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Abstract

Lagrangian duality underlies many efficient algorithms for convex minimization prob-
lems. A key ingredient is strong duality. Lagrangian relaxation also provides lower bounds
for nonconvex problems, where the quality of the lower bound depends on the duality
gap. Quadratically constrained quadratic programs (QQPs) provide important examples
of nonconvex programs. For the simple case of one quadratic constraint (the trust region
subproblem) strong duality holds. In addition, necessary and sufficient (strengthened)
second order optimality conditions exist. However, these duality results already fail for
the two trust region subproblem.

Surprisingly, there are classes of more complex, nonconvex QQPs where strong du-
ality holds. Ome example is the special case of orthogonality constraints, which arise
naturally in relaxations for the quadratic assignment problem (QAP). In this paper we
show that strong duality also holds for a relaxation of QAP where the orthogonality
constraint is replaced by a semidefinite inequality constraint. Using this strong duality
result, and semidefinite duality, we develop new trust-region type necessary and sufficient
optimality conditions for these problems. Our proof of strong duality introduces and uses

a generalization of the Hoffman-Wielandt inequality.

Introduction

Quadratic programs with quadratic constraints (QQPs) are an important modelling tool for

many optimization problems; almost as important as the linear programming model. Appli-

cations for QQP include e.g. hard combinatorial problems, e.g. [25], and SQP algorithms for

nonlinear programming, e.g. [17]. These QQPs are often not convex and so are very hard to



solve numerically. One approach is to use the Lagrangian relaxation of a QQP to obtain an
approximate solution. The strength of such a relaxation depends on the duality gap, where a
zero duality gap means that the relaxation is exact. In this paper we present a new technique
for closing the duality gap for a class of nonconvex problems. This technique is to add certain
redundant constraints before taking the Lagrangian relaxation.

The simplest of the nonconvex QQPs is the trust region subproblem, TRS, which consists
of a quadratic objective with a single quadratic constraint. The constraint is usually the simple

norm constraint (we normalize the right hand side to 1)
e =1 (or <1). (1)

Surprisingly, see [29], the Lagrangian relaxation for this possibly nonconvex problem is exact.
Moreover, there are (strengthened) second order necessary and sufficient optimality conditions
for TRS, [19].

A visually similar problem to the equality-constrained TRS is the matrix quadratic problem
with orthogonality constraints

XXT=1. (2)

Some such problems can be solved efficiently using eigenvalue techniques, such as the Hoffman-
Wielandt inequality. However strong duality fails for the obvious Lagrangian dual based on
relaxing the constraint (2).

In [3] it was shown that for a certain homogeneous QQP with the orthogonality constraints

2), stron duahty does hold if the seemin 1y redundant constraint
Y g g

i1s added before the Lagrangian dual is formed. In this paper we extend this strong duality
result to a problem where the orthogonality constraint (2) is replaced by the trust-region type
semidefinite inequality

XXT <1, (3)
where for two symmetric matrices, S < T denotes that T'— S is positive semidefinite. For this
problem we also develop new strengthened second order necessary and sufficient optimality

conditions that are similar to the conditions known to hold for TRS.



1.1 Background
1.1.1 General QQPs

Consider the quadratically constrained quadratic program

QQP min  go(x)
s.b. qe(z) <0 (or =0), k=1,...m,
where ¢;(z) := %:BTQl:B + g¥z is a quadratic function. The Lagrangian function is
k=1
where the multiplier A;, is constrained to be nonnegative if the kth constraint is an inequality.
It 1s unconstrained if it is an equality and it 1s a symmetric matrix A > 0 in the case of the

trust region type constraint (3). The Lagrangian dual or relaxation is then
mgxmmin L(x, A). (4)

There has been a great deal of recent work on QQPs. The tractable case is the convex
case, i.e. the objective and constraint functions are all convex (linear for equality constraints).
In this case, the solution value is attained and there is a zero duality gap between QQP and
its Lagrangian dual [18]. The bridge between the convex and the nonconvex case is the TRS
problem discussed above. This problem is tractable, [30], and very efficient algorithms exist
both for moderate dense problems, [19] and large sparse problems, [27, 28].

