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1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Orthogonal Relaxation 73 Trust Region Relaxation 93.1 Necessary and Su�cient Optimality Conditions . . . . . . . . . . . . . . . . . 13AbstractLagrangian duality underlies many e�cient algorithms for convex minimization prob-lems. A key ingredient is strong duality. Lagrangian relaxation also provides lower boundsfor nonconvex problems, where the quality of the lower bound depends on the dualitygap. Quadratically constrained quadratic programs (QQPs) provide important examplesof nonconvex programs. For the simple case of one quadratic constraint (the trust regionsubproblem) strong duality holds. In addition, necessary and su�cient (strengthened)second order optimality conditions exist. However, these duality results already fail forthe two trust region subproblem.Surprisingly, there are classes of more complex, nonconvex QQPs where strong du-ality holds. One example is the special case of orthogonality constraints, which arisenaturally in relaxations for the quadratic assignment problem (QAP). In this paper weshow that strong duality also holds for a relaxation of QAP where the orthogonalityconstraint is replaced by a semide�nite inequality constraint. Using this strong dualityresult, and semide�nite duality, we develop new trust-region type necessary and su�cientoptimality conditions for these problems. Our proof of strong duality introduces and usesa generalization of the Ho�man-Wielandt inequality.1 IntroductionQuadratic programs with quadratic constraints (QQPs) are an important modelling tool formany optimization problems; almost as important as the linear programming model. Appli-cations for QQP include e.g. hard combinatorial problems, e.g. [25], and SQP algorithms fornonlinear programming, e.g. [17]. These QQPs are often not convex and so are very hard to2



solve numerically. One approach is to use the Lagrangian relaxation of a QQP to obtain anapproximate solution. The strength of such a relaxation depends on the duality gap, where azero duality gap means that the relaxation is exact. In this paper we present a new techniquefor closing the duality gap for a class of nonconvex problems. This technique is to add certainredundant constraints before taking the Lagrangian relaxation.The simplest of the nonconvex QQPs is the trust region subproblem, TRS, which consistsof a quadratic objective with a single quadratic constraint. The constraint is usually the simplenorm constraint (we normalize the right hand side to 1)xTx = 1 (or � 1): (1)Surprisingly, see [29], the Lagrangian relaxation for this possibly nonconvex problem is exact.Moreover, there are (strengthened) second order necessary and su�cient optimality conditionsfor TRS, [19].A visually similar problem to the equality-constrained TRS is the matrix quadratic problemwith orthogonality constraints XXT = I: (2)Some such problems can be solved e�ciently using eigenvalue techniques, such as the Ho�man-Wielandt inequality. However strong duality fails for the obvious Lagrangian dual based onrelaxing the constraint (2).In [3] it was shown that for a certain homogeneous QQP with the orthogonality constraints(2), strong duality does hold if the seemingly redundant constraintXTX = Iis added before the Lagrangian dual is formed. In this paper we extend this strong dualityresult to a problem where the orthogonality constraint (2) is replaced by the trust-region typesemide�nite inequality XXT � I; (3)where for two symmetric matrices, S � T denotes that T �S is positive semide�nite. For thisproblem we also develop new strengthened second order necessary and su�cient optimalityconditions that are similar to the conditions known to hold for TRS.3



