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Abstract

Suppose that we are given a feasible conic program with a finite optimal value

and with strong duality failing. It is known that there are small perturbations of the

problem data that lead to relatively big changes in the optimal value. We quantify the

notion of big change in the case of a semidefinite program (SDP). We first show that

for any SDP with a finite optimal value where strong duality fails, and where there is a

nonzero duality gap, then for a sufficiently small step along any feasible perturbation

direction, the optimal value changes by at least a fixed constant. And next, if there

is a zero duality gap, with or without dual attainment, then any sufficiently small

ε > 0 feasible perturbation changes the optimal value by at most O(εγ) for some, to

be specified, constant γ ∈ (0, 1). Our main tool involves the facial reduction of SDP.
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1 Introduction

We investigate the sensitivity of semidefinite programs (SDP) for which strong duality

fails, with respect to feasible right-hand side perturbations. It is well-known that if strong

duality holds for the SDP, then any small right-hand side perturbation changes the optimal

value in linear order. Here we provide results without assuming that strong duality holds.

We show that if strong duality (zero duality gap and dual attainment) does not hold for

an SDP with finite optimal value, then one of the following two cases holds.

• Case 1: nonzero duality gap. In this case, any sufficiently small feasible perturbation

changes the optimal value of the SDP by no less than (half) the duality gap (which

may be infinite).

• Case 2: zero duality gap, but no dual attainment. In this case, there exist a constant

κ > 0 and a positive integer d such that any feasible perturbation of sufficiently

small norm ε changes the optimal value by at most κε1/2
d
. The positive integer d is

the number of facial reduction iterations needed to find the minimal face containing
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the feasible region; and it is bounded above by n−1 where n is the size of the matrix

variable.

There is a large volume of results on sensitivity analysis for nonlinear programs. To

mention a few, Goldfarb and Scheinberg [12] performed sensitivity analysis on SDP assum-

ing that the Slater condition holds for both the primal and the dual. In [18], Rockafellar

used the optimal value function φ(u) := infx F (x, u) and its directional derivative to study

the sensitivity of the general convex program infx f(x) = F (x, 0). Bonnans and Shapiro

[4] (and also [19, 3]) studied the perturbation theory of nonlinear programs, and in [3,

Section 7.3] they focused on the case where the dual is not solvable. Ben-Israel, Ben-Tal

and Zlobec used a feasible direction approach to identify the regions of stability for con-

vex optimization problems (i.e., sets of perturbations on which the changes in optimal

solutions and values depend continuously) [2, Section 8]. Classical results for nonlinear

programs appeared in [11].

The degree of singularity, which is essential in the second half of this article, is coined

by Wang and Pang [22] for convex quadratic inequalities and by Sturm [20] for linear

matrix inequalities.

1.1 Preliminaries

We consider the primal-dual pair of (linear) semidefinite programs, SDPs,

vP := sup
y

{
bT y : C −A∗y � 0

}
, (P)

vD := inf
X
{〈C,X〉 : A(X) = b, X � 0} , (D)

where b ∈ Rm, C ∈ Sn, A : Sn → Rm is a linear map, Sn is the Euclidean space (i.e.,

finite dimensional inner product space) of n × n real symmetric matrices equipped with

the trace inner product 〈X,Y 〉 := tr(XTY ) for all X,Y ∈ Sn, and X � 0 (resp. X � 0)

denotes X ∈ Sn+, is positive semidefinite, (resp. X ∈ Sn++, is positive definite). We define

the spectral norm ‖B‖2 := maxx{‖Bx‖2 : ‖x‖2 ≤ 1} for all B ∈ Rm×n, and the Frobenius

norm ‖X‖ :=
√
〈X,X〉 =

√
tr(X2) for all X ∈ Sn.

The primal SDP (P) is said to be feasible if there exists ŷ ∈ Rm such that C−A∗ŷ � 0.

(Similarly, (D) is said to be feasible if there exists X̂ ∈ Sn such that A(X̂) = b and X̂ � 0.)

If (P) is infeasible, then we take vP = −∞; if (D) is infeasible, then we take vD = +∞.

Strong duality is said to hold for (P) if vP = vD and vD is attained. A sufficient condition

for strong duality to hold for (P) is that vP is finite and (P) satisfies the Slater condition,

C −A∗ŷ � 0, for some ŷ ∈ Rm. (Slater)
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We concentrate on SDP of the form (P) that satisfy the following assumption.

Assumption 1.1 The SDP (P) is feasible and has finite optimal value, vP.

We consider the (linear) perturbed problem

valP(S) := sup
y

{
bT y : C −A∗y � S

}
, (Ppert(S))

and study the relationship between the size of the perturbation S, and the change valP(S)−
valP(0) in the optimal value. We show that if (P) is feasible with finite optimal value,

then whenever the perturbed problem (Ppert(S)) is feasible and S ∈ Sn is small, we have

valP(S)− valP(0)



= O(‖S‖) if strong duality holds for (P);

≥ 1
2(vD − vP) if vP < vD ;

= O(‖S‖1/2d) for some integer d > 0 if strong duality fails for (P)

and vP = vD.

(1.1)

(See Theorems 4.6 and 4.10.) Here the integer d > 0 is the degree of singularity of the

linear matrix inequality, LMI, C − A∗y � 0, i.e., the number of steps needed to facially

reduce the LMI.

Remark 1.2 While our results are stated for an SDP of the form (P), they are easily

applicable to any feasible SDP in standard equality form, (D), or more generally, subspace

formulation [8]. In fact, let X̂ satisfy the equation A(X̂) = b and let V : Sn → Rdim(ker(A))

be a linear map satisfying R(V∗) = ker(A). Then for any X ∈ Sn,

A(X) = b, X � 0 ⇐⇒ X = X̂ + V∗v � 0 for some v.

The corresponding perturbed problem for (D) would then be

inf {〈C,X〉 : A(X) = b− s, X � 0} ,

where s ∈ R(A) is the right-hand side perturbation. Let S ∈ Sn satisfy A(S) = s. Then

A(X) = b− s, X � 0 ⇐⇒ X = X̂ + V∗v � S for some v.

1.2 Main Contributions

While there is a vast amount of literature on the sensitivity analysis of linear and nonlinear

optimization problems, most results rely on some regularity assumption. On the other
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hand, there are a few results (e.g. [20, 22]) on the Hölderian error bounds for convex

quadratic inequalities and for linear matrix inequalities that depend on the degree of

singularity. The results in this article only assume feasibility and a finite optimal value,

and at the same time highlight the importance of the degree of singularity in estimating

the change in the optimal value with respect to right-hand side perturbations. The bound

on the changes in the optimal value provided in this article are also tight.

1.3 Outline

In Section 2, we recall some relevant well-known results, including: asymptotic properties

of SDP (Section 2.1); the facial structure of the cone of positive semidefinite matrices

(Section 2.2); and facial reduction for SDP (Section 2.3). Illustrative examples for the

perturbation results are provided in Section 2.4. In Section 3, we take a closer look at the

set of feasible perturbations. Then we formalize the main results presented in (1.1) and

provide the proofs in Section 4. The last case in (1.1) requires some results concerning

the degree of singularity; we provide those in the Appendix.

2 Asymptotics and Facial Reduction

2.1 Asymptotic feasibility and optimal value of SDP

A sequence {y(k)}k is said to be asymptotically feasible for (P) if there exists a sequence

{Z(k)}k ⊂ Sn+ such that Z(k) + A∗y(k) → C as k → ∞. We say that (P) is weakly

infeasible if (P) is not feasible but possesses an asymptotically feasible sequence; and (P)

is strongly infeasible if (P) does not have an asymptotically feasible sequence. Similarly,

a sequence {X(k)}k is said to be asymptotically feasible for (D) if X(k) � 0 for all k and

limkA(X(k)) = b. Strong infeasibility and weak infeasibility of (D) are defined similarly

as for (P).

Define the asymptotic optimal value of (P) as

vaP := sup

{
lim sup

k
bT y(k) :

{
y(k)

}
k

is asymptotically feasible for (P)

}
, (2.1)

and the asymptotic optimal value of (D) as

vaD := inf

{
lim inf

k
〈C,X(k)〉 : {X(k)}k is asymptotically feasible for (D)

}
.

We take the convention that vaP = −∞ (resp., vaD = +∞) if (P) (resp., (D)) is strongly

infeasible. Note that if (P) is feasible, then vaP ≥ vP. As we can see in Example 2.9 below,

5



strict inequality may hold.

We say that ŷ ∈ Rm is an improving direction for (P) if −A∗ŷ � 0 and bT ŷ ≥ 1; and

{y(k)}k ⊂ Rm is an improving direction sequence if there exists a sequence {Z(k)}k ⊂ Sn+
such that Z(k) +A∗y(k) → 0 and bT y(k) ≥ 1 for all k. Improving direction sequences and

improving directions for (P), respectively, serve as certificates of infeasibility and strong

infeasibility of the dual (D).

Lemma 2.1 ([14, Lemmas 5 and 6]) The SDP (D) is infeasible if, and only if, (P)

possesses an improving direction sequence. (D) is strongly infeasible if, and only if, (P)

possesses an improving direction.

The dual of an SDP satisfying Assumption 1.1 cannot be strongly infeasible.

Theorem 2.2 ([9]) If (P) is feasible and vP < +∞, then (D) is either feasible or weakly

infeasible, and vaD = vP.

If both (P) and (D) are feasible, then weak duality , i.e., vP ≤ vD, implies that both (P)

and (D) have finite optimal values, and Theorem 2.2 implies that

vaP = vD ≥ vP = vaD. (2.2)

2.2 Facial properties of Sn+

We first introduce the notion of faces for general convex sets and convex cones. Let

(V, 〈·, ·〉V) be a Euclidean space. A face of a nonempty convex set S ⊆ V, denoted by

F E S, is a nonempty convex set F ⊆ S that satisfies the condition

{
x, y ∈ S, α ∈ (0, 1) and αx+ (1− α)y ∈ F

}
=⇒ x, y ∈ F .