One view of the Lagrangian relaxation of QQPs is in terms of semi-infinite programming

and valid inequalities. Let F denote the feasible set of the QQP. Then we trivially have
A>0 = FCVi:={z:q(z):= Z)\qu(:n) < 0}.
k=1

Thus g, provides a valid inequality for the feasible set. However, we now see that not all these
valid inequalities are useful.
The outer maximization problem in the dual problem (4) has the hidden constraint that

the Hessian

Qo+ > MQr = 0,

k=1



since otherwise the inner minimization is unbounded below. Thus, for each vector of Lagrange
multipliers A > 0 such that the Hessian of the Lagrangian is positive semidefinite, we conclude

that the useful valid inequalities for the feasible set of QQP are given by
A>0,V2 L(z,\) =0 = FCV.

(See [10, 16] for details for a linear objective function. The nonlinear case is being studied in
[1].) Therefore, a zero duality gap means that we have enough of these useful valid inequalities.
Otherwise, an obvious question is: can we find additional quadratic constraints to close the
duality gap.

One of the highlights of the new results on QQPs is the result of Goemans-Williamson,
e.g. [11], on the strength of the semidefinite programming, SDP, relaxation for the max-cut

problem. This result essentially shows how well one can approximate the optimum of the QQP

max z Qz st.ozi=11=1

9 PRI

where () arises from the Laplacian matrix of the underlying (nonnegatively weighted) graph.
This result has been extended in several ways: to allow for gemeral @) [22]; to replace the
constraints with interval constraints [31]; to allow for general homogeneous constraints [20, 9];
and other extensions [4, 21]. The above mentioned papers all characterize the quality of a
tractable approximation to a nonconvex QQP, rather than finding special quadratic constraints
to add in order to improve the approximation. The interpretation of the semidefinite relaxation

in terms of valid quadratic inequalities is discussed in [10, 16].

1.1.2 Quadratic Assignment Problem and Relaxations

The Quadratic Assignment Problem, QAP, in the trace formulation is

p#" := min tr (AXBXT + CXT) ,

Xell

where II denotes the set of permutation matrices, and A, B, C are n X n matrices. We assume
throughout that A and B are real and symmetric. Applications of QAP include plant location

problems, where the three matrices represent distances between sites, flows between plants,



and location costs, respectively, and the permutation matrix X denotes which plant is located
at which site. See for example [24, 6] for an extensive discussion of applications and algorithms
for QAP.

The QAP is an NP-hard problem. In fact, this is one of the most difficult problems to
solve in practice as there exist problems with dimension n = 20 still unsolved, [13, 24, 6].
For QAPs dimension n = 25 is considered “large scale.” The problem consists of a, possibly
nonconvex, quadratic objective function over the (discrete) set of permutation matrices. Since
the set of permutation matrices is the intersection of the orthogonal matrices O with the doubly

stochastic matrices £ and the nonnegative matrices N,
MI=0NENN,
relaxations for the QAP often include quadratic constraints such as

XXT =T

?

or the trust region type of constraint

XXT <.

As the objective in QAP is itself quadratic, these relaxations of QAP lead naturally to inter-
esting classes of QQPs.
General nonlinear optimization over orthogonality constraints is considered in [7] while the

partial order constraint X X7 < I is discussed in [23]. The relationship ¥ = X X7 is used to

model graph partitioning problems in [14, 2].

1.2 Outline

In this paper we study the trust region type relaxation for homogeneous (C = 0) QAP. We
first find the explicit solution for the relaxation, and thus introduce an extension of the well-
known Hoffman-Wielandt inequality. We then show that by adding the seemingly redundant
constraint X7 XT < [ before forming the Lagrangian dual we can close the duality gap. Using
this strong duality result, and semidefinite duality, we obtain new necessary and sufficient
characterizations for optimality which are similar to the ordinary trust region subproblem

result in nonlinear programming.



1.3 Notation

We now describe the notation used in the paper. Comprehensive up-to-date notation for SDP
is available on the WWW with URL:
http://orion.uwaterloo.ca/ hwolkowi/henry/software/psd_tool.d /sdnotation.d /notation.ps.

Throughout this paper we work with real matrices. Let S,, denote the space of n x n
symmetric matrices equipped with the trace inner product, (A,B) = tr AB. Let A = 0
(resp. A > 0) denote positive semidefiniteness (resp. positive definiteness); A > B denotes
A— B > 0,1e. &, is equipped with the Lowner partial order. We let P denote the cone of
symmetric positive semidefinite matrices; M,, ,, denotes the space of general m x n matrices
also equipped with the trace inner product, (4, B) = tr AT B; while M,,, denotes the space of
general m x m matrices; O denotes the set of orthonormal (orthogonal) matrices; IT denotes
the set of permutation matrices.

