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1 INTRODUCTIONWe present a relaxation for the set partitioning problem (denoted SP) that combines the standardlinear programming relaxation with a semide�nite programming (denoted SDP) relaxation. Weinclude numerical results that illustrate the strength and e�ciency of this relaxation.1.1 BackgroundThe set partitioning problem, SP, can be described as follows.Suppose we are given a set M with m elements; and letM = fMj : j 2 N := f1; 2; : : : ; nggbe a given collection of subsets ofM such that the union containsM , i.e. [j2NMj =M . For each Mj , there is an associated cost cj � 0. We want to �nd a subset F ofthe index set N such that:1. the union still contains M , [j2FMj =M ;2. the sets are pairwise disjoint,Mk \Mj = �; for k 6= j 2 F ;3. and the sum of the costs Pi2F cj is minimized.Let A = (aij) be the m� n matrix withaij = ( 1 if element i 2Mj0 otherwise:This matrix A is called the incidence matrix of the collection M; each column of A is theindicator vector for the setMj : Each subset F � N; for which the collection of sets fMj ; j 2 Fgsatis�es conditions 1 and 2, is called a set partition of the set M . For a given set partition, welet x 2 f0; 1gn be de�ned by xj = ( 1 if j 2 F0 otherwise:Such an x represents the set partition.The set partitioning problem can now be formulated as the following 0-1 integer programmingproblem (SP ) �� := min ctxsubject to Ax = ex 2 f0; 1gn;where e is the vector of ones. Without loss generality, we assume that the feasible set of (SP) isnonempty and that A has full row rank. For each i 2 f1; 2; : : : ; mg, we letai := (ai1; ai2; : : : ; ain):The i-th constraint, aix = 1; guarantees that the i-th element is in exactly one set.2



The set partitioning problem has been extensively investigated because of its special structureand its numerous practical applications. The best known application is airline crew scheduling,see e.g. the recent reference [14]. Other applications include: truck scheduling; bus scheduling;facility location; circuit design and capital investment. (For applications and algorithms see e.gGar�nkel and Nemhauser [11], Marsten [16], Balas and Padberg [4], Balas [3], Nemhauser andWeber [17], Fisher and Kedia [10] Chan and Yano [6] and Ho�man and Padberg [15].)Since the set partitioning problem is well-known to be NP-hard, many current approaches fo-cus on �nding a \near optimal" solution using various heuristic techniques. A natural candidatefor generating a lower bound is the linear programming relaxation.(SPLP ) ��LP := min ctxsubject to Ax = ex � 0:To improve the approximate solution for (SP), one can use cutting planes and/or branch-and-bound techniques in conjunction with various bound improvement techniques. In addition,various heuristics have been tried. (See Chu and Beasley [8] for a literature survey on exactand heuristic algorithms for (SP).) We include the following related papers in the bibliography[1, 2, 5, 12, 13, 18]The latex bib �le can be obtained overWWWor with anonymous ftp using URL: ftp://orion.uwaterloo.ca/pub/henry/reports/setpart.bib.gz.In this paper, we develop an SDP relaxation for the set partitioning problem. Our approachis similar to that in [21, 22, 20]; i.e.: we derive a semide�nite relaxation from the dual of thedual of a quadratic constrained quadratic program formulation of (SP); we employ a \gangsteroperator" to e�ciently model the 0-1 constraints in the relaxation; we project the feasible setonto the minimal face of the semide�nite cone in order to guarantee a constraint quali�cation;and we apply a primal-dual interior-point (p-d i-p) algorithm with an incomplete conjugategradient method to solve the SDP relaxation. In addition, we combine the SDP relaxation withthe standard LP relaxation and take advantage of block structures in the data.2 SDP RELAXATIONTo derive an SDP relaxation for SP, we reformulate the 0-1 integer programming model as aquadratically constrained quadratic programming problem. Since the variables xi are restrictedto 0-1, we have xi = x2i , i.e. x = x � x;where � denotes the Hadamard, or elementwise, product. In addition, since aix = 1; for eachi 2 f1; : : : ; mg, we have fk 6= j; aik = 1; aij = 1g ) xkxj = 0: (2.1)Therefore (SP) is equivalent to the following.(SPQP ) �� = min ct(x � x)subject to A(x � x) = e(aix� 1)2 = 0; for i 2 f1; 2; : : : ; mg(x � x)� x = 0xkxj = 0; if k 6= j; and aik = aij = 1; for some i:3