1.1 Background1.1.1 General QQPsConsider the quadratically constrained quadratic programQQP min q0(x)s.t. qk(x) � 0 (or = 0); k = 1; : : :m;where qi(x) := 12xTQix+ gTi x is a quadratic function. The Lagrangian function isL(x; �) := q0(x) + mXk=1 �kqk(x);where the multiplier �k is constrained to be nonnegative if the kth constraint is an inequality.It is unconstrained if it is an equality and it is a symmetric matrix � � 0 in the case of thetrust region type constraint (3). The Lagrangian dual or relaxation is thenmax� minx L(x; �): (4)There has been a great deal of recent work on QQPs. The tractable case is the convexcase, i.e. the objective and constraint functions are all convex (linear for equality constraints).In this case, the solution value is attained and there is a zero duality gap between QQP andits Lagrangian dual [18]. The bridge between the convex and the nonconvex case is the TRSproblem discussed above. This problem is tractable, [30], and very e�cient algorithms existboth for moderate dense problems, [19] and large sparse problems, [27, 28].One view of the Lagrangian relaxation of QQPs is in terms of semi-in�nite programmingand valid inequalities. Let F denote the feasible set of the QQP. Then we trivially have� � 0 ) F � V� := fx : q�(x) := mXk=1�kqk(x) � 0g:Thus q� provides a valid inequality for the feasible set. However, we now see that not all thesevalid inequalities are useful.The outer maximization problem in the dual problem (4) has the hidden constraint thatthe Hessian Q0 + mXk=1 �kQk � 0;4



since otherwise the inner minimization is unbounded below. Thus, for each vector of Lagrangemultipliers � � 0 such that the Hessian of the Lagrangian is positive semide�nite, we concludethat the useful valid inequalities for the feasible set of QQP are given by� � 0;r2xxL(x; �) � 0 ) F � V�:(See [10, 16] for details for a linear objective function. The nonlinear case is being studied in[1].) Therefore, a zero duality gap means that we have enough of these useful valid inequalities.Otherwise, an obvious question is: can we �nd additional quadratic constraints to close theduality gap.One of the highlights of the new results on QQPs is the result of Goemans-Williamson,e.g. [11], on the strength of the semide�nite programming, SDP, relaxation for the max-cutproblem. This result essentially shows how well one can approximate the optimum of the QQPmax xTQx s.t. x2i = 1; i = 1; : : : ; n;where Q arises from the Laplacian matrix of the underlying (nonnegatively weighted) graph.This result has been extended in several ways: to allow for general Q [22]; to replace theconstraints with interval constraints [31]; to allow for general homogeneous constraints [20, 9];and other extensions [4, 21]. The above mentioned papers all characterize the quality of atractable approximation to a nonconvex QQP, rather than �nding special quadratic constraintsto add in order to improve the approximation. The interpretation of the semide�nite relaxationin terms of valid quadratic inequalities is discussed in [10, 16].1.1.2 Quadratic Assignment Problem and RelaxationsThe Quadratic Assignment Problem, QAP, in the trace formulation is�� := minX2� tr �AXBXT + CXT� ;where � denotes the set of permutation matrices, and A;B;C are n� n matrices. We assumethroughout that A and B are real and symmetric. Applications of QAP include plant locationproblems, where the three matrices represent distances between sites, 
ows between plants,5



and location costs, respectively, and the permutation matrix X denotes which plant is locatedat which site. See for example [24, 6] for an extensive discussion of applications and algorithmsfor QAP.The QAP is an NP-hard problem. In fact, this is one of the most di�cult problems tosolve in practice as there exist problems with dimension n = 20 still unsolved, [13, 24, 6].For QAPs dimension n = 25 is considered \large scale." The problem consists of a, possiblynonconvex, quadratic objective function over the (discrete) set of permutation matrices. Sincethe set of permutation matrices is the intersection of the orthogonal matricesO with the doublystochastic matrices E and the nonnegative matrices N ,� = O \ E \ N ;relaxations for the QAP often include quadratic constraints such asXXT = I;or the trust region type of constraint XXT � I:As the objective in QAP is itself quadratic, these relaxations of QAP lead naturally to inter-esting classes of QQPs.General nonlinear optimization over orthogonality constraints is considered in [7] while thepartial order constraint XXT � I is discussed in [23]. The relationship Y = XXT is used tomodel graph partitioning problems in [14, 2].1.2 OutlineIn this paper we study the trust region type relaxation for homogeneous (C = 0) QAP. We�rst �nd the explicit solution for the relaxation, and thus introduce an extension of the well-known Ho�man-Wielandt inequality. We then show that by adding the seemingly redundantconstraint XTXT � I before forming the Lagrangian dual we can close the duality gap. Usingthis strong duality result, and semide�nite duality, we obtain new necessary and su�cientcharacterizations for optimality which are similar to the ordinary trust region subproblemresult in nonlinear programming. 6