We let Diag(v) be the diagonal matrix formed from the vector v; its adjoint operator is
diag(M) which is the vector formed from the diagonal of the matrix M. For M € M,, ,,, the
vector m = vec(M) € R™ is formed (columnwise) from M.

The Kronecker product of two matrices is denoted A ® B, and the Hadamard product is
denoted Ao B.

We use e to denote the vector of all ones, and E = ee to denote the matrix of all ones.

We use J to denote the matrix J = (en, €p-1, -, €1), where ¢; is the ith unit vector.

2 Orthogonal Relaxation

One successful relaxation for the homogeneous (C' = 0) QAP is the eigenvalue relazation [8],

1.e. one replaces II with the set of orthogonal matrices
O:={X:XxXT =1}
We now consider strong duality results for this problem. The relaxed problem can be written

pl = g{nelg tr AXBXT. (5)



The bound p is often referred to as the eigenvalue bound for QAP. This bound is based on
the following inequality, which can be viewed as a variant of the classical Hoffman-Wielandt

inequality, see e.g. [8, 26, 5].

Theorem 1 Let VTAV = %, UTBU = A, where U,V € O, ¥ = Diag(s), A = Diag(}),
01> 09> o >0,, A\t > Xy > -+ >N, Then for any X € O, we have

Z )\ian_H_l S tr AXBXT S Z )\10'1

=1 =1
The upper bound is attained for X = VUT, and the lower bound is attained for X = VJUT,

where J = (€n, €n_1, -, €1) and e; is the ith element unit vector. M

It 1s clear that the eigenvalue bound is a tractable bound, i.e. it can be efficiently computed
in polynomial time by computing the eigenvalues and ordering them appropriately. However,
there can be a duality gap for the Lagrangian relaxation of (5) (and so also for the SDP
relaxation, which is equivalent); see [32] for an example. Interestingly, we can close this duality
gap by adding the seemingly redundant constraint X7 X = I before forming the Lagrangian
dual; see [3]. Define the primal problem

QAPO  p° = min trAXBXT
st. XXT=1I XTX =1

Using symmetric matrices S and T to relax the constraints X X7 = I and XTX = I, respec-

tively, we arrive at a dual problem

DQAPO pl > pP% = max trS+trT
st. I®S)+(T'®I)<(B®A)
S=8T 17=T"T
Theorem 2 [3] Strong duality holds for QAPO and DQAPO, i.e. uP° = u® and both primal

and dual values are attained. W



3 Trust Region Relaxation

A further relaxation of the above orthogonal relaxation is the trust region relaxation studied

in [15],

p¥ = min trAXBXT

s.b. XXT <1

The constraints X X7 < I are convex, and so it is hoped that solving this problem would be
useful in obtaining bounds for QAP.
To begin, we will characterize the value u™ by proving a generalization of Theorem 1. We

require the following technical result.

Lemma 3 Let B and X be n X n matrices, with B symmetric. Let Ay > Ao > ... > A, be the
eigenvalues of B, and X| > Xy > -+ > M the eigenvalues of XBXT. Let X = PTTQ be the

singular value decomposition of X, where P,Q € O, I' = Diag(y), 1 > 72 > -+ > ¥ > 0.
Then

VX <N < 9ihi, for N >0,
YEN < A< A2N, for A <.
Proof. Let X denote a subspace of R", and |X| denote the dimension of X'. First we assume

that X is nonsingular. Because the eigenvalues of X BXT are also those of TQBQTT, by the
Courant-Fisher theorem [12, Theorem 4.2.11] we have

, ) t'TQBQ™Tx
A; = min max —————.
¥|=n—i+1 0#zeX ||z |2
Then
A= mi y' By

2

o |X|:n£li-|—1 0¢FI£11%)§/€X m

Let Y = QTTX. Due to the nonsingularity of ', |Y| = |X], and in addition we clearly have

lylI? _ ly|I?
el L

1 n



Moreover it is well know that the inertia of B is preserved under the transformation X BXT
[12, Theorem 4.5.8], and therefore the signs of A; and A} coincide, for each ¢. It follows that
for A, > 0 we have

yI'B
o< om /i1 Oyey ﬁ =1
AL> fy ﬂ = 2)\i.

