng is a gangster operator with

F FJQ_lor
0._ . :
J; = {(p,q).p<qfor some j G]p qu_l }U(0,0).

12



Observe that in the final SDP relaxation (LSPRP) there are semidefinite matrix variables and
nonnegative vector variables as well. Thus, we call the final SDP relaxation a mized LP-SDP
relaxation.

Its dual is
max TG A+ i (Yioo
subject to  V}(Diag (0, N'G;) + Y;)V; < VIC,V,,
(LSPRD) Yi € Sp,
for 1€ {1,...,k}
Hi) < c,

where for 7 € {1,...,k}, Y; and A; are dual variables.
For each feasible solution of (LSPRP) (Xy,..., X, z), we construct a n x 1 vector

I

y=| |, (4.5)

where y; = (diag (V;X;)V#)1m,;, for ¢ = 1,..., k. Applying the Theorem 2.1 to each block, we
have Fiy; = e, for i =1,..., k. Also note that Zle G;y; + Hz = ey, . Therefore, we have the
following results.

Theorem 4.1 Let (X1,..., Xk, 2) be any feasible solution of (LSPRP). Then the vector
(diag (ViX1)V])1im,

(diag (VaXr) V)1,

x
is a feasible solution of the linear programming relazation (SPLP).

Based on the above theorem and the fact that C;, for i = 1,..., k, are all diagonal matrices,
the following corollary is straightforward.

Corollary 4.1 The lower bound given by the SDP relazation (LSPRP) is great that or equal
to the one given by the LP relazation (SPLP), i.e., usp > 1ip-

4.2 An Infeasible Primal-Dual Interior-Point Method

We rewrite the dual (LSPRD) by introducing a slack matrix Z; for each ¢ € {1,...,k} and a
slack vector z.
max 275 A+ X (Yoo
subject to  V}(Diag (0, N'G;) + Y;)V; + Z; = VIC,V;,
Y; € Sle,
for t€{1,...,k}
H Il +z=c¢c
215 0,...,2, > 0,2 >0.

(LSPRD)

13



The Karush-Kuhn-Tucker conditions of the dual log-barrier problem are

Y AViXiVi) + He e, = FB = 0
gJ? (ViX:VY) - Eéo = Flijl = 0
for t€{1,...,k}

H) +z—¢ = F} =0

Vi(Diag (0, N'G:) +Yi - Ci)Vi+ Z; = Fp = 0,
for t€{1,...,k}

zox — pu = Foy =0

Z:X; — pl = Fiy = 0,

for 1€ {1,...,k}.

The first two equations are primal feasibility conditions, while the third and fourth are the dual
feasibility conditions and the last two takes cares of complimentary slackness for X; and Z; and
z and z, respectively. We solve this system of equations with a variant of Newton’s method. We
apply operators A; and G Jo to nonsymmetric matrices and then we linearize the above system

as follows.
SE A(VOX,VY) + Hoe = —F}
Gy (Vid X;V) = —Fp,
for 1€ {1,...,k}
HiS)\ + 6z = —-FY
V}(Diag (0,8)\'G;) + 6Y;))Vi+82; = —Fj (4.6)
for 1€ {1,...,k}
dzozx+ zodz = —FgX
82:;X; + Zi6X; = —Fiy
for 1€ {1,...,k}.
From the third and fourth equations, we have, for ¢ € {1,..., k},
§7Z; = —Fp — V}(Diag (0, 6X'G;) + 6Y3)) Vi (4.7)
and
8z = —F) — H'. (4.8)
Substituting (4.7) and (4.8) into the last two equations, respectively, we have
6X; = —Z7'Fyx + Z7VFL X + 271V (Diag (0, 6M'G;) + 6Y;)) Vi X; (4.9)
and
de=—-2toFyy+zoFjoz+ztoH Ao, (4.10)
Substituting (4.9) and (4.10) into the first two equations, we have the following final normal
equation.
i1 Ai(ViZ; 'V} (Diag (0, 6X'G;) + 6Y;) Vi X, V)
+Hz 1o Ht§ oz = —F2+b A1l
G0 (ViZi 'V} (Diag (0,6MGy) + SY)ViXiVE) = —Fiy +b; (4.11)

for :€{1,...,k},

14



‘ ‘nrow ncol nzero LP SDP LP—SDP‘

small03 27 97 234 17327 18324 18320
tiny04 6 27 72 1037 1091 1066
tiny01 3 6 9 17.5 25 25
tiny05 7 35 70 1215 1257 1248
Table 2: Numerical Results
where
bo =iy Ai(Vi(Z Flx — Z7 Fh X)) Vi) + H(z Yo Fgy — 27t o Fh o z),

by = gJO(Vi(Zi_lF%X - Zi_lFll)Xi)Vit)a
for 1€ {1,...,k}.