By adding a scalar x0, we can eliminate the linear terms (homogenize) in the existing constraintsof the above problem.(SPQPH) �� = min ct(x � x)subject to A(x � x) = e(�1; ai)(x0; xt)t(x0; xt)(�1; ai)t = 0; for i 2 f1; 2; : : : ; mg(x � x)� x0x = 0xkxj = 0; if k 6= j; and aik = aij = 1; for some ix20 = 1:We now replace the quadratic termswith amatrix, i.e.we replace the rank one matrix (x0; xt)t(x0; xt)by the positive semide�nite matrix Y � 0 with Y 2 Sn+1, the space of n+ 1� n+ 1 symmetricmatrices. We get the following SDP relaxation.(PSDP ) ��SDP := min traceCYsubject to trace (Diag([0; ai])Y ) = 1; i = 1; : : : ; m(�1; ai)Y (�1; ai)t = 0; i = 1; : : : ; marrow (Y ) = e0GJ (Y ) = 0Y00 = 1Y � 0;where C = Diag (�0; ct�) is the diagonal matrix formed from the vector �0; ct�, and the operatorGJ is a gangster operator, i.e. GJ : Sn+1 ! Sn+1 shoots \holes" (or zeros) in a matrix. The ijcomponent is de�ned as (GJ(Y ))ij := ( Yij if (i; j) or (j; i) 2 J0 otherwise. (2.2)where the set J := f(k; j) : if k 6= j and aik = aij = 1 for some ig;the gangster operator is self-adjoint, GJ = G�J . The arrow operator, acting on the (n+1)�(n+1)matrix Y; is de�ned as arrow (Y ) := diag (Y )� (0; (Y0;1:n2)t; (2.3)where Y0;1:n2 is the vector formed from the last n2 components of the �rst, or 0, row of Y anddiag denotes the vector formed from the diagonal elements; e0 is the �rst unit vector. Thearrow constraint represents the 0,1 constraints by guaranteeing that the diagonal and 0-th row(or column) are identical; the gangster operator constraint represents the constraints in (2.1);and, �nally, the assignment constraintsAx = e are represented by the �rst two sets of constraintsin (PSDP).De�ne the m� (n+ 1) assignment constraint matrixT := [�e; A]:Each feasible Y satis�es Y � 0 and(�1; ai)Y (�1; ai)t = 0; i = 1; : : : ; m:4



Therefore the range space and null space satisfyR(T t) � N (Y ) or alternatively R(Y ) � N (T ):Now let the null space of T be spanned by the columns of a (n+1)� (n�m+ 1) matrix V , i.e.let N (T ) = R(V ):This implies that Y = V ZV t for some Z = Zt � 0; i.e. we are able to express each feasible Yas V ZV t. In order to solve large scale problems, a sparse representation of the null space of Tis useful. We use a simple technique, called Wolfe's variable-reduction technique [19]. (For a\sparsest" representation, see e.g. [9].)Without loss generality, we assume thatT = [TB; TN ];where TB is a m � m matrix with full rank and TN is a m � (n �m + 1) matrix. Then, thematrix V = " �T�1B TNIn�m+1 #satis�es N (T ) = R(V ):We now take a look at the following interesting properties of the matrix V ZV t.Lemma 2.1 For any arbitrary (n�m+ 1)� (n�m+ 1) symmetric matrixZ = 266664 Z00 Z01 : : : Z0(n�m)Z10 Z11 : : : Z1(n�m)... ... . . . ...Z(n�m)0 Z(n�m)1 : : : Z(n�m)(n�m) 377775 ;let Y = V ZV t and write Y as Y = 266664 Y00 Y01 : : : Y0nY10 Y11 : : : Y1n... ... . . . ...Yn0 Yn1 : : : Ynn 377775 :Then:a) aiY1:n;0 = Y00; for i = 1; : : : ; m;b) Y0j = aiY1:n;j ; for i = 1; : : : ; m; j = 1; : : : ; n:5