’ "y Entitt oyey |y |2 Tn
While for A < 0 we have

yI'B
Nz DIEni41 OFyEY ﬁ =7A
A< v By _ i

max
|y| n— z—I—l 0£yEY H y ||?
This completes the proof under the assumption that X is nonsingular. If X is singular, we can
perturb the zero -; values and use the fact that the eigenvalues A, are continuous functions of

v, to obtain the given bounds. W

Theorem 4 Let VIAV = %, UTBU = A, where U,V € O, ¥ = Diag(a), A = Diag(}),
01> 09> s > 0n, AL > Ay > oo > N, Then for any X with XXT < I we have
Zmin{(),)\mn_iH} <trAXBXT < Zmax{(),)\iai}.
=1 =1
The upper bound is attained for X = V Diag(e)UT, where ¢ = 1 if o;\; > 0, and ¢ = 0
otherwise. The lower bound s attained for X = VDiag(e)JUT, where ¢, = 1 if o 115 <0,

and €; = 0 otherwise, J = (€n,€n_1,--,€1) and e; is the ith element unit vector.

Proof: From Theorem 1 we have
fj oM, <tr AXBXT < fj o\, (6)
i=1 i=1
where A] > X, > ... > X are the eigenvalues of X BXT. In addition, the result of Lemma 3
(using 71 < 1, 74, > 0) implies that for any ¢ and j,
N < {ai)\j if o;A; >0 | IV {ai)\j if o;A; <0 ‘ ™

0 otherwise 0 otherwise

10



The bounds of the theorem follow by combining (6) and (7). Attainment of the bounds may
be verified by direct substitution of the indicated solutions into tr AXBXT. W

For a scalar ¢, let ¢~ := min{0,¢{}. From attainment of the lower bound in Theorem 4,
we have = p™ 3" [A\;on11-4]7. To establish a strong duality result for the trust region type
relaxation, we will next prove that this same value is attained by the solution of a Lagrangian
dual program. Note that since X X7 and XTX have the same eigenvalues, the condition
XXT < Iis equivalent to XTX < I. Explicitly using both sets of constraints, as in [3], we

obtain the trust region type relaxation

QAPT  p™ = min tr AXBXT

st XXT<1, XTX<I

Next we apply Lagrangian relaxation to QAPT, using matrices S > 0 and 7' > 0 to relax the
constraints X X7 < I and XTX < I, respectively. This results in the dual problem

DQAPT pf > pPT = max —trS—trT
st (BOA)+(I0S)+(TI) =0
S>=0,T=0.

DT

To prove that p™ = uPT we will use the following simple result.

Lemma 5 Let A\ € R", A\ < Xy <... < \,. For g € R" consider the problem

min = 2z, := Z[)\iaﬂ(i)]_,
=1
where w(-) is a permutation of {1,...,n}, Then the permutation that minimizes z. satisfies

On(1) 2 On(2) =+ On(n)-

Proof:  Assume that o; < 0,11 for some ¢. We will show that interchanging o; and ;44
cannot increase the value of 37 ;[A;0;]7. The lemma then follows, since if @(-) is a minimizing
permutation we can go from 7@(-) to 7(-) with o1y > or@) > ... > 0rm) by a sequence of

pairwise interchanges.

11



Assume without loss of generality that o; < 0y. Our goal is to show that v’ < v, where
v = [)\10'1]_ ‘|‘ [)\20’2]_, ’Ul = [)\10'2]_ —|— [)\20'1]_.

We will demonstrate this via a case analysis, depending on the signs of A, As, 01, and 5. For

convenience we number the cases as indicated in the following table.

0<o <09 01<03<0 01 <0<0y

0< A <Ay Case 1 Case 2/ Case 3/
M <A <0 Case 2 Case 1’ Case 4/
AL <0< A\ Case 3 Case 4 Case 1”

Case 1/1'/1": In each of these cases v =0, s0 v/ <0 = v < v.

Case 2/2': In these cases we need to show that Ajos+ Ao < Ajoy+ As04, which is equivalent
to (A2 — A1)(02 — 01) > 0, and this holds by assumption.

Case 3/3": In Case 3 we need to show that A\joy < Ajoq, which is equivalent to A; (o2 —07) <0,
and this holds by assumption. Case 3’ is similar.

Case 4/4": In Case 4 we need to show that Ayo; < Ay09, which is equivalent to Ay(o2—071) > 0,

and this holds by assumption. Case 4’ is similar. W

Theorem 6 Strong duality holds for QAPT and DQAPT, i.e. uP? = uPT and both primal

and dual values are attained.

