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Abstract. Semidefinite programming (SDP) relaxations for the quadratic assignment problem (QAP) are derivec
using the dual of the (homogenized) Lagrangian dual of appropriate equivalent representations of QAP. Thes
relaxations result in the interesting, special, case where only the dual problem of the SDP relaxation has stri
interior, i.e., the Slater constraint qualification always fails for the primal problem. Although there is no duality
gap in theory, this indicates that the relaxation cannot be solved in a numerically stable way. By exploring the
geometrical structure of the relaxation, we are able to find projected SDP relaxations. These new relaxation
and their duals, satisfy the Slater constraint qualification, and so can be solved numerically using primal-duz
interior-point methods.

For one of our models, a preconditioned conjugate gradient method is used for solving the large linear systen
which arise when finding the Newton direction. The preconditioner is found by exploiting the special structure of
the relaxation. See e.g., Vandenverghe and Boyd (1995) for a similar approach for solving SDP problems arisin
from control applications.

Numerical results are presented which indicate that the described methods yield at least competitive lowe
bounds.
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1. Introduction

Semidefinite programming (SDP) has proven to be very successful in providing tight relax:
ations for hard combinatorial problems, such as the max-cut problem. The quadratic assig|
ment problem (QAP) is a well known NP-hard combinatorial problem where problems of
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dimensiom = 16 can be considered large. We study SDP relaxations for QAP. In the pro-
cess we handle several interesting complications that arise, e.g., no constraint qualificatic
for the SDP relaxation and loss of sparsity when solving for the search direction.

1.1. The quadratic assignment problem

The QAP in the trace formulation is

X mi T _ T
(QAP) u* = XmggtraceAXBX 2C X',

whereA, B are real symmetrin x n matricesC is a realn x n matrix, andIT denotes the

set of permutation matrices. (We assumge 4 to avoid trivialities.) QAP is used to model

the problem of allocating a set affacilities to a set oh locations while minimizing the
guadratic objective arising from the distance between the locations in combination with the
flow between the facilities. The QAP is well known to be NP-hard (Sahni and Gonzales,
1976) and, in practice, problems of moderate sizes, such-asl6, are still considered
very hard. For recent surveys on QAP, see the articles Burkard (1991), and Pardalos et :
(1994). An annotated bibliography is given by Burkard areda1996).

The QAP is a classic problem that still defies all approaches for its solution and where
problems of dimensiom > 16 can be considered large scale. A “Nugent type” test
problem of dimensiom =22 (based on the problems introduced in (Nugent et al., 1968)
and obtainable from QAPLIB (Burkard et al., 1991) has only recently been solved to
optimality by Clausen et al. (1996a) using high power computing facilities and the classica
Gilmore-Lalwer bound (GLB) (Gilmore, 1962; Lawler, 1963). The failure to solve larger
problems using branch and bound techniques is due mainly to the lack of bounds which ai
tight and at the same time cheap to compute. Even though GLB is cheap to compute, it i
in general not very tight. For solving the Nugent type problem of dimensien22, more
than 48 billion () subproblems had to be solved (see Clausen et al., 1996a).

Stronger bounds based on linear programming relaxations are used by Adams and Johns
(1994), and by Resende et al. (1995). These are quite expensive to compute and can only
applied to problems of dimension< 30. The latter bounds have been applied in branch
and bound for instances of dimension< 15, see Ramakrishnan et al. (1995). More
recently, Rijal (1995), anduhiger and Kaibel (1995) studied the QAP polytope and found
tighter linear relaxations of QAP.

Another class of lower bounds is the class of eigenvalue bounds which are based on o
thogonal relaxations, see e.g., (Finke etal., 1987; Hadley et al., 1992; Rendl and Wolkowic:
1992; Karisch and Rendl, 1995). Even though they are stronger for many (symmetric) prob
lems of dimensiom > 20 and are of reasonable computational cost for all instances in
QAPLIB, they are not very well suited for application in branch and bound methods, since
their quality deteriorates in lower levels of the branching tree, see Clausen et al. (1996b).

1.2. Semidefinite programming

Semidefinite programming is an extension of linear programming where the nonnegativity
constraints are replaced by positive semidefiniteness constraints on matrix variables. SC
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has been shown to be a very powerful tool in several different areas, e.g., positive definit
completion problems, maximum entropy estimation, and bounds for hard combinatoria
problems, see e.g., the survey of Vandenberghe and Boyd (1996).