1.3 NotationWe now describe the notation used in the paper. Comprehensive up-to-date notation for SDPis available on the WWW with URL:http://orion.uwaterloo.ca/~hwolkowi/henry/software/psd tool.d/sdnotation.d/notation.ps.Throughout this paper we work with real matrices. Let Sn denote the space of n � nsymmetric matrices equipped with the trace inner product, hA;Bi = trAB. Let A � 0(resp. A � 0) denote positive semide�niteness (resp. positive de�niteness); A � B denotesA � B � 0, i.e. Sn is equipped with the L�owner partial order. We let P denote the cone ofsymmetric positive semide�nite matrices; Mm;n denotes the space of general m � n matricesalso equipped with the trace inner product, hA;Bi = trATB; while Mm denotes the space ofgeneral m�m matrices; O denotes the set of orthonormal (orthogonal) matrices; � denotesthe set of permutation matrices.We let Diag(v) be the diagonal matrix formed from the vector v; its adjoint operator isdiag(M) which is the vector formed from the diagonal of the matrix M: For M 2 Mm;n; thevector m = vec(M) 2 <mn is formed (columnwise) from M .The Kronecker product of two matrices is denoted A 
 B, and the Hadamard product isdenoted A �B:We use e to denote the vector of all ones, and E = eeT to denote the matrix of all ones.We use J to denote the matrix J = (en; en�1; � � � ; e1), where ei is the ith unit vector.2 Orthogonal RelaxationOne successful relaxation for the homogeneous (C = 0) QAP is the eigenvalue relaxation [8],i.e. one replaces � with the set of orthogonal matricesO := fX : XXT = Ig:We now consider strong duality results for this problem. The relaxed problem can be written�O := minX2O trAXBXT : (5)7



The bound �O is often referred to as the eigenvalue bound for QAP. This bound is based onthe following inequality, which can be viewed as a variant of the classical Ho�man-Wielandtinequality, see e.g. [8, 26, 5].Theorem 1 Let V TAV = �, UTBU = �, where U; V 2 O, � = Diag(�), � = Diag(�),�1 � �2 � � � � � �n, �1 � �2 � � � � � �n. Then for any X 2 O, we havenXi=1 �i�n�i+1 � trAXBXT � nXi=1 �i�i:The upper bound is attained for X = V UT , and the lower bound is attained for X = V JUT ,where J = (en; en�1; � � � ; e1) and ei is the ith element unit vector.It is clear that the eigenvalue bound is a tractable bound, i.e. it can be e�ciently computedin polynomial time by computing the eigenvalues and ordering them appropriately. However,there can be a duality gap for the Lagrangian relaxation of (5) (and so also for the SDPrelaxation, which is equivalent); see [32] for an example. Interestingly, we can close this dualitygap by adding the seemingly redundant constraint XTX = I before forming the Lagrangiandual; see [3]. De�ne the primal problemQAPO �O = min trAXBXTs:t: XXT = I; XTX = I:Using symmetric matrices S and T to relax the constraints XXT = I and XTX = I, respec-tively, we arrive at a dual problemDQAPO �O � �DO := max trS + trTs.t. (I 
 S) + (T 
 I) � (B 
A)S = ST ; T = T T :Theorem 2 [3] Strong duality holds for QAPO and DQAPO, i.e. �DO = �O and both primaland dual values are attained. 8