Proof. Let A=VXVT B =UAUT, where V.U € O, A = Diag(\), & = Diag(c). Then for
any S and T',

(BoA)+(IeS)+(Tel)=UaV)[(AeD)+(Ie8)+((Tel)| (U eV,

where $ = VISV, T = UTTU. Since U ® V is nonsingular, tr S = tr S and tr T = tr T, the
dual problem DQAPT is equivalent to

pPT = max —trS—trT
st. (AQY)+(IQS)+(T'®I) >0 (8)
S»>=0,T=0.

12



However, since A and ¥ are diagonal matrices, (8) is equivalent to the ordinary linear program:

LD max —els—e

Tt

s.t. )\iaj—l—sj—l—tiZO, i,jzl,...,n.

s>0,t>0.

But LD is the dual of the linear “semi-assignment” problem:

LP min Z )\iajwij

s.t.

2%

injgl, 7::1,...,71,
j=1

injgl, jzl,...,n

:BijZO, i,jzl,...,n.

Then LP can be interpreted as the problem of finding a permutation 7 () of {1,...,n} so that

Zf‘:l[)\mﬂ(i)]_ 1s minimized. Assume without loss of generality that A; < Ay < ... < A,, and

01> 09 > ... > 0, From Lemma 5 the optimal permutation is then #(:) =4, ¢ =1,...,n,

and from Theorem 4 the solution value pP7 is exactly p”. M

3.1 Necessary and Sufficient Optimality Conditions

In [15] the following sufficient conditions are conjectured to also be necessary for optimality in

QAPT:

XXT <

S=0, tr S(XXT ~1) =
AXB+S5X =
tr(ARBAT + ShhT) >

o © ~

Y

0, if XhT + AXT is nsd on N(XXT —1I).

These conditions are similar to the standard second order optimality conditions, and are in the

spirit of results for the ordinary trust region problem, i.e. they contain strengthened second

13



order conditions where the Hessian of the Lagrangian is positive semidefinite on a larger set
than the standard tangent cone. (For the standard trust region problem, the Hessian of the
Lagrangian is positive semidefinite on the whole space.)

Using the characterization of optimality in Theorem 4, we can show that for some special

cases the conditions (9) are in fact necessary for optimality in QAPT.

Theorem 7 Assume that B = I. Then the conditions (9) are necessary for X to be an optimal
solution of QAPT.

Proof. Let X be an optimal solution of QAPT. Then [15, Theorem 3.1] there exists S satisfying
the first three conditions in (9). From the second condition it follows that SXX7T = §, and
therefore, from the third, AXX7T 4§ = 0. Assume that

Y 0 0 Xu XL XZ
A=V] 0 0 o |VT XXT =V | Xo1 Xoo XL |VT
0 0 23 X31 X32 X33

where V € O, ¥; < 0 and ¥3 > 0 are diagonal matrices, and the blocks X;; and X33 have the
same dimensions as %, and Xs, respectively. Then tr AXBXT = tr(X: X1 + X3Xs3) > tr Xy,
since Xs3 > 0 and X;; < I. Moreover from Theorem 4 the optimal solution value is pu™ = tr ¥;.
It follows that we must have X553 = 0, and Xy3; = I. The facts that XX7 > 0 and X33 = 0
together then imply that X;5 = 0 and X5 = 0, while XX7T < I and X;; = I together imply
that X5, = 0. Therefore

~¥, 0 0
S=—AXXT=v| 0 o0 o|VT,
0 0 0

and A+ S > 0. Then tr(AhhT + ShhT) > 0 for any matrix h, so the conditions (9) hold. W

In addition, if A and B are positive semidefinite, then the conjectured conditions (9) are

necessary. However, as we next demonstrate, the conditions (9) may in fact fail to hold.

14



Example 8 Let

A=
01 0 -1

Using Theorem 4 one can show that X = I is the global optimum of QAPT, and therefore
N(XXT — I) = R2. The stationarity condition AXB + SX = 0 implies that

-1 0
, and h =
01 -1 -1

S —

satisfies XhT + hXT <0. However, tr AhBAT + ShhT = —2.

Thus the conditions (9) may fail to hold at an optimal solution X of QAPT. We will
now use the strong duality result of Theorem 6, and the fact that DQAPT is a semidefinite
program, to derive valid necessary and sufficient conditions for optimality in QQAPT. These
optimality conditions are exactly like the standard trust region optimality conditions, i.e. they
contain strengthened second order conditions where the Hessian of the Lagrangian is positive
semidefinite on the whole space.