A set F is called a proper face of S, denoted by F CS, if F ES and F 6= S. A face F of S
is exposed if F = {x ∈ S : 〈s, x〉V = 0}, for some s ∈ V satisfying 〈s, x〉V ≥ 0 for all x ∈ S.

Given a face F of a nonempty convex cone K ⊆ V, the conjugate face of F is defined as

the set Fc := F⊥ ∩K∗, where K∗ := {x ∈ V : 〈x, y〉V ≥ 0, ∀ y ∈ K} is the dual cone of K.

It is immediate that

{F1, F2 EK and F1 ⊆ F2 } =⇒ Fc2 ⊆ Fc1 ,

and that Fc = {x}⊥ ∩K∗, where x is any element in the relative interior of F , denoted by

ri(F). Moreover, for any F C K, Fcc := (Fc)c = F if, and only if, F is an exposed face,

e.g., [8, Proposition 3.1].
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Given a nonempty convex set S and ∅ 6= T ⊆ S, the minimal face of S containing T
is defined as the intersection of all faces of S that contain T :

face(T , S) :=
⋂
{F : F E S, T ⊆ F} .

Since a nonempty intersection of two faces is a face, we have that face(T ,S) E S. By

definition, face(T ,S) is inclusion-wise the smallest face of S containing the set T .

The facial structure of Sn+ is well-known, see e.g., [23]:

Proposition 2.3 The faces of Sn+ satisfy the following properties.

1. Any face of Sn+ is either {0}, Sn+ or Q Sn̄+QT , where Q ∈ Rn×n̄ (with 1 ≤ n̄ < n) is

of full column rank.

2. Sn+ is facially exposed, i.e., all the faces of Sn+ are exposed faces.

3. Let 0 6= X ∈ Sn+. If Q ∈ Rn×n̄ (with 1 ≤ n̄ < n) is a full column rank such that

R(Q) = R(X), then face({X}, Sn+) = Q Sn̄+QT .

2.3 Facial reduction and degree of singularity

In this section we review some concepts regarding the failure of the Slater condition for

(P) and the facial reduction algorithm, a regularization technique for SDP instances that

fail the Slater condition. We also recall the notion of the degree of singularity for LMI.

We first extend the notion of minimal faces to LMI and SDP. Given Ĉ ∈ Sn and a

linear map Â : Sn → Rm such that Ĉ − Â∗ŷ � 0 for some ŷ, the minimal face of the

LMI Ĉ − Â∗y � 0 is the minimal face of Sn+ containing the feasible slacks {Z ∈ Sn :

Z = Ĉ − Â∗y � 0}. The minimal face of a feasible SDP of the form (P) is defined as

the minimal face of the LMI C − A∗y � 0 that defines the feasible region of (P). It

is immediate that the Slater condition holds for (P) if, and only if, the minimal face of

(P) is Sn+. Similarly, since the constraints of (D) can be written as an LMI provided

(D) is feasible, the minimal face of (D) is defined as the minimal face of Sn+ containing

{X ∈ Sn : A(X) = b, X � 0}. Under the assumption that (P) is feasible, it is immediate

that

face(FZP , Sn+) = face(Sn+ ∩ L, Sn+)E Sn+,

where

FZP := {Z ∈ Sn : Z = C −A∗y � 0} , and L := span {{C} ∪ R(A∗)} ⊂ Sn. (2.3)
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The notion of minimal face is important because we can regularize an SDP (or a conic

program in general) by restricting it to the minimal face, resulting in an equivalent SDP

for which strong duality holds.

Theorem 2.4 ([6]) Suppose that (P) is feasible. Let fP denote the minimal face of (P).

Then

vP = sup
y

{
bT y : C −A∗y ∈ fP

}
(2.4a)

= inf
X
{〈C,X〉 : A(X) = b, X ∈ (fP)∗} , (2.4b)

and (2.4b) is solvable.

One way to find the minimal face of an LMI is to use facial reduction. The facial

reduction relies on a theorem of the alternative for the Slater condition. We recall a

general version of the theorem of the alternative.

Proposition 2.5 ([14]) Let (V, 〈·, ·〉V) be a Euclidean space, K ⊆ V be a nonempty closed

convex cone and L ⊆ V be a linear subspace. Then

ri(K) ∩ L 6= ∅ ⇐⇒ K∗ ∩ L⊥ ⊆ −K∗. (2.5)

In fact,

K ∩ L ⊆ face(K∗ ∩ L⊥, K∗)c EK.

In particular, the Slater condition holds for (P) if, and only if, Sn+∩L⊥ = {0} by Proposi-

tion 2.5 (where L is defined in (2.3)). If the Slater condition fails for (P), then Proposition

2.5 provides a proper face face( Sn+∩L⊥, Sn+)c that contains the minimal face of (P) (since

( Sn+)∗ = Sn+).

In Algorithm A.1, Page 26, we display one version of the facial reduction algorithm

for finding the minimal face of the LMI C − A∗y � 0. (More details are available in

[7, 8, 16, 20].) The facial reduction takes the linear subspace L and the cone K := Sn+
as input. In each iteration of the facial reduction algorithm, we find a matrix D ∈
K∗ ∩L⊥\(−K∗), which certifies that the Slater condition fails, i.e., ri(K)∩L = ∅; then we

replace K by K ∩ {D}⊥.

The number of iterations of the facial reduction algorithm to find the minimal face of

an LMI is called the degree of singularity of the LMI. The importance of the degree of

singularity is highlighted in the error bound result from [20] on the distance to the set of

feasible slacks of an LMI; see Theorem 4.7. We will show in Theorem 4.10 that if vP = vD

but vD is unattained, then for any small feasible perturbation S an upper bound of the

difference valP(S)− valP(0) can be expressed in terms of the degree of singularity.
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Given the importance of the degree of singularity in this article, we now formalize its

definition. We first define the set of all chains of certificates for the facial reduction. (A

similar notion was introduced by Pataki in [16].)

Definition 2.6 For any linear subspace L ⊆ Sn, C(L ∩ Sn+, Sn+) is defined as the set

consisting of all finite sequences of matrices (D(1), . . . , D(k)) that satisfy the following

conditions:

• D(j) ∈ ri(L⊥ ∩ (Kj−1)∗)\(−Kj−1)∗, where K0 := Sn+ and Kj = Kj−1 ∩ {D(j)}⊥,

∀ j = 1, . . . , k,

• L ∩ ri(Kk) 6= ∅.

In particular, if L ∩ Sn++ 6= ∅ or L ∩ Sn+ = {0}, then C(L ∩ Sn+, Sn+) = ∅. That all

sequences satisfying the conditions described in Definition 2.6 are finite in length follows

from the fact that the facial reduction algorithm has finitely many iterations. In fact, we

will show in Proposition B.1, Page 28, that any two finite sequences in C(L ∩ Sn+, Sn+)

must be of the same length. Now we can define the degree of singularity.

Definition 2.7 Let L ⊆ Sn be a linear subspace. The degree of singularity of the set

L ∩ Sn+ is the length of any finite sequence of matrices in C(L ∩ Sn+, Sn+), and is denoted

by d(L∩ Sn+, Sn+). The degree of singularity of a feasible LMI Ĉ−Â∗y � 0 (where Ĉ ∈ Sn

and Â : Sn → Rm) is defined as d(Â, Ĉ) := d(span({Ĉ} ∪ R(Â)) ∩ Sn+, Sn+). The degree

of singularity of an SDP of the form (P) is defined to be the degree of singularity of the

LMI defining the feasible region of (P).

2.4 Examples

In this section we consider some examples of SDP instances from [15, 17, 21]. In each of

the examples, strong duality fails for the SDP instance and we consider one single feasible

perturbation direction and the resultant change in optimal value along that direction. By

abuse of notation, in this section we restrict the function valP(·) defined on (Ppert(S)) to

a fixed direction ε 7→ εŜ for some particular Ŝ; so valP(·) is a function on R+.

Example 2.8 ((D) is infeasible.) For ε ≥ 0, consider

valP(ε) := sup
y

y2 :

y1 y2 y3

y2 y3 0

y3 0 0

 �
0 0 0

0 0 0

0 0 ε

 , y ∈ R3

 , (2.6)

valD(ε) := inf
X
{εX33 : X11 = 0, X12 = 1, 2X13 +X22 = 0, X � 0} . (2.7)
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The dual (2.7) is infeasible. When ε = 0, the degree of singularity of the primal (2.6) is

d(A, C) = 2; (2.6) has optimal value valP(0) = 0 while the asymptotic optimal value is

+∞. Indeed, consider

Z(k) =

 k2 −k 1

−k 1 0

1 0 1
k

 , y(k) =

−k2

k

1

 , ∀ k ∈ N.

Then

Z(k) +A∗y(k) =

 k2 −k 1

−k 1 0

1 0 1
k

+

−k2 k −1

k −1 0

−1 0 0

 =


0 0 0

0 0 0

0 0 1
k

→ 0 as k →∞

(meaning that {y(k)}k is asymptotically feasible) and bT y(k) = k for all k. Hence vaP = +∞.

Now fix any ε > 0. For all sufficiently large k,

 k2 −k 1

−k 1 0

1 0 ε

 � 0, so

−k2

k

−1

 is feasible

for the perturbed problem (2.6). Hence valP(ε) = +∞. This confirms the middle case in

(1.1), i.e., the perturbation is bounded below by (half) the duality gap, ∞ here.

Example 2.9 (nonzero finite duality gap.) Fix any α > 0. For ε ≥ 0, consider

valP(ε) := sup
y

y2 :

y2 0 0

0 y1 y2

0 y2 0

 �
α 0 0

0 0 0

0 0 ε

 , y ∈ R2

 , (2.8)

valD(ε) := inf
X
{αX11 + εX33 : X22 = 0, X11 +X23 = 1, X � 0} . (2.9)

Observe that the primal requires only one iteration of facial reduction to identify the min-

imal face, i.e., d(A, C) = 1. But the dual of the reduced primal still fails the Slater

condition.