3 Trust Region RelaxationA further relaxation of the above orthogonal relaxation is the trust region relaxation studiedin [15], �Tr := min trAXBXTs.t. XXT � I:The constraints XXT � I are convex, and so it is hoped that solving this problem would beuseful in obtaining bounds for QAP.To begin, we will characterize the value �Tr by proving a generalization of Theorem 1. Werequire the following technical result.Lemma 3 Let B and X be n� n matrices, with B symmetric. Let �1 � �2 � : : : � �n be theeigenvalues of B, and �01 � �02 � � � � � �0n the eigenvalues of XBXT . Let X = P T�Q be thesingular value decomposition of X, where P;Q 2 O, � = Diag(
), 
1 � 
2 � � � � � 
n � 0.Then 
2n�i � �0i � 
21�i; for �i � 0;
21�i � �0i � 
2n�i; for �i < 0:Proof: Let X denote a subspace of <n, and jX j denote the dimension of X . First we assumethat X is nonsingular. Because the eigenvalues of XBXT are also those of �QBQT�, by theCourant-Fisher theorem [12, Theorem 4.2.11] we have�0i = minjX j=n�i+1 max06=x2X xT�QBQT�xk x k2 :Then �0i = minjX j=n�i+1 max06=��1Qy2X yTByk ��1Qy k2 :Let Y = QT�X . Due to the nonsingularity of �, jYj = jX j, and in addition we clearly havekyk2
21 � k��1Qyk2 � kyk2
2n :9



Moreover it is well know that the inertia of B is preserved under the transformation XBXT[12, Theorem 4.5.8], and therefore the signs of �i and �0i coincide, for each i. It follows thatfor �0i � 0 we have �0i � 
21 minjYj=n�i+1 max06=y2Y yTByk y k2 = 
21�i;�0i � 
2n minjYj=n�i+1 max06=y2Y yTByk y k2 = 
2n�i:While for �0i < 0 we have �0i � 
21 minjYj=n�i+1 max06=y2Y yTByk y k2 = 
21�i;�0i � 
2n minjYj=n�i+1 max06=y2Y yTByk y k2 = 
2n�i:This completes the proof under the assumption that X is nonsingular. If X is singular, we canperturb the zero 
i values and use the fact that the eigenvalues �0i are continuous functions of
, to obtain the given bounds.Theorem 4 Let V TAV = �, UTBU = �, where U; V 2 O, � = Diag(�), � = Diag(�),�1 � �2 � � � � � �n, �1 � �2 � � � � � �n. Then for any X with XXT � I we havenXi=1minf0; �i�n�i+1g � trAXBXT � nXi=1maxf0; �i�ig:The upper bound is attained for X = V Diag(�)UT , where �i = 1 if �i�i � 0, and �i = 0otherwise. The lower bound is attained for X = V Diag(�)JUT , where �i = 1 if �i�n+1�i � 0,and �i = 0 otherwise, J = (en; en�1; � � � ; e1) and ei is the ith element unit vector.Proof: From Theorem 1 we havenXi=1 �i�0n�i+1 � trAXBXT � nXi=1 �i�0i; (6)where �01 � �02 � : : : � �0n are the eigenvalues of XBXT . In addition, the result of Lemma 3(using 
1 � 1, 
n � 0) implies that for any i and j,�i�0j � ( �i�j if �i�j � 00 otherwise ; �i�0j � ( �i�j if �i�j < 00 otherwise : (7)10