Proof. Since TY = TV ZV t = 0;we have, (�1; ai)Y = 0, for each 1 � i � m. 2This shows that the �rst two sets of constraints are redundant. Before we write our �nalSDP relaxation, we present another lemma which helps get rid of more redundant constraints.Lemma 2.2 Let Y = V ZV t with Y00 = 1: ThenGJ(Y ) = 0) arrow (Y ) = e0:Proof. Suppose Y = V ZV t and GJ(Y ) = 0: Let j 2 f1; 2; : : : ; ng. Then there existsi 2 f1; 2; : : : ; mg such that aij = 1: By Lemma 2.1, we have (ai1; : : : ; ain)Y1:n;j = Y0j : Thisimplies that Yjj + Xkk 6=j;aik=1 Ykj = Y0j :From the de�nition of the gangster operator, we haveXkk 6=j;aik=1 Ykj = 0:Therefore Yjj = Y0j : 2Now replacing Y by V ZV t in (PSDP) and getting rid of the redundant constraints, we havethe following �nal SDP relaxation for SP. We let J0 = J [ f(0; 0)g.(PSDPF ) ��SDP = min traceV tCVZsubject to GJ0(V ZV t) = E00Z � 0;where Z 2 Sn�m+1 and C = Diag (0; ct): The dual is(DSDPF ) max W00subject to V tG�J0(W )V � V tCV:From Lemma 2.1 and Lemma 2.2, we can immediately derive the following.Theorem 2.1 Let Z be any feasible solution of (PSDPF). Then (diag (V ZV t))1:n (the last n di-agonal elements of the matrix V ZV t), is a feasible solution of the linear programming relaxation(SPLP).Proof. Let Z satisfy the hypothesis and Y = V ZV t. Then GJ0(Y ) = E00 andYjj � 0; for i 2 f1; : : : ; ng:6



From Lemma 2.1 and Lemma 2.2, we have Y:;0 = diag (Y ) and Y00 = 1, and thus for eachi 2 f1; : : : ; mg, ai(Y11; : : : ; Ynn)t = aiY t0j = Y00 = 1: 2Based on the theorem above and the fact that the objective value of the SDP relaxation is(0; ct)diag (V ZV t), the following corollary follows.Corollary 2.1 The lower bound given by the SDP relaxation (PSDPF ) is greater than or equalto the one given by the LP relaxation, i.e. ��SDP � ��LP .In addition, we now see that there is no duality gap between (PSDPF) and (DSDPF).Theorem 2.2 Problem (DSDPF) is strictly feasible.Proof. From Lemma 2.2, we haveGJ0(V ZV t) = 0 ) arrow (V ZV t) = 0:Therefore N (GJ0(V � V t)) � N (arrow(V � V t)):In other words, their adjoint operators satisfyR(V tArrow (�)V ) � R(V tGJ0(�)V ):Therfore for y = �e 2 Rn+1, there exists W such thatV tArrow (�en)V = V tGJ0(W )Vand, by using Schur complements, we see thatV tGJ0(��E00 +W )V = V t(��E00 �Arrow (en))V � 0;for � big enough. Therefore �(��E00 +W ) is strictly feasible for large enough �:2From Theorem 2.2, we know that the dual problem satis�es the Slater condition. Therefore,there is no duality gap between the primal problem (PSDPF) and the dual problem (DSDPF)and, moreover, the primal optimal value is attained. However, the primal problem may not bestrictly feasible.Example 2.1 Consider SP with constraintsx1 = 1x1 +x2 +x3 +x4 = 1x1; x2; x3; x4 � 0:Observe that the feasible set is a singleton (1; 0; 0; 0)t. Note that for this problem n = 4 andm = 2, so V is a 5 � 3 matrix. Thus, for any feasible solution of its �nal SDP relaxationZ 2 P3, the diagonal of V ZV t is (1; 1; 0; 0; 0)t. This means that rank (V ZV t) � 2, whichimplies that rank (Z) � 2. Therefore, the �nal SDP relaxation is not strictly feasible.7