Let FyP(ε) be the set of feasible solutions y of (2.8), FZP (ε) be the set of feasible slacks

of (2.8) and FXD (ε) be the set of feasible solutions X for (2.9). For ε = 0, we get

FyP(0) = R− × 0, FZP (0) =


α 0 0

0 γ 0

0 0 0

 : γ ≥ 0

 , FD(0) =


1 0 0

0 0 0

0 0 β

 : β ≥ 0

 .
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So valP(0) = 0 < α = valD(0) = vaP(0).1 Now consider ε > 0. Thenα− y2 0 0

0 −y1 −y2

0 −y2 ε

 � 0 ⇐⇒ y2 ≤ α and y1 ≤ −y2
2/ε.

Hence valP(ε) = α = vaP(0). On the other hand, the constraints of the dual (2.9) are

unchanged. Hence valD(ε) = α = valD(ε), and valP(ε)− valP(0) = α = valD(0)− valP(0),

i.e., this again confirms the middle case in (1.1).

Example 2.10 (zero duality gap but vD is unattained.) For ε ≥ 0, consider

valP(ε) := sup
y

{
2y :

[
0 y

y 0

]
�
[

1 0

0 ε

]
, y ∈ R

}
, (2.10)

valD(ε) := inf
X

{
X11 + εX22 :

[
X11 1

1 X22

]
� 0

}
. (2.11)

Note that y is feasible for (2.10) if, and only if, |y| ≤
√
ε. The primal (2.10) can be seen

as a positive semidefinite completion problem: (2.10) aims at finding the range of y so

that

[
1 −y
−y ε

]
� 0, where the fixed data has a parameter ε.

When ε = 0, y = 0 is the only feasible solution for (2.10) so valP(0) = 0. On the other

hand, the dual optimal value valD(0) = valP(0) = 0 but is not attained. Hence strong

duality fails for (2.10) when ε = 0. In fact, the degree of singularity of (2.10) is 1 when

ε = 0.

When ε > 0, (2.10) satisfies the Slater condition, so valP(ε) = valD(ε) = 2
√
ε (and

valD(ε) is attained). Yet valP(ε) − valP(0) = 2
√
ε, which is not of linear order. This

illustrate the last case in (1.1).

Example 2.11 (Zero duality gap but vD is unattained.) This example generalizes

Example 2.10 and illustrates the last case in (1.1). We consider an SDP on Sn+ that

requires n− 1 iterations of facial reduction to identify the minimal face of Sn+ containing

its feasible region, i.e. d(A, C) = n− 1. We show that there exists a feasible perturbation

S such that valP(S)− valP(0) = 2‖S‖1/2n−1
.

Let n ≥ 3 and A : Sn → Rn−1 be a linear map defined by the matrices

A1 = e1e
T
2 + e2e

T
1 , and Ak = eke

T
k + e1e

T
k+1 + ek+1e

T
1 , ∀ k ∈ 2 : n− 1.

1To see that vaP = α, consider y(k) =

(
−αk2

α

)
∈ R2 and Z(k) =

0 0 0
0 α2k −α
0 −α 1

k

 ∈ S3
+. Then

Z(k) +A∗y(k) =

α 0 0
0 0 0
0 0 1

k

 and bT y(k) = α for all k.
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For ε ≥ 0 consider

valP(ε) := sup
y

{
2y1 : A∗y � e1e

T
1 + εene

T
n

}
, (2.12)

valD(ε) := inf
X
{X11 + εXnn : A(X) = b, X � 0} . (2.13)

Again, the primal (2.12) can be considered as a positive semidefinite completion problem,

where we look at the growth in the free (1, 2) element of the feasible slack Z = e1e
T
1 +

εene
T
n −A∗y � 0 with respect to perturbation in the given (n, n) data element.

Suppose that ε = 0. For any y ∈ Rn−1, the matrix Z = e1e
T
1 − A∗y always satisfies

Znn = 0. In particular, Z � 0 if, and only if, Z = e1e
T
1 , i.e., y = 0. Hence valP(0) = 0. On

the other hand, (2.13) has an optimal value valD(0) = 0 that is not attained. Hence strong

duality does not hold for (2.12) when ε = 0. In fact, as noted above, d(A, e1e
T
1 ) = n− 1.

Now suppose that ε > 0. It is not difficult to see that (2.12) satisfies the Slater con-

dition, i.e., suppose D � 0 satisfies 〈C,D〉 = 0 and A(D) = 0. It suffices to show that

D = 0 (see Proposition 2.5). Indeed, D � 0 and 〈C,D〉 = 0 imply D11 = Dnn = 0. But

this in turn implies that D has zero diagonal. Hence D = 0.

Now note that y is feasible for (2.12) if, and only if,

0 ≥ yn−1 ≥ −ε1/2, 0 ≥ yn−2 ≥ −ε1/4, . . . , 0 ≥ y2 ≥ −ε1/2
n−2

, |y1| ≤ ε1/2
n−1

.

Hence valP(ε) = valD(ε) = 2ε1/2
n−1

, and valP(ε)− valP(0) = 2ε1/2
n−1

.

Example 2.12 (Zero duality gap but vD is unattained.) Let

A1 = −E11, A2 = −E22, A3 = e3e
T
4 + e4e

T
3 , A4 = e1e

T
3 + e3e

T
1 , C =


0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 1

 ,

and b =
[
0 −1 2 0

]T
. Then (P) reads

sup
y

−y2 + 2y3 :


y1 1 −y4 0

1 y2 0 0

−y4 0 0 −y3

0 0 −y3 1

 � 0, y ∈ R4

 = 0, (2.14)

which is unattained. (Note that y feasible must satisfy y3 = y4 = 0.) Meanwhile, (D)

12



yields

inf
X
{2X12 +X44 : X11 = 0, X22 = 1, X34 = 1, X13 = 0, X � 0}

= inf
X

X44 : X =


0 0 0 0

0 1 ∗ ∗
0 ∗ ∗ 1

0 ∗ 1 ∗

 � 0

 = 0,

which is unattained too. Hence strong duality does not hold for (2.14). In fact, the degree

of singularity of (2.14) is 1. Now for any ε > 0,

valP(ε) := sup
y

−y2 + 2y3 :


y1 1 −y4 0

1 y2 0 0

−y4 0 ε −y3

0 0 −y3 1

 � 0

 = 2
√
ε.

(Note that valP(ε) is unattained.) In other words, valP(ε)− valP(0) = 2
√
ε.

In summary, we considered five SDP instances where strong duality does not hold and

a feasible perturbation that leads to big change in optimal value exists. Together with the

results in Section 4, we see that the bounds in the second and third cases (1.1) are indeed

tight.

3 Feasible perturbations

Before we present our main results (Theorems 4.6 and 4.10), we review in this section

the classical notion of feasible perturbations and feasible perturbation directions, which

will be used in the following section. Specifically, we derive a characterization of feasible

perturbation directions for (P); see Theorem 3.3.

Define the set of feasible perturbations for (P):

P := P(A, C) := {S ∈ Sn : C −A∗y � S, for some y ∈ Rm} . (3.1)

If the LMI C −A∗y � 0 is feasible, then 0 ∈ P. Moreover, P is a convex set,2 and P has

nonempty interior if, and only if, C −A∗y � 0 satisfies the Slater condition. However, P
is not necessarily closed.3 Related to the set P is the set of feasible perturbation directions

2 Let S, T ∈ P and yS , yT ∈ Rm satisfy C −A∗yS � S and C −A∗yT � T respectively. Then for any
α ∈ [0, 1], we have C −A∗(αyS + (1− α)yT ) � αS + (1− α)T . Hence αS + (1− α)T ∈ P.

3 Consider C =

[
1 1
1 0

]
and A =

[
0 0
0 −1

]
. Then C − yA =

[
1 1
1 y

]
� 0 if, and only if, y ≥ 1. Note

13



P̂ := P̂(A, C) := {S ∈ Sn : C −A∗y � εS, for some y ∈ Rm and ε > 0} (3.2)

= {S ∈ Sn : εS ∈ P, for some ε > 0} ,

which is a convex cone. As we see in Example 3.2 below, there exist instances of (P) such

that one can find S ∈ P̂ of arbitrarily small norm such that εS ∈ P for ε > 0 only if ε is

“small”, in the sense that ε ≤ O(‖S‖2). And, we show in Section 4.1 that,

S ∈ P̂ =⇒
{

face
(
FZP , Sn+

)
⊆ face

(
FZP (εS), Sn+

)
, ∀ ε > 0, suff. small, with εS ∈ P

}
.

where

FZP (S) := {Z ∈ Sn : Z = C −A∗y − S � 0, for some y ∈ Rm} .

It is possible to characterize the set P̂ (and the proof will be given in Section 3.2,

below):

let face
(
FZP , Sn+

)
= QSn̄+QT with Q ∈ Rn×n̄ full column rank, and let U =

[
P Q

]
∈

Rn×n be nonsingular; then we have

P̂ =

USUT ∈ Sn : S =

[ n−n̄ n̄

n−n̄ S1 S2

n̄ ST2 S3

]
, S1 � 0, R(S2) ⊆ R(S1)

 .

Throughout the remainder of this section, by using an orthogonal rotation if needed,

we assume without loss of generality that the minimal face of (P) is of the form

[
0 0

0 Sn̄+

]
.

3.1 A technical lemma

We first prove a technical result, that given any Z ∈ Sn+ and any feasible perturbation

direction S ∈ Sn, the range of Z does not shrink when taking sufficiently small step along

the direction S.

that

[
1 1
1 y

]
�
[
s 0
0 0

]
is feasible for all s ∈ (0, 1) but infeasible when s = 1. Hence the set of feasible

perturbations is not closed for this instance.
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Lemma 3.1 Let Z =

[
0 0

0 Ẑ

]
∈ Sn and Ẑ � 0. Then for any S =

[
S1 S2

ST2 S3

]
∈ Sn with

S1 � 0 and R(S2) ⊆ R(S1), (3.3)

we have Z + εS � 0 and R(Z) ⊆ R(Z + εS) for any ε ∈ (0, δ), where

δ := δ(Ẑ, S) :=
λmin(Ẑ)

2(‖S3‖+ ‖S2‖22 λmax(S†1) + 1)
.4 (3.4)

Proof. For any ε ∈ (0, 2δ), we have λmin(Ẑ) > ε‖S3‖ which yields

0 ≺ (λmin(Ẑ)− ε‖S3‖)I � λmin(Ẑ)I + εS3 � Ẑ + εS3. (3.5)

Let B be a full column rank matrix such that S1 = BBT . Then R(S2) ⊆ R(S1) implies

that S2 = BR for some matrix R. It is immediate that

R = (BTB)−1BTBR = B†S2,

so ‖R‖2 ≤ ‖B†‖2‖S2‖2, i.e.,

λmax(RRT ) = ‖R‖22 ≤
‖S2‖22

(σmin(B))2
= ‖S2‖22λmax(S†1). (3.6)

Hence ε < λmin(Ẑ)
‖S1‖+λmax(RRT )+1

holds for any ε ∈ (0, 2δ) by (3.6). Then by (3.5),

εR(Ẑ + εS3)−1RT � ε(λmin(Ẑ)− ε‖S3‖)−1RRT � ελmax(RRT )

λmin(Ẑ)− ε‖S3‖
I � I.