The bounds of the theorem follow by combining (6) and (7). Attainment of the bounds maybe veri�ed by direct substitution of the indicated solutions into trAXBXT .For a scalar �, let �� := minf0; �g. From attainment of the lower bound in Theorem 4,we have = �TrPni=1[�i�n+1�i]�. To establish a strong duality result for the trust region typerelaxation, we will next prove that this same value is attained by the solution of a Lagrangiandual program. Note that since XXT and XTX have the same eigenvalues, the conditionXXT � I is equivalent to XTX � I. Explicitly using both sets of constraints, as in [3], weobtain the trust region type relaxationQAPT �Tr = min trAXBXTs.t. XXT � I; XTX � I:Next we apply Lagrangian relaxation to QAPT, using matrices S � 0 and T � 0 to relax theconstraints XXT � I and XTX � I, respectively. This results in the dual problemDQAPT �T � �DT := max � trS � trTs.t. (B 
A) + (I 
 S) + (T 
 I) � 0S � 0; T � 0:To prove that �Tr = �DT we will use the following simple result.Lemma 5 Let � 2 <n, �1 � �2 � : : : � �n. For � 2 <n consider the problemmin z� := nXi=1[�i��(i)]�;where �(�) is a permutation of f1; : : : ; ng, Then the permutation that minimizes z� satis�es��(1) � ��(2) � : : : ��(n).Proof: Assume that �i < �i+1 for some i. We will show that interchanging �i and �i+1cannot increase the value of Pni=1[�i�i]�. The lemma then follows, since if ��(�) is a minimizingpermutation we can go from ��(�) to �(�) with ��(1) � ��(2) � : : : � ��(n) by a sequence ofpairwise interchanges. 11



Assume without loss of generality that �1 < �2. Our goal is to show that v0 � v, wherev := [�1�1]� + [�2�2]�; v0 := [�1�2]� + [�2�1]�:We will demonstrate this via a case analysis, depending on the signs of �1, �2, �1, and �2. Forconvenience we number the cases as indicated in the following table.0 � �1 � �2 �1 � �2 < 0 �1 < 0 � �20 � �1 � �2 Case 1 Case 20 Case 30�1 � �2 < 0 Case 2 Case 10 Case 40�1 < 0 � �2 Case 3 Case 4 Case 100Case 1/10/100: In each of these cases v = 0, so v0 � 0) v0 � v.Case 2/20: In these cases we need to show that �1�2+�2�1 � �1�1+�2�2, which is equivalentto (�2 � �1)(�2 � �1) � 0, and this holds by assumption.Case 3/30: In Case 3 we need to show that �1�2 � �1�1, which is equivalent to �1(�2��1) � 0,and this holds by assumption. Case 30 is similar.Case 4/40: In Case 4 we need to show that �2�1 � �2�2, which is equivalent to �2(�2��1) � 0,and this holds by assumption. Case 40 is similar.Theorem 6 Strong duality holds for QAPT and DQAPT , i.e. �D = �DT and both primaland dual values are attained.Proof: Let A = V �V T , B = U�UT , where V;U 2 O, � = Diag(�), � = Diag(�). Then forany S and T ,(B 
A) + (I 
 S) + (T 
 I) = (U 
 V ) h(�
 �) + (I 
 �S) + ( �T 
 I)i (UT 
 V T );where �S = V TSV , �T = UTTU . Since U 
 V is nonsingular, trS = tr �S and trT = tr �T , thedual problem DQAPT is equivalent to�DT = max � trS � trTs.t. (�
 �) + (I 
 S) + (T 
 I) � 0 (8)S � 0; T � 0:12



However, since � and � are diagonal matrices, (8) is equivalent to the ordinary linear program:LD max �eTs� eT ts.t. �i�j + sj + ti � 0; i; j = 1; : : : ; n:s � 0; t � 0:But LD is the dual of the linear \semi-assignment" problem:LP min Xi;j �i�jxijs.t. nXj=1xij � 1; i = 1; : : : ; nnXi=1 xij � 1; j = 1; : : : ; nxij � 0; i; j = 1; : : : ; n:Then LP can be interpreted as the problem of �nding a permutation �(�) of f1; : : : ; ng so thatPni=1[�i��(i)]� is minimized. Assume without loss of generality that �1 � �2 � : : : � �n, and�1 � �2 � : : : � �n. From Lemma 5 the optimal permutation is then �(i) = i, i = 1; : : : ; n,and from Theorem 4 the solution value �DT is exactly �D.3.1 Necessary and Su�cient Optimality ConditionsIn [15] the following su�cient conditions are conjectured to also be necessary for optimality inQAPT: XXT � I;S � 0; trS(XXT � I) = 0;AXB + SX = 0;tr(AhBhT + ShhT ) � 0; if XhT + hXT is nsd on N (XXT � I): (9)These conditions are similar to the standard second order optimality conditions, and are in thespirit of results for the ordinary trust region problem, i.e. they contain strengthened second13