Denote the matrix representation of the left hand side of the normal equation by K. The matrix
K has a very nice sparsity structure similar to A in Figure 1, where the width of the long narrow
bar is mg which is much less than the size of the matrix.

We solve the normal equation by a preconditioned conjugate gradient method. Let (6Y7",...,8Y;,6X%)
be the solution for the normal equation. By equations (4.7), (4.8), (4.9) and (4.10), we can ob-
tain, for each ¢ € {1,...,k}, 627, 027,60 X and dz], respectively. Finally, by symmetrizing § X,
i.e.

’ SX7 + (0X7)"

2 ’
we obtain a search direction. We then do a linesearch and update the current point. Based on
the duality gap, we update p by using the following formula

0X] «

Sk | trace (Z;X;) + 2tz
2(n—m+mg+ k)

po=

4.3 Preliminary Numerical Tests and Future Work

In the previous subsections, we have developed an approach for solving problems with matrix
structure (4.4). We did some preliminary numerical tests just to see how this SDP relaxation
works for small problems. In our testing, we use the diagonal of the matrix representation X as
the preconditioner. The infeasible primal-dual interior-point algorithm for the mixed LP-SDP
relaxation is coded in C and Matlab. The results are summarized in Table 2. In Table 2, the
columns under nrow, ncol and nzero are for the number of rows, columns and nonzero elements,
respectively. The columns under LP and SDP show the lower bounds given by LP relaxation and
SDP relaxation for a general dense problem, respectively, while the last column under LP-SDP
shows the lower bounds given by our mixed LP-SDP relaxation.

It remains to try and use the mixed LP-SDP relaxation to derive an approach to solve general
large sparse set partitioning problems. To achieve this, we propose the following:
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e to have the same matrix sparsity pattern as described for the mixed LP-SDP relaxation,
the matrix for the general problem need to be transformed into form like (4.4). This can
be done by treating the 0-1 matrix A as an incidence matrix of a graph or netlist and
applying graph partitioning and netlist partitioning techniques;

e because of the nice sparsity structure as shown in Figure 5.1, more sophisticated incom-
plete factorization preconditioners can be used to improve the performance of primal-dual
interior-point solvers, see e.g. [7].

A APPENDIX-Notation

SP set partitioning problem

SDP semidefinite programming problem

M) given collection of subsets of M

A = (aij) incidence matrix of the collection M

e the vector of ones

er the k-th unit vector

a; the i-th row of incidence matrix A

SPLP the linear programming relaxation for SP

p-d i-p primal-dual interior-point (algorithm)

Bo(C the Hadamard product of B and C

Q<R R — Q is positive semidefinite

Sn the space of symmetric n X n matrices

PSDP the semidefinite relaxation primal problem

Diag the diagonal matrix formed from the vector

P, or P the cone of positive semidefinite matrices in S,

T [—e, A], the assignment constraint matrix

Slater CQ the Slater constraint qualification; strict feasiblity
p-d i-p primal-dual interior-point method

G=V,¢) graph with node set V and edge set £

cut edge an edge connecting nodes in different subsets of a partition
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X = (=) partition matrix

W(Eeut) total weight of cut edges of the partition

w*(Eeut) minimal total weight of cut edges over all partitions
L Laplace matrix of the graph

Yx partition matrix lifted into higher dimensional matrix space
m (my,...,mg)t

AQ B the Kronecker product of A and B

vec (X) the vector formed from the columns of the matrix A
Y0,1:m2 the n? vector from the first row of Y’

diag the vector formed from the diagonal elements

arrow the arrow operator diag (Y) — (0, (Yy 1.,2)"

Gy the gangster operator Gy shoots “holes” in a matrix
R(B) range space of B

N(B) null space of B

JO JO =Ju{(0,0)}

K«aC K is a face of C

relint relative interior

diag (A) the vector formed from the diagonal of the matrix A
Diag (v) the diagonal matrix formed from the vector v

E, the matrix of ones in &,

E; the ¢j unit matrix in S,,
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