Using the conjugation B ·BT , we get

BBT � εBR(Ẑ + εS3)−1RTBT =⇒ εS1 − ε2S2(Ẑ + εS3)−1ST2 � 0.

Therefore

Z + εS =

[
εS1 εS2

εST2 Ẑ + εS3

]
� 0.

Next we show that R(Z) ⊆ R(Z + εS) for all ε ∈ (0, δ). Suppose that x ∈ ker(Z + εS).

Then 0 = 1
2x

TZx + 1
2x

T (Z + 2εS)x; Z � 0 and Z + 2εS � 0 imply that xTZx = 0, i.e.,

x ∈ ker(Z). Therefore ker(Z + εS) ⊆ ker(Z), i.e., R(Z) ⊆ R(Z + εS). �

4Note that the quantity δ in (3.4) is small when: ‖S3‖ is large; when λmin(Ẑ) is small; or when S is

“ill-conditioned” in the sense that the quantity ‖S2‖22 λmax(S†1) =
‖S2‖22

smallest positive eigenvalue of S1
, is large.
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It is immediate that the bound (3.6) used in the proof is tight, as we can see in Example

3.2, below. In particular, we can show that there exists a feasible instance of (P) such

that for any arbitrarily small γ > 0, there exists S ∈ P̂ such that ‖S‖ ≤ γ and εS ∈ P
only if ε = O(γ2).

Example 3.2 Consider

C =

0 0 0

0 0 0

0 0 1

 , A1 =

0 1 0

1 0 0

0 0 0

 , A2 =

0 0 0

0 0 1

0 1 0

 .
Then FZP = {C}. Define the matrix

S =

 δ2 0
√
δ

0 δ 0√
δ 0 0

 , i.e., S1 =

[
δ2 0

0 δ

]
, S2 =

[√
δ

0

]
, S3 = 0,

where δ ∈ (0, 1).5 Then ‖S‖ =
√

2δ + δ2 + δ4 ≤ 2
√
δ. Note that for any ε ≥ 0, C + εS −

A∗y � 0 is feasible if, and only if, there exists y ∈ R2 such that
εδ2 y1 ε

√
δ

y1 εδ y2

ε
√
δ y2 1

 � 0,

which holds only if ε ≤ δ (by considering the (1,3) principal minor). Note also that for

any ε ∈ [0, δ], C + εS � 0. Hence S ∈ P̂ and εS ∈ P̂ only if ε ∈ [0, δ].

This example shows that there exists a feasible instance of (P) such that for any arbi-

trarily small γ > 0, there exists S ∈ P̂ such that ‖S‖ ≤ γ and εS ∈ P only if ε ≤ O(γ2).

3.2 Characterizing the set of feasible perturbation directions

We now characterize the set P̂.

Theorem 3.3 Suppose that face(FZP , Sn+) =

[
0 0

0 Sn̄+

]
, where 0 < n̄ < n. Then

P̂ =

{
S =

[
S1 S2

ST2 S3

]
: S1 � 0, R(S2) ⊆ R(S1)

}
. (3.7)

5Relative to the proof of Lemma 3.1, We then have

S1 = B2, where B =

[
δ 0

0
√
δ

]
, and ST2 = BR, where R =

[ 1√
δ

0

]
.
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Proof. Let ŷ ∈ Rm satisfy

C −A∗ŷ =

[ n−n̄ n̄

n−n̄ 0 0

n̄ 0 Ẑ

]
� 0, Ẑ � 0.

Suppose that S ∈ P̂, i.e., C −A∗ỹ � εS for some ỹ ∈ Rm and ε > 0. Then[
−αεS1 −αεS2

−αεST2 (1− α)Ẑ − αεS3

]
= C −A∗ ((1− α)ŷ + αỹ)− αεS � 0,

for all α ∈ [0, 1]; in particular, S1 � 0. Pick a sufficiently small α ∈ (0, 1) such that

(1− α)Ẑ − αεS1 � 0. Then using the Schur complement, we have

−αεS1 − α2ε2S2

(
(1− α)Ẑ − αεS3

)−1
ST2 � 0,

or equivalently,

S1 + αεS2

(
(1− α)Ẑ − αεS3

)−1
ST2 � 0.

Let x ∈ ker(S1). Then xT
(
S2((1− α)Ẑ − αεS3)−1ST2

)
x ≤ 0. But ((1− α)Ẑ − αεS1)−1 is

positive definite, so we have ST2 x = 0. This implies that R(S2) ⊆ R(S1).

Conversely, suppose that S =

[
S1 S2

ST2 S3

]
satisfies S1 � 0 and R(S2) ⊆ R(S1). By

Lemma 3.1, Z − εS � 0 for sufficiently small ε > 0. Therefore S ∈ P̂. �

4 Main results

We first recall that if strong duality holds for (P), then a small feasible perturbation

leads to little change in the optimal value. Here f∗ denotes the convex conjugation of an

extended function f : V→ R∪{+∞}, where (V, 〈·, ·〉V) is a Euclidean space, i.e., f∗(φ) :=

supx{〈φ, x〉V − f(x) : x ∈ V}.

Theorem 4.1 ([5, 18]) The value function valP : Sn → [−∞,∞] is concave. More-

over, vD = −(−valP)∗∗(0), and the equality vP = vD holds if, and only if, valP is upper

semicontinuous at 0. In this case, X∗ is an optimal solution of (D) if, and only if,

valP(S)− valP(0) ≤ 〈X∗, S〉 for all S ∈ Sn.

In particular, if strong duality holds for (P), then for any S ∈ Sn, either (Ppert(S)) is

infeasible or (Ppert(S)) has a finite optimal value. As a corollary of Theorem 4.1 we get

the following linear order type result.
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Corollary 4.2 Suppose that strong duality holds for (P). Then there exists a constant

κ > 0 such that for any S ∈ Sn with (Ppert(S)) feasible, valP(S)− valP(0) ≤ κ‖S‖.

What if strong duality does not hold? We consider the two different cases: (1) (P)-

(D) has a nonzero duality gap, and (2) the duality gap is zero, i.e., vP = vD, but vD is

unattained.

4.1 Case 1: nonzero duality gap

In this case, we show in Theorem 4.6 below that:

for any S ∈ P̂ and sufficiently small ε > 0, we have εS ∈ P and valP(εS) − valP(0) ≥
1
2 (vD − vP) ∈ (0,+∞].

First we show in Lemma 4.3, as a simple extension of Theorem 2.2, that when As-

sumption (1.1) holds, we get vaP = vD even when (D) is infeasible. (We already saw

from Theorem 2.2 that if both (P) and (D) are feasible, then vaP = vD.) In particular,

under Assumption 1.1, (2.2) holds and the duality gap between (P) and (D) is given by

vD − vP = vaP − vP ∈ [0,+∞].

Lemma 4.3 Suppose that (P) is feasible but its dual (D) is infeasible. Then vaP = +∞.

Proof. If (P) does not have a finite optimal value, then vaP ≥ vP = +∞ implies vaP = +∞.

Suppose that (P) has a finite optimal value, i.e., (P) satisfies Assumption 1.1. Since

(D) is infeasible, by Lemma 2.1 there exists a sequence
{

(y(k), Z(k))
}
k

satisfying

bT y(k) ≥ 1 and Z(k) � 0 for all k, and lim
k

(
Z(k) +A∗y(k)

)
= 0.

By Theorem 2.2, (D) cannot be strongly infeasible. Thus Z(k) + A∗y(k) 6= 0 for all k.

(Otherwise y(k) would be an improving direction for (P), implying that (D) is strongly

infeasible from Lemma 2.1.)

For each k, define

ŷ(k) :=
1

‖Z(k) +A∗y(k)‖1/2
y(k), Ẑ(k) :=

1

‖Z(k) +A∗y(k)‖1/2
Z(k).

Then Ẑ(k) � 0 for all k,

‖Ẑ(k) +A∗ŷ(k)‖ = ‖Z(k) +A∗y(k)‖1/2 =⇒ lim
k

(
Ẑ(k) +A∗ŷ(k)

)
= 0
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and

bT ŷ(k) ≥ 1

‖Z(k) +A∗y(k)‖1/2
→ +∞ =⇒ lim

k
bT ŷ(k) = +∞.

On the other hand, since (P) is feasible, let ŷ ∈ Rm satisfy C−A∗ŷ � 0. Then
{
ŷ + ŷ(k)

}
k

is asymptotically feasible for (P), and limk b
T (ŷ + ŷ(k)) = +∞. Hence vaP = +∞. �

Next we show that under Assumption 1.1, any perturbation S ∈ Sn that gives a strictly

feasible (Ppert(S)) leads to a big jump in the optimal value.

Proposition 4.4 Suppose that (P) satisfies Assumption 1.1 and vP < vD ∈ R ∪ {+∞}.
Suppose that S ∈ Sn is given, such that the perturbed SDP (Ppert(S)) satisfies the Slater

condition. Then for all sufficiently small ε ∈ (0, 1),

valP(εS)− valP(0) ≥ 1

2
(vD − vP). (4.1)

Proof. We consider two different cases: (D) is feasible and (D) is infeasible.