order conditions where the Hessian of the Lagrangian is positive semide�nite on a larger setthan the standard tangent cone. (For the standard trust region problem, the Hessian of theLagrangian is positive semide�nite on the whole space.)Using the characterization of optimality in Theorem 4, we can show that for some specialcases the conditions (9) are in fact necessary for optimality in QAPT.Theorem 7 Assume that B = I. Then the conditions (9) are necessary for X to be an optimalsolution of QAPT.Proof: LetX be an optimal solution of QAPT. Then [15, Theorem 3.1] there exists S satisfyingthe �rst three conditions in (9). From the second condition it follows that SXXT = S, andtherefore, from the third, AXXT + S = 0. Assume thatA = V 0BBB@�1 0 00 0 00 0 �31CCCA V T ; XXT = V 0BBB@X11 XT21 XT31X21 X22 XT32X31 X32 X331CCCA V Twhere V 2 O, �1 � 0 and �3 � 0 are diagonal matrices, and the blocks X11 and X33 have thesame dimensions as �1 and �3, respectively. Then trAXBXT = tr(�1X11 + �3X33) � tr �1,sinceX33 � 0 and X11 � I. Moreover from Theorem 4 the optimal solution value is �Tr = tr �1.It follows that we must have X33 = 0, and X11 = I. The facts that XXT � 0 and X33 = 0together then imply that X13 = 0 and X23 = 0, while XXT � I and X11 = I together implythat X21 = 0. Therefore S = �AXXT = V 0BBB@��1 0 00 0 00 0 01CCCA V T ;and A+ S � 0. Then tr(AhhT + ShhT ) � 0 for any matrix h, so the conditions (9) hold.In addition, if A and B are positive semide�nite, then the conjectured conditions (9) arenecessary. However, as we next demonstrate, the conditions (9) may in fact fail to hold.14



Example 8 Let A = 0B@ 2 00 1 1CA ; B = 0B@ �3 00 �1 1CA :Using Theorem 4 one can show that X = I is the global optimum of QAPT, and thereforeN (XXT � I) = <2. The stationarity condition AXB + SX = 0 implies thatS = 0B@ 6 00 1 1CA ; and h = 0B@ �1 0�1 �1 1CAsatis�es XhT + hXT � 0. However, trAhBhT + ShhT = �2.Thus the conditions (9) may fail to hold at an optimal solution X of QAPT. We willnow use the strong duality result of Theorem 6, and the fact that DQAPT is a semide�niteprogram, to derive valid necessary and su�cient conditions for optimality in QAPT. Theseoptimality conditions are exactly like the standard trust region optimality conditions, i.e. theycontain strengthened second order conditions where the Hessian of the Lagrangian is positivesemide�nite on the whole space.For an n2 � n2 matrix Y , we use Y[ij] to denote the n � n matrix which is the i; j block ofY , i; j = 1; : : : ; n. De�ne linear operators bdiag(�) and odiag(�), <n2�n2 ! <n�n, bybdiag(Y ) := nXi=1 Y[ii];odiag(Y )ij := trY[ij]; i; j = 1; : : : ; n:It is then easy to show that bdiag(�) and odiag(�) are the adjoints of the operators S ! I 
S,and T ! T 
 I, respectively. (These adjoint operators arise in the derivation of an SDPrelaxation for QAP in [32].) It follows that the semide�nite dual of the program DQAPT isthe following semide�nite relaxation of QAPT:QAPSDP min tr(B 
A)Ys.t. bdiag(Y ) � Iodiag(Y ) � IY � 0:15