nrow ncol nzero LP SDPsmall01 14 34 108 1864 1864*small02 16 46 139 2259 2259*small03 27 97 234 17327 18324small04 33 192 584 4503 4503*small05 44 277 770 21706 21706*tiny04 6 27 72 1035 1091tiny01 3 6 9 17.5 25.00tiny05 7 35 70 1215 1257Table 1: Numerical Results3 NUMERICAL TESTSThe algorithm (a p-d i-p approach) we use to solve the SDP relaxation is very similar to the onein [21, 22, 20] for the quadratic assignment and graph partitioning problems. An incompleteconjugate gradient method is used to solve the large Newton equations that arise at each iterationof the algorithm.As we have seen from the geometrical discussion above, the algorithm may have to dealwith those problems whose primal SDP relaxation are not strictly feasible and whose dual SDPrelaxation can not attain their optimal value. Since the main purpose of our algorithm is to�nd good lower bounds, we apply an infeasible primal-dual interior-point algorithm. Becausethe dual problem is strictly feasible and only has inequality constraints, the linesearch caneasily maintain dual feasibility. Therefore, a lower bound can always be obtained from the dualobjective value.The purpose of our numerical tests is to illustrate that the lower bound given by our algorithmfor the SDP relaxation is better than the one given by LP relaxation. In addition, after solvingthe relaxation, the diagonal of the matrix Y from the SDP relaxation satis�es the constraintsof the linear programming relaxation.Our numerical tests for small problems are based on real data for bus scheduling ????ref!!!???problems. The results are summarized in Table 1. The columns under nrow, ncol and nzero arefor the number of rows, columns and nonzero elements, respectively. The last two columns showthe lower bounds by LP and SDP relaxations, respectively. A lower bounds marked with a starmeans that the lower bound is equal to the optimal objective value.4 SDP RELAXATION FOR LARGE SPARSE PROBLEMS4.1 An SDP Relaxation with Block StructureAs we see from the introduction, the set partitioning problems are usually derived from real worldproblems such as scheduling problems. These problems can be of very large size (> 10; 000) andvery sparse. 8



Currently, an approximate solution for a large size set partitioning problem can be obtainedby solving a corresponding large sparse linear programming relaxation and the information fromthe primal and dual optimal solutions are used to decide which columns, or sets Mj , should bechosen for the partition. Since the diagonal of an SDP solution is a feasible solution of the LPrelaxation, we expect that this solution can help in making the choices. On the other hand, itis hard to solve SDP problem of large size, e.g. over 10,000. In order to make SDP relaxationmore competitive with LP to solve the large sparse problem, we have to �nd a way to exploitthe sparsity of the set partitioning problem. In this section, we relax part of the variables of theset partitioning by SDP, while we treat the others with an LP relaxation.Consider a large sparse set partitioning problem(SPL) �� = min ctxsubject to Ax = ex 2 f0; 1gn:By permuting the rows and columns of A, we can rewrite A asA = 26666664 F1 0 : : : 0 00 F2 : : : 0 0... ... . . . ... ...0 0 : : : Fk 0G1 G2 : : : Gk H 37777775 ; (4.4)where for each i 2 f1; : : : ; kg, Fi is mi � ni, Gi is mG � ni; H is mG � nH ; andm1 + : : :+mk +mG = m; n1 + : : :+ nk + nH = n:The sparsity pattern of the matrix A is illustrated in Figure 2.Corresponding to each submatrix Fi, i 2 f1; : : : ; kg, we de�nexBi = (x1Bi ; : : : ; xniBi)t and xN = (x1N ; : : : ; xnHN )tsuch that x = � xB1 : : : xBkxN �t :Similarly, we de�ne cBi = (c1Bi; : : : ; cniBi)t; and cN = (c1N ; : : : ; cnHN )tsuch that c = � cB1 : : : cBkcN � :For each i 2 f1; : : : ; kg, we writeFi = 264 F 1i...Fmii 375 = 2664 F 11i : : : F 1nii... . . . ...Fmi1i : : : Fminii 3775 :9



Figure 1: Sparsity Pattern of Matrix A
Figure 2: Sparsity Pattern10



Similarly, for each i 2 f1; : : : ; kg, we writeGi = 264 G1i...GmGi 375 = 2664 G11i : : : G1nii... . . . ...GmG1i : : : GmGnii 3775 ;H = 264 H1...HmG 375 = 264 H11 : : : H1nH... . . . ...HmG1 : : : HmGnH 375 :and de�ne an index sets for gangster operatorsJi := ((p; q) : p < q for some j F jpi = F jqi = 1 orGjpi = Gjqi = 1 ) :We rewrite (SPLP ) as�� = min Pki=1 ctBixBi + ctNxNsubject to FixBi = emi ; i 2 f1; : : : ; kgG1xB1 + : : :+GkxBk +HxN = emGxB1 ; : : : ; xBk ; xN 2 f0; 1gn:An equivalent quadratically constrained quadratic programming formulation can then be ex-pressed as follows�� = min Pki=1 ctBixBi � xBi + ctNxN � xNsubject to FixBi � xBi = emi ;(F ji xBi � 1)2 = 0; for j 2 f1; 2; : : : ; mig;xBi � xBi � xBi = 0;xpBixqBi = 0; for any pair (p; q) 2 Ji;for i 2 f1; : : : ; kgG1xB1 � xB1 + : : :+GkxBk � xBk +HxN � xN = e:By adding, for each i 2 f1; : : : ; kg, a scalar x0Bi , we homogenize the above problem as follows�� = min Pki=1 ctBixBi � xBi + ctNxN � xNsubject to FixBi � xBi = emi ;(�1; F ji )(x0Bi ; xtBi)t(x0Bi ; xtBi)(�1; F ji )t = 0;for j 2 f1; 2; : : : ; mig;xBi � xBi � x0BixBi = 0;(x0Bi)2 = 1;xpBixqBi = 0; for any pair (p; q) 2 Ji;for i 2 f1; : : : ; kgG1xB1 � xB1 + : : :+GkxBk � xBk +HxN � xN = e:11