Case 1: (D) is feasible. Since (Ppert(S)) satisfies the Slater condition, we have that

S ∈ int(dom(−valP)). Note that −valP(0) ∈ R, so −valP is a proper convex function and

we have [13, Prop. 1.2.5]

vD = −(−valP(0))∗∗ = lim
ε↘0

valP(εS).

In particular, for all sufficiently small ε > 0, we have valP(εS) ≥ vD − 1
2(vD − vP). This

proves (4.1).

Case 2: (D) is infeasible. In this case, (Ppert(S)) is feasible and the dual of (Ppert(S))

is infeasible. Hence Lemma 4.3 applies: there exists a sequence
{

(y(k), Z(k))
}
k

satisfying

Z(k) � 0 ∀ k, lim
k

(
Z(k) +A∗y(k)

)
= C − S and lim

k
bT y(k) = +∞.

Let ŷ ∈ Rm satisfy Ẑ := C −A∗ŷ − S � 0. Fix any ε ∈ (0, λmin(Ẑ)); then there exists K

such that for all k ≥ K, ‖Z(k) +A∗y(k) − (C − S)‖ ≤ ε, implying that

C − S −A∗y(k) − Z(k) � −εI � −Ẑ =⇒ C − 1

2
A∗(y(k) + ŷ) � S +

1

2
Z(k) � S.

Hence for all k ≥ K, 1
2(y(k) + ŷ) is feasible for (Ppert(S)). The fact that limk b

T y(k) = +∞
implies that valP(S) = +∞ = vD, so (4.1) holds. �

Remark 4.5 Since the Slater condition is generic for feasible SDP instances of fixed size,

e.g., [1, 10], the set of feasible perturbations S such that the perturbed SDP (P) fails the
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Slater condition is also of measure zero. In other words, Proposition 4.4 indicates that the

set of feasible perturbations of (P) that does not lead to a “big” jump in optimal value is

indeed of measure zero.

Theorem 4.6 Suppose that (P) satisfies Assumption 1.1 and vP < vD ∈ R ∪ {+∞}.

Suppose that face(FZP , Sn+) =

[
0 0

0 Sn̄+

]
and Z =

[
0 0

0 Ẑ

]
∈ FZP with Ẑ � 0. Let S ∈ P̂ and

ε ∈ (0, δ), where δ is defined in (3.4) as:

δ :=
λmin(Ẑ)

2
(
‖S3‖+ ‖S2‖22 λmax(S†1) + 1

) .
Then we have εS ∈ P and face(FZP , Sn+) ⊆ face

(
FZP (εS), Sn+

)
. In particular, for all

sufficiently small ε > 0,

valP(εS)− valP(0) ≥ 1

2
(vD − vP). (4.2)

Proof. From Lemma 3.1 we have Z − εS � 0, for all ε ∈ (0, δ); therefore εS ∈ P and

Z − εS ∈ FZP (S). Also from Lemma 3.1, we have R(Z) ⊆ R(Z − εS), so

face(FZP , Sn+) = face
(
{Z} , Sn+

)
⊆ face({Z − εS}, Sn+) ⊆ face

(
FZP (εS), Sn+

)
.

It remains to prove (4.2). Let Q ∈ Rn×n̄ be such that Q has orthonormal columns and

face(FZP (εS), Sn+) = QSn̄+QT . Then

valP(εS) = sup
y

{
bT y : QTCQ−QT (A∗y)Q � εQTSQ

}
, (4.3)

which satisfies the Slater condition. On the other hand, consider the primal-dual pair:

v̂P = sup
y

{
bT y : QTCQ−QT (A∗y)Q � 0

}
, (4.4)

v̂D = inf
X̄

{
〈C,QX̄QT 〉 : A(QX̄QT ) = b, X̄ � 0

}
. (4.5)

Since face(FZP , Sn+) ⊆ QSn̄+QT and
{
QX̄QT : A(QX̄QT ) = b, X̄ � 0

}
⊆ {X : A(X) = b,X � 0},

we have

v̂P = vP < vD ≤ v̂D, (4.6)

i.e., the primal-dual pair (4.4) and (4.5) has a nonzero duality gap. Since (4.3) is a

perturbation of (4.4), and satisfies the Slater condition by Proposition 4.4, we conclude
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that (4.6) implies

valP(εS)− valP(0) = valP(εS)− v̂P ≥
1

2
(v̂D − v̂P) ≥ 1

2
(vD − vP) ∈ (0,+∞].

This proves (4.2). �

4.2 Case 2: strong duality fails but duality gap is zero

If the duality gap between (P) and (D) is zero and yet strong duality fails, then by

Theorem 4.1, the function valP(·) is upper semicontinuous at 0 but the subdifferential

∂(−valP(·))(0) is empty. Despite the non-existence of subgradients, we can show that, for

some fixed positive integer d, valP(S)− valP(0) = O(‖S‖1/2d) if S ∈ P is sufficiently small

in norm. This result relies on the following error bound result for LMI.

Theorem 4.7 ([20], Theorem 3.3) Suppose that the set FZP of feasible slacks of (P) is

nonempty. Then there exist constants κ > 0 and ε̄ ∈ (0, 1) such that for any ε ∈ (0, ε̄) and

any Z̃ ∈ Sn satisfying

dist(Z̃, C +R(A∗)) ≤ ε, λmin(Z̃) ≥ −ε,

we have

dist(Z̃,FZP ) ≤ κ(1 + ‖Z̃‖)ε1/2d(A,C)
,

where d(A, C) is the degree of singularity of the linear subspace span({C}∪R(A∗)), defined

in Definition 2.7.

We first deal with the case where (D) satisfies the Slater condition, in Section 4.3; then

we use this to prove the general result in Section 4.4.

4.3 Case 2(a): (D) satisfies the Slater condition

We first prove a weaker result assuming that the dual (D) satisfies the Slater condition

(which together with the feasibility of (P) implies that vP = vD).

Proposition 4.8 Suppose that (P) satisfies Assumption 1.1 and that (D) satisfies the

Slater condition. Then there exist constants κ > 0 and ε̄ ∈ (0, 1) such that for any S ∈ Sn

with 0 < ‖S‖ ≤ ε̄ and (Ppert(S)) feasible,

valP(S)− valP(0) ≤ κ‖S‖1/2d(A,C)
. (4.7)

21



Proof. Let κ0 > 0 and ε̄ ∈ (0, 1) be such that for any Y ∈ Sn and ε ∈ (0, ε̄) with

dist(Y,C +R(A∗)) ≤ ε, λmin(Y ) ≥ −ε,

the following error bound holds:

dist(Y,FZP ) ≤ κ0(1 + ‖Y ‖)ε1/2d(A,C)
. (4.8)

Let X̃ be a strictly feasible solution of (D). Fix any S ∈ Sn with (Ppert(S)) feasible

and ‖S‖ ≤ ε̄. Since the dual of (Ppert(S)) has a (strictly) feasible solution X̃, we get that

valP(S) < +∞ and that valP(S) is attained, i.e., there exist ỹ, Z̃ satisfying

bT ỹ = valP(S), Z̃ = C − S −A∗ỹ � 0.

For any y ∈ Rm satisfying Z := C −A∗y � 0,

valP(S)− valP(0) ≤ bT ỹ − bT y

= 〈X̃, C − S − Z̃〉 − 〈X̃, C − Z〉

≤ ‖X̃‖‖Z − (Z̃ + S)‖.

Minimizing over all Z ∈ FZP ,

valP(S)− valP(0) ≤ ‖X̃‖dist(Z̃ + S, FZP ). (4.9)

But Z̃ + S ∈ C +R(A∗) and λmin(Z̃ + S) ≥ −‖S‖ (because Z̃ + S � S � −‖S‖I). Hence

by (4.8), dist(Z̃ + S, FZP ) ≤ κ0(1 + ‖Z̃ + S‖)‖S‖1/2d(A,C)
. Hence by (4.9),

valP(S)− valP(0) ≤ κ0‖X̃‖(1 + ‖Z̃ + S‖)‖S‖1/2d(A,C)
. (4.10)

Now observe that

λmin(X̃)‖Z̃‖ ≤ 〈C − S −A∗ỹ, X̃〉 ≤ 〈C − S, X̃〉 − valP(S)

=⇒ ‖Z̃ + S‖ ≤ ‖S‖+ ‖Z̃‖ ≤ ‖S‖+
1

λmin(X̃)

(
〈C − S, X̃〉 − valP(S)

)
. (4.11)

Using (4.11) and the assumption that ‖S‖ < 1, the right-hand side of (4.10) no greater
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than the expression

κ0‖X̃‖
(

1 + ‖S‖+
1

λmin(X̃)

(
〈C − S, X̃〉 − valP(S)

))
‖S‖1/2d(A,C)

≤ κ0
‖X̃‖

λmin(X̃)

(
2λmin(X̃) + 〈C − S, X̃〉 − valP(S)

)
‖S‖1/2d(A,C)

.

Putting back into (4.10), we get(
1 + κ0

‖X̃‖
λmin(‖X̃‖)

‖S‖1/2d(A,C)

)
(valP(S)− valP(0))

≤ κ0
‖X̃‖

λmin(X̃)

(
2λmin(X̃) + 〈C − S, X̃〉 − valP(0)

)
‖S‖1/2d(A,C)

.

(4.12)

Note that 2λmin(X̃) + 〈C − S, X̃〉 − valP(0) ≤ 2λmin(X̃) + ‖X̃‖+ 〈C, X̃〉 − valP(0), which

is positive by weak duality. Defining

κ = κ0
‖X̃‖

λmin(X̃)

(
2λmin(X̃) + ‖X̃‖+ 〈C, X̃〉 − valP(0)

)
,

we get from (4.12) that valP(S)− valP(0) ≤ κ‖S‖1/2d(A,C)
. �

4.4 Case 2(b): (D) does not satisfy the Slater condition

Now we consider the case where vP = vD ∈ R but vD is unattained and (D) fails the Slater

condition. Such a scenario can occur, as we can see in Example 2.12. We show that a

bound of the form valP(S) − valP(0) ≤ κ‖S‖1/2d(A,C)
holds even in this case. The proof

idea is to restrict (D) on its minimal face, and then to use the fact that such a restriction

does not change the degree of singularity of (P):

Lemma 4.9 Suppose that (P) and (D) are feasible, and the minimal face of (D) is given

by P̃ Sr+P̃ T for some full column rank matrix P̃ ∈ Rn×r (with r > 0). Then

sup
y

{
bT y : P̃ T (C −A∗y)P̃ � 0

}
(4.13)

is also feasible, and d(A(P̃ · P̃ T ), P̃ TCP̃ ) ≤ d(A, C).