Note that the objective of QAPT is trAXBXT = vec(X)T (B 
 A) vec(X) = tr(B 
A) vec(X) vec(X)T . The problem QAPSDP can be derived directly from QAPT by relaxingvec(X) vec(X)T to an n2�n2 matrix Y � 0. For Y = vec(X) vec(X)T , note that Y[ij] = XiXTj ,where Xi is the ith column of X. It follows that for such a Y ,bdiag(Y ) = XXT ; odiag(Y ) = XTX; (10)so the constraints of QAPSDP are natural extensions of the conditions XTX � I andXXT � Ito an arbitrary Y � 0.Since DQAPT and QAPSDP both have interior solutions strong duality must hold betweenthese programs [2]. It follows that any optimal solutions Y and S, T satisfy the followingoptimality conditions: Y � 0; bdiag(Y ) � I; odiag(Y ) � I;S � 0; trS(I � bdiag(Y )) = 0;T � 0; trT (I � odiag(Y )) = 0;(B 
A) + (I 
 S) + (T 
 I) � 0;trY �(B 
A) + (I 
 S) + (T 
 I)� = 0: (11)Theorem 9 The matrix X is optimal for QAPT if and only if there exist symmetric matricesS � 0, T � 0 such that XXT � I; primal feasibilitytrS(I �XXT ) = 0; complementary slacknesstrT (I �XTX) = 0; complementary slacknessAXB + SX +XT = 0; stationarity(B 
A) + (I 
 S) + (T 
 I) � 0: strengthened second orderProof: From Theorem 6 there is an X with XXT � I so that Y = vec(X) vec(X)T is optimalin QAPSDP. For such a Y , note thatY �(B 
A) + (I 
 S) + (T 
 I)� = vec(X) vec(X)T�(B 
A) + (I 
 S) + (T 
 I)�= vec(X) ��(B 
A) + (I 
 S) + (T 
 I)�vec(X)�T= vec(X) vec(AXB + SX +XT )T : (12)16



But Y � 0, (B
A)+(I
S)+(T
I) � 0, and tr Y �(B
A)+(I
S)+(T
I)� = 0 togetherimply that Y �(B 
A) + (I 
 S) + (T 
 I)� = 0, so (12) implies that AXB + SX +XT = 0.The remaining conditions follow from (11) and (10).Notice that the conditions of Theorem 9 are equivalent to the usual second order necessaryconditions for optimality, except for the fact that the Hessian of the Lagrangian is positivesemide�nite everywhere rather than on just the tangent space at the optimum.It is interesting to examine the optimality conditions of Theorem 9 in the case of Example8, which provided a counterexample to the conjectured conditions (9). Since in this case Aand B are diagonal it is easy to see that S and T may also be taken to be diagonal matricesS = Diag(s), T = Diag(t). The conditions AXB + SX +XT = 0 then become�6 + s1 + t1 = 0; t1 = 6� s1 � 0;�1 + s2 + t2 = 0; t2 = 1� s2 � 0; (13)implying 0 � s1 � 6, 0 � s2 � 1. Since XTX = XXT = I, to satisfy the conditions ofTheorem 9 it remains only to satisfy the strengthened second order condition, which can bewritten �6 + s1 + t1 � 0;�3 + s2 + t1 � 0;�2 + s1 + t2 � 0;�1 + s2 + t2 � 0: (14)The �rst and fourth inequalities of (14) are satis�ed with equality, from (13). Using (13) toeliminate t1 and t2, the second and third inequalities of (14) can be written�3 + s2 + (6� s1) = 3 + s2 � s1 � 0;�2 + s1 + (1� s2) = �1 + s1 � s2 � 0:Thus we require (s1; s2) having0 � s1 � 6; 0 � s2 � 1; 1 � s1 � s2 � 3;which is a feasible system of constraints; for example s1 = 4, s2 = 1, t1 = 2, t2 = 0 provide Sand T such that the conditions of Theorem 9 are satis�ed.17
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