In the above quadratically constrained quadratic programming, we replace the rank-one matrix(x0Bi ; xtBi)t(x0Bi ; xtBi) by the matrix Yi for each i 2 f1; : : : ; kg, and also XNX tN by YN . Then weobtain an SDP relaxation as follows��LR := min Pki=1 ctBi(diag (Yi))1:ni + ctNdiag (YN )subject to Fi(diag (Yi))1:ni = emi ;(�1; F ji )Yi(�1; F ji )t = 0; for j 2 f1; 2; : : : ; mig;arrow (Yi) = 0;(Yi)00 = 1;GJi(Yi) = 0;for i 2 f1; : : : ; kgPki=1Gi(diag (Yi))1:ni +Hdiag (YN ) = e;Y1 � 0; : : : ; Yk � 0; YN � 0;where Yi 2 Pni+1 for i 2 f1; : : : ; kg and YN 2 PnH . Since the coe�cient matrices for YN are alldiagonal, we can always write YN = Diag (x), where x 2 RnH ; x � 0. For each i 2 f1; : : : ; kg,we de�ne an operator Ai : Pni+1 ! RmG such thatAi(Yi) := Gi(diag (Yi))1:ni :Then we have the following equivalent problem.��LR = min Pki=1 ctBi(diag (Yi))1:ni + ctNxsubject to Fi(diag (Yi))1:ni = emi ;(�1; F ji )Yi(�1; F ji )t = 0; for j 2 f1; 2; : : : ; mig;arrow (Yi) = 0;(Yi)00 = 1;GJi(Yi) = 0;for i 2 f1; : : : ; kgPki=1Ai(Yi) +Hx = e;YB1 � 0; : : : ; YBk � 0; x � 0:For each i 2 f1; : : : ; kg, we construct a (ni + 1)� (ni �mi + 1) matrix Vi such that the nullspace of [�emi ; Fi] is spanned by the columns of Vi. We follow the same procedure as that inthe above section, i.e., for i 2 f1; : : : ; kg, we replace Yi by ViXiV ti and get rid of the redundantconstraints. We denote Ci := Diag (0; ctBi). Note that ctBi(diag (Yi))1:ni = trace (Diag (0; ctB)Yi).Then we have the following �nal SDP relaxation.(LPSDPF ) ��LR = min Pki=1 traceV ti CiViXi + ctNxsubject to Pki=1Ai(ViXiV ti ) +Hx = emGGJ0i (Xi) = Ei00; for i 2 f1; : : : ; kgX1 � 0; : : : ; Xk � 0; x � 0;where, for i 2 f1; : : : ; kg, Xi 2 Pni�mi+1 and the operator GJ0i is a gangster operator withJ0i := ((p; q) : p < q for some j F jpi = F jqi = 1 orGjpi = Gjqi = 1 ) [ (0; 0):12