The proof of Lemma 4.9 is given on Page 33 in Appendix C. Now we prove the main

results of this section.

Theorem 4.10 Assume that (P) satisfies Assumption 1.1, and that vP = vD ∈ R but

vD is unattained. Then there exist ε̄ ∈ (0, 1) and κ > 0 such that for any S ∈ Sn with
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(Ppert(S)) feasible and ‖S‖ ≤ ε̄,

valP(S)− valP(0) ≤ κ‖S‖1/2d(A,C)
.

Proof. If (D) satisfies the Slater condition, then the statement in the theorem holds

by Proposition 4.8. In the remainder of the proof we assume that (D) fails the Slater

condition.

Since vD is assumed to be unattained, the minimal face of (D) does not equal {0}.6 Let

P̃ Sr+P̃ T be the minimal face of Sn+ containing the feasible region of (D) with P̃ T P̃ = I.

Therefore we have vD = v̄D , where

v̄D := inf
W

{
〈C, P̃WP̃ T 〉 : A(P̃WP̃ T ) = b, W � 0

}
. (4.14)

By definition of minimal face, (4.14) satisfies the Slater condition. Note that since (D) has

no optimal solution, (4.14) has no optimal solution either. The dual of (4.14) is given by

v̄P := sup
y

{
bT y : P̃ T (C −A∗y)P̃ � 0

}
, (4.15)

Any y feasible for (P) is also feasible for (4.15). Hence we have

vP = vD = v̄D ≥ v̄P ≥ vP, i.e., vP = v̄P. (4.16)

Moreover, the primal-dual pair (4.15)-(4.14) satisfies the assumptions in Proposition 4.8,

which together with Lemma 4.9 implies that there exist constants κ > 0 and ε̄ ∈ (0, 1)

such that for any S̄ ∈ Sr with 0 < ‖S̄‖ ≤ ε̄,

P̃ T (C−A∗y)P̃ � S̄ feasible =⇒ sup
y

{
bT y : P̃ T (C −A∗y)P̃ � S̄

}
− v̄P ≤ κ‖S̄‖1/2

d(A,C)
.

(4.17)

Fix any S ∈ Sn with (Ppert(S)) feasible and ‖S‖ ≤ ε̄. Then by weak duality and the

fact that the feasible region of (D) is contained in P̃ Sr+P̃ T ,

valP(S) ≤ infX {〈C − S,X〉 : A(X) = b, X � 0}
= infW

{
〈C − S, P̃WP̃ T 〉 : A(P̃WP̃ T ) = b, W � 0

}
,

(4.18)

which satisfies the Slater condition. Since P̃ T (C − A∗y)P̃ � P̃ TSP̃ is feasible, strong

6 If the minimal face of (D) is {0}, then X = 0 is the only feasible solution. This implies that b = 0
and vD = 0, so vP = 0 = vD and any primal/dual feasible solution is optimal.
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duality holds and

inf
W

{
〈C − S, P̃WP̃ T 〉 : A(P̃WP̃ T ) = b, W � 0

}
= sup

y

{
bT y : P̃ T (C −A∗y)P̃ � P̃ TSP̃

}
.

(4.19)

Since ‖P̃ TSP̃‖ ≤ ‖S‖ ≤ ε̄, we can use (4.16), (4.17), (4.19) and (4.18) to get

valP(S)− valP(0) = valP(S)− v̄P ≤ κ‖P̃ TSP̃‖1/2
d(A,C) ≤ κ‖S‖1/2d(A,C)

.

�

Remark 4.11 The assumption that vP = vD is important in this proof because this en-

sures that vP = v̄P in (4.16), which generally does not hold because the feasible region of

(4.15) is only a subset of the feasible region of (P).

5 Conclusion

In this paper we have studied the sensitivity analysis for feasible SDP in the case of where

strong duality fails. We have used the notions of asymptotics, facial reduction and degree of

singularity to find bounds on the growth of the objective value based on the size of feasible

perturbations. In particular, the relative growth is infinite along all feasible perturbation

directions in the case of a nonzero duality gap, while it is bounded by a constant dependent

on the degree of singularity if there is a zero duality gap. Examples, including semidefinite

completion problems, are included to illustrate the close relationship between the actual

growth and the derived error bounds.

One of our main tools is the degree of singularity that is based on the number of facial

reduction steps. This illustrates the usefulness of carefully analyzing and taking advantage

of the geometry of SDP.

Appendix A Facial reduction

We first present a basic version of the facial reduction algorithm, from [16], in Algorithm

A.1. The algorithm takes a linear subspace L ⊆ Sn as input, and outputs the degree of

singularity d(L ∩ Sn+, Sn+) as well as the minimal face face(L ∩ Sn+, Sn+). We start with

K0 := Sn+; in each iteration j of the facial reduction algorithm, we either determine that

L∩ri(Kj) 6= ∅, or find D(j+1) ∈ ri(L⊥∩(Kj)∗)\(−Kj)∗ and update Kj+1 = Kj∩
{
D(j+1)

}⊥
.

In particular, Algorithm A.1 finds a finite sequence (D(1), . . . , D(d(L∩ Sn+, Sn+))) that is an

element of C(L ∩ Sn+, Sn+) and a corresponding sequence of cones K1 ⊇ K2 ⊇ · · · ⊇
Kd(L∩ Sn+, Sn+) ⊇ L ∩ Sn+.

25



Algorithm A.1: Facial reduction algorithm

Input: linear subspace L ⊆ Sn
Output: degree of singularity d(L ∩ Sn+, Sn+), minimal face of F = face(L ∩ Sn+, Sn+)

find D(1) ∈ ri(L⊥ ∩ Sn+);
if D(1) = 0 or D(1) � 0 then

% minimal face found;
if D(1) = 0 then

F ← Sn+;
else

F ← {0};
endif
d(L ∩ Sn+, Sn+)← 0;
STOP;

else

K1 ← Sn+ ∩
{
D(1)

}⊥
;

endif

for j=2,. . . do

find D(j) ∈ ri(L⊥ ∩ (Kj−1)∗);
if D(j) ∈ (−Kj−1)∗ then

d(L ∩ Sn+, Sn+)← j − 1;
F ← Kj−1;
STOP;

else

Kj ← Kj−1 ∩
{
D(j)

}⊥
;

endif

endfor
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Observe that the dimension of Kj+1 = Kj ∩
{
D(j+1)

}⊥
must be strictly less than the

dimension of Kj , by the choice of D(j+1). Hence the for-loop in Algorithm A.1 must

terminate in finitely many iterations.

We can describe more precisely the relationship between any finite sequence (D(1), . . . , D(d(L∩ Sn+, Sn+)))

in C(L∩ Sn+, Sn+) (such as the one found in Algorithm A.1) and the corresponding sequence

of cones K1 ⊇ K2 ⊇ · · · ⊇ Kd(L∩ Sn+, Sn+).

Proposition A.1 Let L ⊆ Sn be a linear subspace with k := d(L ∩ Sn+, Sn+) > 0. Pick

any (D(1), . . . , D(k)) ∈ C(L ∩ Sn+, Sn+), and define

K0 := Sn+, Kj := Kj−1 ∩ {D(j)}⊥, ∀ j = 1, . . . , k.

Then there exist full column rank matrices Q(1) ∈ Rn×n1 , Q(2) ∈ Rn1×n2 , . . . , Q(k) ∈
Rnk−1×nk with Q̄(j) := Q(1)Q(2) · · ·Q(j) ∈ Rn×nj (for all j = 1, . . . , k) satisfying

(1) 0 6= D(1) � 0 and 0 6= (Q̄(j))TD(j+1)Q̄(j) � 0, for all j = 1, . . . , k − 1;

(2) ker(D(1)) = R(Q(1)) and ker((Q̄(j))TD(j+1)Q̄(j)) = R(Q(j+1)) for all j = 1, . . . , k−1;

and

(3) Kj = Q̄(j) Snj+ (Q̄(j))T for all j = 1, . . . , k.

Proof. Since 0 6= D(1) ∈ ri(L⊥ ∩ Sn+), the conditions (1)-(3) immediately hold for j = 1.

Suppose that the conditions hold for all 1 ≤ j ≤ k̄, where k̄ < k; we show that they

hold for j = k̄+ 1 too. Recall that D(k̄+1) ∈ (Kk̄)∗\(−Kk̄)∗. By the induction assumption

that Kk̄ = Q̄(k̄) Snk̄+ (Q̄(k̄))T , we get

0 6= (Q̄(k̄))TD(k̄+1)Q̄(k̄) � 0, (A.1)

so condition (1) holds and there exists a full column rank matrix Q(k̄+1) ∈ Rnk̄×nk̄+1 such

that ker((Q̄(k̄))TD(k̄+1)Q̄(k̄)) = R(Q(k̄+1)), i.e., condition (2) holds. Finally, by (A.1) and

the definition of Q(k̄+1),

Kk̄+1 = Q̄(k̄) Snk̄+ (Q̄(k̄))T ∩ {D(k̄+1)}⊥ = Q̄(k̄)Q(k̄+1) Snk̄+ (Q(k̄+1))T (Q̄(k̄))T ,

so condition (3) holds too. �

An immediate consequence of Proposition A.1 is that, by looking at appropriate

nullspaces associated with the matrices D(1), . . . , D(k), we can get an explicit description

of the minimal face face(L ∩ Sn+, Sn+), in the form of QSn̄+QT .
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It is also immediate from Proposition A.1 that the facial reduction algorithm presented

in [20] is equivalent to Algorithm A.1; in [20], a rank-revealing rotation is applied in each

step, i.e., L is updated to be (Q̄(j))TLQ̄(j) and Kj ← (Q̄(j))TKjQ̄(j) =

[
0 0

0 Sn̄j

+

]
, in the

j-th iteration.