For an n? x n? matrix Y, we use Y};;; to denote the n x n matrix which is the ¢, j block of

Y,i,7=1,...,n. Define linear operators bdiag(-) and odiag(-), Rr*xn? s Rjrxn Ty

bdlag(Y) = Z YIM,

odiag(Y);; = trYyy, 45=1,...,n

It is then easy to show that bdiag(-) and odiag(-) are the adjoints of the operators S — I ® S,

and T — T ® I, respectively. (These adjoint operators arise in the derivation of an SDP
relaxation for QAP in [32].) It follows that the semidefinite dual of the program DQAPT is
the following semidefinite relaxation of QAPT:

QAPSDP min tr(B® A)Y
s.t. bdiag(Y) <1
odiag(Y) < I

Y >~ 0.

15



Note that the objective of QAPT is tr AXBXT = vec(X)T(B ® A)vec(X) = tr(B ®
A)vec(X)vec(X)T. The problem QAPSDP can be derived directly from QAPT by relaxing
vec(X) vee(X)T to an n? x n® matrix Y = 0. For Y = vec(X) vec(X)T, note that Yj;;; = XiX]T,
where X; is the ¢th column of X. It follows that for such a Y,

bdiag(Y) = XXT,  odiag(Y) = XTX, (10)

so the constraints of QAPSDP are natural extensions of the conditions XTX < Jand XXT < I
to an arbitrary Y > 0.

Since DQAPT and QAPSDP both have interior solutions strong duality must hold between
these programs [2]. It follows that any optimal solutions Y and S, T satisfy the following

optimality conditions:

Y > 0, bdiag(Y) < I, odiag(Y
S =0, tr S(I — bdiag(

T >0, tr T(I — odiag(
(BRA)+(IS8)+(TeI

Y ((BeA)+(IeS)+(Tel) =

)
Y))
Y)) (11)

)

Il
oS o o O M~

Theorem 9 The matriz X s optimal for QAPT if and only if there exist symmetric matrices
S >0, T >0 such that

XxT < I,
rS(I—XXT) = o0,
trT(I — XTX) = 0, complementary slackness
0,
0.

[ A

primal feasibility

complementary slackness

AXB+SX+XT =
(BRA)+(I®S)+(T®I) »~

stationarity

strengthened second order

Proof. From Theorem 6 there is an X with X X7 < I so that Y = vec(X) vec(X)7 is optimal
in QAPSDP. For such a Y, note that

Y((BeA) +(I@S)+(T®I) = vee(X)vee(X)'((B@®A)+(I05)+(T&I))
= vec(X)(((B@A)—I—(I®S)—|—(T®I))vec(X))
= vec(X)vec(AXB+ SX + XT)T. (12)

T

16



But Y = 0, (B®A)+(I®5)+(T@1) = 0, and tr Y ((B®A)+(I®S)+(T® 1)) = 0 together
imply that Y'((B® A) + (18 $) + (T ® I)) = 0, so (12) implies that AXB + SX + XT = 0.
The remaining conditions follow from (11) and (10). MW

Notice that the conditions of Theorem 9 are equivalent to the usual second order necessary
conditions for optimality, except for the fact that the Hessian of the Lagrangian is positive
semidefinite everywhere rather than on just the tangent space at the optimum.

It is interesting to examine the optimality conditions of Theorem 9 in the case of Example
8, which provided a counterexample to the conjectured conditions (9). Since in this case A
and B are diagonal it is easy to see that S and T may also be taken to be diagonal matrices

S = Diag(s), T' = Diag(t). The conditions AXB 4+ SX + XT = 0 then become

—6—|—31—|—t1:07 t1:6—3120, (13)
—14 55 +1, =0, ty=1—3552>0,
implying 0 < s; < 6, 0 < s3 < 1. Since XTX = XX7T = I, to satisfy the conditions of

Theorem 9 it remains only to satisfy the strengthened second order condition, which can be

written
—6 —|— 81 —|— tl -~ 0,
—3+sy+t; > 0,
2= (14)
—2 -I' S1 —I_ t2 2 07
-1 + S9 + t2 2 0.

The first and fourth inequalities of (14) are satisfied with equality, from (13). Using (13) to

eliminate ¢; and t,, the second and third inequalities of (14) can be written

—3—|—32—|—(6—31):3—|—32—31

AV

0,
—24+8+(1—8)=—-1458—s, > 0.
Thus we require (81, $2) having
0 <8 <6, 0<8,<1, 1 <87 —89<3,

which is a feasible system of constraints; for example s; = 4, s = 1, ¢; = 2, t5 = 0 provide §

and T such that the conditions of Theorem 9 are satisfied.
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