Observe that in the �nal SDP relaxation (LSPRP ) there are semide�nite matrix variables andnonnegative vector variables as well. Thus, we call the �nal SDP relaxation a mixed LP-SDPrelaxation.Its dual is (LSPRD) max PmGi=1 �i +Pki=1(Yi)00subject to V ti (Diag(0; �tGi) + Yi)Vi � V ti CiVi;Yi 2 SJ0i ;for i 2 f1; : : : ; kgH t� � c;where for i 2 f1; : : : ; kg, Yi and �i are dual variables.For each feasible solution of (LSPRP ) (X1; : : : ; Xk; x), we construct a n� 1 vectory = 0BBBB@ y1...ykx 1CCCCA ; (4.5)where yi = (diag (ViXi)V ti )1:ni , for i = 1; : : : ; k. Applying the Theorem 2.1 to each block, wehave Fiyi = emi for i = 1; : : : ; k. Also note that Pki=1Giyi+Hx = emG . Therefore, we have thefollowing results.Theorem 4.1 Let (X1; : : : ; Xk; x) be any feasible solution of (LSPRP ). Then the vector0BBBB@ (diag (V1X1)V t1 )1:n1...(diag (VkXk)V tk )1:nkx 1CCCCAis a feasible solution of the linear programming relaxation (SPLP ).Based on the above theorem and the fact that Ci, for i = 1; : : : ; k, are all diagonal matrices,the following corollary is straightforward.Corollary 4.1 The lower bound given by the SDP relaxation (LSPRP ) is great that or equalto the one given by the LP relaxation (SPLP ), i.e., ��LR � ��LP .4.2 An Infeasible Primal-Dual Interior-Point MethodWe rewrite the dual (LSPRD) by introducing a slack matrix Zi for each i 2 f1; : : : ; kg and aslack vector z.(LSPRD) max PmGi=1 �i +Pki=1(Yi)00subject to V ti (Diag (0; �tGi) + Yi)Vi + Zi = V ti CiVi;Yi 2 SJ0i ;for i 2 f1; : : : ; kgH t�+ z = cZ1 � 0; : : : ; Zk � 0; z � 0:13



The Karush-Kuhn-Tucker conditions of the dual log-barrier problem arePki=1Ai(ViXiV ti ) +Hx� emG = F 0P = 0GJ0i (ViXiV ti )� Ei00 = F iP1 = 0;for i 2 f1; : : : ; kgH t�+ z � c = F 0D = 0V ti (Diag (0; �tGi) + Yi � Ci)Vi + Zi = F iD = 0;for i 2 f1; : : : ; kgz � x� �u = F 0ZX = 0ZiXi � �I = F iZX = 0;for i 2 f1; : : : ; kg:The �rst two equations are primal feasibility conditions, while the third and fourth are the dualfeasibility conditions and the last two takes cares of complimentary slackness for Xi and Zi andx and z, respectively. We solve this system of equations with a variant of Newton's method. Weapply operators Ai and GJ0i to nonsymmetric matrices and then we linearize the above systemas follows. Pki=1Ai(Vi�XiV ti ) +H�x = �F 0PGJ0i (Vi�XiV ti ) = �F iP1for i 2 f1; : : : ; kgH t��+ �z = �F 0DV ti (Diag (0; ��tGi) + �Yi))Vi + �Zi = �F iDfor i 2 f1; : : : ; kg�z � x+ z � �x = �F 0ZX�ZiXi + Zi�Xi = �F iZXfor i 2 f1; : : : ; kg: (4.6)From the third and fourth equations, we have, for i 2 f1; : : : ; kg,�Zi = �F iD � V ti (Diag(0; ��tGi) + �Yi))Vi (4.7)and �z = �F 0D �H t��: (4.8)Substituting (4.7) and (4.8) into the last two equations, respectively, we have�Xi = �Z�1i F iZX + Z�1i F iDXi + Z�1i V ti (Diag (0; ��tGi) + �Yi))ViXi (4.9)and �x = �z�1 � F 0ZX + z�1 � F 0D � x+ z�1 �H t�� � x: (4.10)Substituting (4.9) and (4.10) into the �rst two equations, we have the following �nal normalequation. Pki=1Ai(ViZ�1i V ti (Diag (0; ��tGi) + �Yi)ViXiV ti )+Hz�1 �H t�� � x = �F 0P + b0GJ0i (ViZ�1i V ti (Diag(0; ��tGi) + �Yi)ViXiV ti ) = �F iP1 + bifor i 2 f1; : : : ; kg; (4.11)14