Appendix B Well-definedness of the degree of singularity.

The sequence of matrices (D(1), . . . , D(d(L∩ Sn+, Sn+))) found in Algorithm A.1 is an element

of the set C(L ∩ Sn+, Sn+) (defined on Page 9). Naturally, Algorithm A.1 may use any

arbitrary sequence from C(L ∩ Sn+, Sn+). Such flexibility in the choice, however, is not an

issue: in Proposition B.1 below we show that any two distinct sequences in C(L∩ Sn+, Sn+)

provide the same information. In particular, the degree of singularity in Definition 2.7 is

well-defined.

Proposition B.1 Let L ⊆ Sn be a linear subspace, and let (D(1), . . . , D(k)), (D̂(1), . . . , D̂(k̂)) ∈
C(L ∩ Sn+, Sn+). Then k = k̂. Moreover, for each j = 1, . . . , k, letting Kj := Sn+ ∩
{D(1)}⊥ ∩ · · · ∩ {D(j)}⊥ and K̂j := Sn+ ∩{D̂(1)}⊥ ∩ · · · ∩ {D̂(j)}⊥, we have that Kj = K̂j =

Q̄(j) Snj+ (Q̄(j))T for some full column rank matrix Q̄(j).

Proof. It is immediate that R(D(1)) = R(D̂(1)), so K1 = K̂1 = Q̄(1) Sn1
+ (Q̄(1))T , where

Q̄(1) is any full column rank matrix such that R(Q̄(1)) = ker(D(1)) = ker(D̂(1)). Suppose

that Kj−1 = K̂j−1 for all 1 ≤ j ≤ k̄, for some 1 ≤ k̄ ≤ min{k, k̂} − 1. Since D(j), D̂(j) ∈
ri(L⊥∩(Kj−1)∗), by Proposition A.1 we have that Kj = Kj−1∩{D(j)}⊥ = Kj−1∩{D̂(j)}⊥ =

K̂j = Q̄(j) Snj+ (Q̄(j))T for some full column rank matrix Q̄(j), by Item (3) of Proposition

A.1. Hence Kj = K̂j = Q̄(j) Snj+ (Q̄(j))T for all j = 1, . . . ,min{k, k̂}.
Next we show that k = k̂. Suppose without loss of generality that k ≤ k̂. Then by

Proposition 2.5,

L⊥ ∩ (K̂k)∗ = L⊥ ∩ (Kk)∗ ⊆ (−Kk)∗ = (−K̂k)∗,

which implies that L ∩ ri(K̂k) 6= ∅. Hence k̂ = k. �

From Proposition B.1, we see that for fixed linear subspace L ⊆ Sn, any finite sequence

(D(1), . . . , D(d(L∩ Sn+, Sn+))) satisfying the conditions in Definition 2.6 gives the same chain

of cones K1 ⊇ K2 ⊇ · · · ⊇ Kd(L∩ Sn+, Sn+).

Appendix C Proof of Lemma 4.9.

In the following, we prove Lemma 4.9. We first need a few elementary results. Fix any

K / Sn+ and any linear subspace L ⊆ span(K). Then K = QSn̄+QT for some matrix
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Q ∈ Rn×n̄ with orthonormal columns and 1 ≤ n̄ < n, and the equality L ∩ QSn̄+QT =

Q(QTLQ ∩ Sn̄+)QT holds. Define

d(L ∩ K,K) = d(L ∩QSn̄+QT , QSn̄+QT ) := d(QTLQ ∩ Sn̄+, Sn̄+).

We first prove that one iteration of facial reduction does decrease the degree of singu-

larity by 1.

Lemma C.1 Let L ⊆ Sn be a linear subspace such that d(L ∩ Sn+, Sn+) > 0. Fix any

D ∈ ri(L⊥ ∩ Sn+). Then

d(L̃ ∩ K̃, K̃) = d(L ∩ Sn+, Sn+)− 1, where L̃ := L ∩ span(K̃) and K̃ = Sn+ ∩ {D}
⊥ .

Proof. Let k := d(L ∩ Sn+, Sn+) − 1 ≥ 0 and Q ∈ Rn×n̄ be a matrix with orthonormal

columns such that ker(D) = R(Q). Then K̃ = QSn̄+QT .

If k = 0, then there exists some X ∈ L ∩ ri(Sn+ ∩ {D}⊥), i.e., X = QX̄QT ∈ L for

some X̄ � 0. Then X̄ ∈ QT L̃Q ∩ Sn̄++, i.e., d(L̃ ∩ K̃, K̃) = 0 = k.

Suppose that k > 0. Pick any D(1), . . . , D(k) ∈ Sn such that (D,D(1), . . . , D(k)) ∈
C(L ∩ Sn+, Sn+). By Definition 2.6, we have that

D(j) ∈ ri(L⊥ ∩ (Kj−1)∗)\(−Kj−1)∗ and L ∩ ri(Kk) 6= ∅, (C.1)

where K0 = Sn+ ∩ {D}
⊥ = QSn̄+QT and Kj = Kj−1 ∩ {D(j)}⊥ for all j = 1, . . . , k. Define

L̄ := QT L̃Q

D̄(j) := QTD(j)Q, ∀ j = 1, . . . , k,

K̄0 := Sn̄+ and K̄j := K̄j−1 ∩ {D̄(j)}⊥, ∀ j = 1, . . . , k.

We show that

(1) Kj = QK̄jQT , for all j = 1, . . . , k;

(2) L̄⊥ ∩ (K̄j)∗ = QT (L⊥ ∩ (Kj)∗)Q, for all j = 1, . . . , k;

(3) D̄(j) ∈ ri(L̄⊥ ∩ (K̄j−1)∗)\(−K̄j−1)∗, for all j = 1, . . . , k; and

(4) L̄ ∩ ri(K̄k) 6= ∅.

Fix any j ∈ {1, . . . , k}.
For item (1), pick any X ∈ Kj ⊆ K0. Then X = QX̄QT for some X̄ � 0, and for all

j = 1, . . . , k, 〈X̄, D̄(j)〉 = 〈X̄,QD(j)QT 〉 = 〈X,D(j)〉 = 0. Hence X̄ ∈ K̄j , implying that
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Kj ⊆ QK̄jQT . Conversely, pick any X̄ ∈ K̄j and define X := QX̄QT . Then X ∈ K0 and

for all j = 1, . . . , k, 〈X,D(j)〉 = 〈X̄, D̄(j)〉 = 0. Hence QK̄jQT ⊆ Kj .
For item (2), pick any X ∈ L⊥∩(Kj)∗ and let X̄ := QTXQ. For all Ȳ ∈ L̄, Ȳ = QTY Q

for some Y ∈ L̃ = L∩QSn̄QT , so 0 = 〈X,Y 〉 = 〈X,QQTY QQ〉 = 〈X̄, Ȳ 〉. Hence X̄ ∈ L̄⊥.

By (1), we have

(Kj)∗ = (QK̄jQT )∗ =
{
W ∈ Sn : QTWQ ∈ (K̄j)∗

}
,

so X̄ ∈ (K̄j)∗. Therefore we have QT (L⊥ ∩ (Kj)∗)Q ⊆ L̄⊥ ∩ (K̄j)∗. Conversely, pick any

X̄ ∈ L̄⊥∩(K̄j)∗ and define X := QX̄QT . Then X ∈ L̃⊥ = L⊥+(K0)⊥. Let X(1) ∈ L⊥ and

X(2) ∈ (K0)⊥ satisfy X = X(1) +X(2). Observe that X(1) ∈ (Kj)∗: for any Y ∈ Kj , there

exists Ȳ ∈ K̄j such that Y = QȲjQ
T by item (1), and 〈X(1), Y 〉 = 〈X −X(2), QȲ QT 〉 =

〈X̄, Ȳ 〉 ≥ 0 since X̄ ∈ (K̄j)∗. Therefore X(1) ∈ L⊥∩(Kj)∗, and X̄ = QTXQ = QTX(1)Q ∈
QT (L⊥ ∩ (Kj)∗)Q, showing that X̄ ∈ L̄⊥ ∩ (K̄j)∗ ⊆ QT (L⊥ ∩ (Kj)∗)Q.

Item (3) follows from (C.1) and item (2):

D̄(j) ∈ QT
(
ri(L⊥ ∩ (Kj)∗)

)
Q\(−K̄j)∗

= ri
(
QT
(
L⊥ ∩ (Kj)∗

)
Q
)
\(−K̄j)∗ = ri(L̄⊥ ∩ (K̄j)∗)\(−K̄j)∗.

Finally, for item (4), by (C.1) there exists

X ∈ L ∩ ri(Kk) = L ∩ ri(QK̄kQT ) = L ∩Q ri(Kk)QT = L̃ ∩Q
(
ri(Kk)

)
QT

⊆ Q
(
L̄ ∩ ri(Kk)

)
QT .

Hence L̄ ∩ ri(Kk) 6= ∅.
Consequently, from items (1)-(4) we get that (D̄(1), . . . , D̄(k)) ∈ C(L̄ ∩ Sn̄+, Sn̄+), and

d(L̃ ∩ K̃, K̃) = d(L̄ ∩ Sn̄+, Sn̄+) = k = d(L ∩ Sn+, Sn+)− 1.

�

Next we show that the degree of singularity is monotonic under a mild assumption.

Lemma C.2 Let L1,L2 ⊆ Sn be linear subspaces. If L1 ⊆ L2 and L1 ∩ Sn+ 6= {0}, then

d(L2 ∩ Sn+, Sn+) ≤ d(L1 ∩ Sn+, Sn+).

Proof. We prove by induction on d(L1 ∩ Sn+, Sn+) ≥ 0.

If d(L1 ∩ Sn+, Sn+) = 0, then ∅ 6= L1 ∩ Sn++ ⊆ L2 ∩ Sn++. Hence d(L2 ∩ Sn+, Sn+) ≤
d(L1 ∩ Sn+, Sn+).
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Now fix any linear subspace L1 ⊆ L2 ⊆ Sn with L1 ∩ Sn+ 6= {0} and d(L1 ∩ Sn+, Sn+) =

k > 0. We prove that d(L2 ∩ Sn+, Sn+) ≤ d(L1 ∩ Sn+, Sn+). If d(L2 ∩ Sn+, Sn+) = 0, then the

inequality trivially holds. Suppose that d(L2 ∩ Sn+, Sn+) > 0. Since k > 0, there exist

0 6= Dj ∈ ri(L⊥j ∩ Sn+) with Dj 6� 0, for j = 1, 2.

Since L⊥2 ∩ Sn+ ⊆ L⊥1 ∩ Sn+, we have that R(D2) ⊆ R(D1), implying that {D1}⊥ ⊆
{D2}⊥. Therefore L̃1 ⊆ L̃2 and K̃1 ⊆ K̃2, where

L̃j := Lj ∩ span(Sn+ ∩ {Dj}⊥) and K̃j := Sn+ ∩ {Dj}⊥ , for j = 1, 2.

Moreover, by Lemma C.1, we have d(L̃j ∩K̃j , K̃j) = d(Lj ∩ Sn+, Sn+)− 1 for j = 1, 2. Also,

since L1∩ Sn+ 6= {0}, we must have L̃1∩K̃1 = L1∩ Sn+ 6= {0}. Therefore, by the induction

hypothesis, we have d(L̃2 ∩ K̃2, K̃2) ≤ d(L̃1 ∩ K̃1, K̃1), implying that d(L2 ∩ Sn+, Sn+) ≤
d(L1 ∩ Sn+, Sn+). �

We return our focus on the primal-dual pair (P)-(D). In the context of Lemma 4.9,

we are interested in the situation where (D) is feasible but fails the Slater condition. In

that case, by Proposition 2.5,

∃v ∈ Rm s.t. bT v = 0, 0 6= V := A∗v � 0;

the feasible region of (D) is contained in Sn+∩{V }⊥ and V can be used for one iteration of

the facial reduction algorithm on (D). To prove Lemma 4.9, we show that each iteration

of facial reduction on (D) does not increase the degree of singularity of the corresponding

(new) primal, using the following lemma.

Lemma C.3 Let L ⊆ Sn be a linear subspace and suppose that

∃V =

[
0 0

0 V̄

]
∈ L s.t. V̄ ∈ Sn−r++ (0 < r < n). (C.2)

Define the linear subspace L̂ :=
[
Ir 0

]
L
[
Ir

0

]
⊆ Sr. Then

d(L̂ ∩ Sr+, Sr+) ≤ d(L ∩ Sn+, Sn+). (C.3)

Proof. We prove by induction on d(L̂ ∩ Sr+, Sr+).

If d(L̂ ∩ Sr+, Sr+) = 0, then (C.3) immediately holds.

Now assume that d(L̂ ∩ Sr+, Sr+) > 0. Then there exists 0 6= D̂ ∈ ri(L̂⊥ ∩ Sr+) with
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D̂ 6� 0. Let Q̂ ∈ Rr×r1 satisfy R(Q̂) = ker(D̂) and QTQ = I, and let

D :=

[
D̂ 0

0 0

]
∈
[
L̂⊥ ∩ Sr+ 0

0 0

]
= L⊥ ∩ Sn+;

then we have D ∈ ri(L⊥ ∩ Sn+) and R(Q) = ker(D), where Q :=

[
Q̂ 0

0 In−r

]
. Define

L1 := L ∩ span(Sn+ ∩ {D}
⊥) = L ∩QSn−r+r1QT

and L̂1 := L̂ ∩ span(Sr+ ∩ {D̂}⊥) = L̂ ∩ Q̂Sr1QT .

We show that
[
Ir 0

]
L1

[
Ir

0

]
⊆ L̂1. For any X ∈ L1, we have X̄ :=

[
Ir 0

]
X

[
Ir

0

]
∈ L̂. It

remains to show that X̄ ∈ Q̂Sr1Q̂T . Since X ∈ L1, there exists W ∈ Sn−r+r1 such that

X = QWQT . By definition of Q, we get

X̄ =
[
Ir 0

]
QWQT

[
Ir

0

]
=
[
Q̂ 0

] [ r1 n−r

r1 W11 W12

n−r W21 W22

] [
Q̂T

0

]
= Q̂W11Q̂

T .

Hence X̄ ∈ Q̂Sr1Q̂T , implying that X̄ ∈ L̂.

Next we show that
[
Q̂T 0

]
L1

[
Q̂

0

]
∩ Sr1+ 6= {0}. On the contrary, suppose that

[
Q̂T 0

]
L1

[
Q̂

0

]
∩ Sr1+ = {0} , or equivalently, ∃F̂ ∈

([
Q̂T 0

]
L1

[
Q̂

0

])⊥
∩ Sr1++.

Then

[
Q̂F̂ Q̂T 0

0 0

]
∈ L⊥1 = L⊥+ span(D) = L⊥. Since F̂ � 0 and R(Q̂) = ker(D̂), we have

that

[
F̂ + D̂ 0

0 0

]
∈ L⊥ ∩ Sn++, which would imply that L ∩ Sn+ = {0}, contradicting the

assumption (C.2).

Using
[
Ir 0

]
L1

[
Ir

0

]
⊆ L̂1 ⊆ Q̂Sr1+ Q̂

T and
[
Q̂T 0

]
L1

[
Q̂

0

]
∩ Sr1+ 6= {0}, we can apply

Lemma C.2 to get

d(L̂1 ∩ Q̂Sr1+ Q̂
T , Q̂Sr1+ Q̂

T ) ≤ d

([
Ir 0

]
L1

[
Ir

0

]
∩ Q̂Sr1+ Q̂

T , Q̂Sr1+ Q̂
T

)
.

Now note that

Q̂T
[
Ir 0

]
L1

[
Ir

0

]
Q̂ =

[
Q̂T 0

]
L1

[
Q̂

0

]
=
[
Ir1 0

]
QTL1Q

[
Ir1

0

]
,
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so

d

([
Ir 0

]
L1

[
Ir

0

]
∩ Q̂Sr1+ Q̂

T , Q̂Sr1+ Q̂
T

)
=d

([
Ir1 0

]
QTL1Q

[
Ir1

0

]
∩ Sr1+ , S

r1
+

)
≤d
(
QTL1Q ∩ Sn−r+r1+ , Sn−r+r1+

)
,

where the inequality follows from the induction hypothesis, because V1 ∈ Sn−r+r1 defined

by V1 :=

[
0 0

0 V̄

]
lies in QTL1Q. Therefore we get

d(L̂1 ∩ Q̂Sr1+ Q̂
T , Q̂Sr1+ Q̂

T ) ≤ d
(
L1 ∩QSn−r+r1+ QT , QSn−r+r1+ QT

)
By Lemma C.1 and the definitions of L1 and L̂1, we get d(L̂ ∩ Sr+, Sr+) ≤ d(L ∩ Sn+, Sn+).

�

It is straightforward to show that a rotation does not change the degree of singularity

i.e., for any linear subspace L ⊆ Sn and any orthogonal matrix U ∈ Rn×n, d(UTLU ∩

Sn+, Sn+) = d(L ∩ Sn+, Sn+). Therefore, we can drop the assumption that V =

[
0 0

0 V̄

]
with

V̄ � 0 and allow for general V that is singular and nonzero:

Corollary C.4 Suppose that (P) is feasible and there exist V ∈ Sn and v ∈ Rm such that

0 6= V = A∗v � 0, (C.4)

and ker(V ) = R(P ), where P ∈ Rn×r has orthonormal columns. Let Ĉ = P TCP ∈ Sr,
Âi = P TAiP ∈ Sr for i ∈ 1 : m, and define Â : Sr → Rm using Â1, . . . , Âm. Define

L̂ := span(Ĉ, Â1, . . . , Âm). Then d(L̂ ∩ Sr+, Sr+) ≤ d(L ∩ Sn+, Sn+).

Now we can easily prove Lemma 4.9.

Proof of Lemma 4.9. The feasibility of (4.13) is immediate. The minimal face P̃ Sr+P̃ T

can be obtained via facial reduction on (D). At each step of the facial reduction, the

corresponding new primal (P) remains feasible and the degree of singularity of LMI defining

the new primal feasible region does not increase, by Corollary C.4. In particular, the

projection P̃ T · P̃ on the primal feasible region using the minimal face of (D) does not

increase the degree of singularity. �
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X � 0, positive semidefinite, 3

C(L ∩ Sn+, Sn+), 9

FZ , set of feasible slacks for (P), 7

Sn, symmetric matrices, 3

d(A, C), degree of singularity, 9

d(L ∩ Sn+, Sn+), degree of singularity, 9

(Ppert(S)), perturbed problem, 4

SDP, semidefinite program, 3

vD, dual optimal value, 3

vP, primal optimal value, 3

asymptotic optimal value, 5

asymptotically feasible, 5

conjugate face, 6

convex conjugation, 17

degree of singularity, 4, 8, 9

d(A, C), 9

d(L ∩ Sn+, Sn+), 9

dual cone, 6

exposed, 6

face, 6

conjugate face, 6

minimal face, face(T ,S), 7

facial reduction, 2, 8

facially exposed, 7

feasible, 3

feasible perturbation directions, 13

P̂ = P̂(A, C), 14

feasible perturbations, 5, 13

P := P(A, C), 13

feasible SDP, 3

Frobenius norm, 3

improving direction, 6

improving direction sequence, 6

minimal face, 2, 7

face(T ,S), 7

minimal face of a feasible SDP, 7

perturbed problem, (Ppert(S)), 4

positive semidefinite completion problem, 11

positive semidefinite, X � 0, 3

primal-dual pair of SDPs, 3

proper face, 6

relative interior, ri(·), 6

semidefinite program, SDP, 3

set of feasible slacks for (P), FZ , 7

Slater condition, 3

spectral norm, 3

Strong duality, 3

strongly infeasible, 5

symmetric matrices, Sn, 3

trace inner product, 3

weak duality, 6

weakly infeasible, 5
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