nrow ncol nzero LP SDP LP-SDPsmall03 27 97 234 17327 18324 18320tiny04 6 27 72 1037 1091 1066tiny01 3 6 9 17.5 25 25tiny05 7 35 70 1215 1257 1248Table 2: Numerical Resultswhere b0 =Pki=1Ai(Vi(Z�1i F iZX � Z�1i F iDXi)V ti ) +H(z�1 � F 0ZX � z�1 � F 0D � x);bi = GJ0i (Vi(Z�1i F iZX � Z�1i F 1DXi)V ti );for i 2 f1; : : : ; kg:Denote the matrix representation of the left hand side of the normal equation by K. The matrixK has a very nice sparsity structure similar to A in Figure 1, where the width of the long narrowbar is mG which is much less than the size of the matrix.We solve the normal equation by a preconditioned conjugate gradient method. Let (�Y �1 ; : : : ; �Y �k ; ���)be the solution for the normal equation. By equations (4.7), (4.8), (4.9) and (4.10), we can ob-tain, for each i 2 f1; : : : ; kg, �Z�i , �z�i ,�X�i and �x�i , respectively. Finally, by symmetrizing �X�i ,i.e., �X�i  �X�i + (�X�i )t2 ;we obtain a search direction. We then do a linesearch and update the current point. Based onthe duality gap, we update � by using the following formula� := Pki=1 trace (ZiXi) + ztx2(n�m+mG + k) :4.3 Preliminary Numerical Tests and Future WorkIn the previous subsections, we have developed an approach for solving problems with matrixstructure (4.4). We did some preliminary numerical tests just to see how this SDP relaxationworks for small problems. In our testing, we use the diagonal of the matrix representation K asthe preconditioner. The infeasible primal-dual interior-point algorithm for the mixed LP-SDPrelaxation is coded in C and Matlab. The results are summarized in Table 2. In Table 2, thecolumns under nrow, ncol and nzero are for the number of rows, columns and nonzero elements,respectively. The columns under LP and SDP show the lower bounds given by LP relaxation andSDP relaxation for a general dense problem, respectively, while the last column under LP-SDPshows the lower bounds given by our mixed LP-SDP relaxation.It remains to try and use the mixed LP-SDP relaxation to derive an approach to solve generallarge sparse set partitioning problems. To achieve this, we propose the following:15



� to have the same matrix sparsity pattern as described for the mixed LP-SDP relaxation,the matrix for the general problem need to be transformed into form like (4.4). This canbe done by treating the 0-1 matrix A as an incidence matrix of a graph or netlist andapplying graph partitioning and netlist partitioning techniques;� because of the nice sparsity structure as shown in Figure 5.1, more sophisticated incom-plete factorization preconditioners can be used to improve the performance of primal-dualinterior-point solvers, see e.g. [7].A APPENDIX-NotationSP set partitioning problemSDP semide�nite programming problemM) given collection of subsets of MA = (aij) incidence matrix of the collectionMe the vector of onesek the k-th unit vectorai the i-th row of incidence matrix ASPLP the linear programming relaxation for SPp-d i-p primal-dual interior-point (algorithm)B � C the Hadamard product of B and CQ � R R� Q is positive semide�niteSn the space of symmetric n� n matricesPSDP the semide�nite relaxation primal problemDiag the diagonal matrix formed from the vectorPn or P the cone of positive semide�nite matrices in SnT [�e; A]; the assignment constraint matrixSlater CQ the Slater constraint quali�cation; strict feasiblityp-d i-p primal-dual interior-point methodG = (V ; E) graph with node set V and edge set Ecut edge an edge connecting nodes in di�erent subsets of a partition16



X = (xij) partition matrixw(Ecut) total weight of cut edges of the partitionw�(Ecut) minimal total weight of cut edges over all partitionsL Laplace matrix of the graphYX partition matrix lifted into higher dimensional matrix space�m (m1; : : : ; mk)tA
 B the Kronecker product of A and Bvec (X) the vector formed from the columns of the matrix AY0;1:n2 the n2 vector from the �rst row of Ydiag the vector formed from the diagonal elementsarrow the arrow operator diag (Y )� (0; (Y0;1:n2)tGJ the gangster operator GJ shoots \holes" in a matrixR(B) range space of BN (B) null space of BJ0 J0 = J [ f(0; 0)gK � C K is a face of Crelint relative interiordiag (A) the vector formed from the diagonal of the matrix ADiag (v) the diagonal matrix formed from the vector vEn the matrix of ones in SnEij the ij unit matrix in SnReferences[1] J. ARABEYRE, J. FEARNLEY, F. STEIGER, and W. TEATHER. The airline crewscheduling problem: a survey. Transportation Science, 2:140{163, 1969.[2] E. BAKER and M. FISHER. Computational results for very large air crew schedulingproblems. OMEGA, 9(6):613{618, 1981.[3] E. BALAS. Some valid inequalities for the set partitioning problems. Annals of DiscreteMathematics, 1:13{47, 1977. 17
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