Though SDP has been studied in the past, as part of the more general cone programmi
problem, see e.g., (Duffin, 1956; Wolkowicz, 1981), there has been a renewed intere:
due to the successful applications to discrete optimizationdsmand Schrijver, 1991;
Goemans and Williamson, 1994) and to systems theory (Boyd et al., 1994). In addition
the relaxations are equivalent to the reformulation and linearization technique, see e.g
the survey discussion in (Sherali and Adams, 1996), which provides further evidence o
successful applications.

1.3. Goals

In this paper we test the efficacy of using semidefinite programming to provide strong
relaxations for QAP. We try to address the following questions:

1. How to overcome many interesting numerical and theoretical difficulties, e.g., loss of
constraint qualification and loss of sparsity in the optimality conditions?

2. Can the new bound compete with other bounding techniques in speed and quality?

3. Can we improve the bounds or solve existing tough instances of QAP, e.g., the Nuger
test problems?

4. Can we improve the bound further by adding new facet inequalities?

1.4. Main results

Motivated by the numerical and theoretical success of SDP for e.g., the max-cut problen
(Helmberg, 1994; Helmberg et al., 1996; Goemans and Williamson, 1994, 1995), we
study SDP relaxations for QAP. These relaxations also prove to be numerically successfu
In addition, the relaxation of the linear equality constraints, corresponding to the doubly
stochastic property of permutation matrices, implies that the SDP relaxation does not satisf
the Slater constraint qualification. Although there is no duality gap in theory, since the dua
does satisfy Slater’s constraint qualification, this leads to an unbounded dual optimal solutio
set. Numerical difficulties can arise when trying to implement interior-point methods, see
Example 3.1 below. However, timeinimal faceof the semidefinite cone can be found using
the structure of the barycenter of the convex hull of the permutation matrices. In fact, the
minimal face is completely defined by the row and column sum property of permutation
matrices. Surprisingly, the 0,1 property does not change the minimal face. Then, the prime
problem can be projected onto the minimal face. This yields a regularized SDP of smalle
dimension.

The special structure of the minimal face can be exploited to find an inexpensive precon
ditioner. This enables us to solve the large linear system arising from the Newton equatio
in interior-point methods.

We also present numerical results which indicate that this new approach yields at lea:
competitive bounds.
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1.5. Ouitline

We complete this section with basic notation and some preliminary results. (We include
an appendix with a list of notation at the end of the paper.) In Section 2 we derive the
SDP relaxations. We initially use the dual of the homogenized Lagrangian dual to get «
preliminary relaxation. In Section 3 we study the geometry of the semidefinite relaxation
and show how to project onto the minimal face of the relaxation. This guarantees tha
Slater’s constraint qualification holds. This yields a basic semidefinite relaxation which
is then tightened by adding additional constraints (in Section 4). We describe practica
aspects of applying a primal-dual interior-point method in Section 5. We conclude with our
numerical results in Section 6.

1.6. Preliminaries

We work with the space dfx t real matricedenotedM;, and the space ofx t symmetric
matricesdenotedS;. Diag(v) denotes the diagonal matrix formed from the veat@nd
conversely, (the adjoint of Didg)) diag(M) is the vector of the diagonal elements of the
matrix M; R(M), N (M) denote theange spacandnull spacerespectivelygis the vector
of ones and is theith unit vector;E denotes the matrix of ones alg := aejT; M. t:j
refers to the columnisto j of M andM; s - refers to the rowsto s of M. The set of matrices
with row and column sums one, is denotedtby= {X : Xe= XTe=e} and s called the set
of assignment constraintthe set of (0, 1)-matrices is denoted By.= {X : Xi; € {0, 1}};
the set ofnonnegative matriceis denoted byV := {X : Xj; > 0}; while the set of
orthogonal matrices is denoted By:= {X : XXT = XTX = |}, wherel is the identity
matrix.

For symmetric matriceM; < M, (M1 < M) refers to the biwner partial order, i.e.,
M; — M, is negative semidefinite (negative definite, respectively); similar definitions hold
for positive semidefinite and positive definité; < W, (V < W) refers to elementwise
ordering of the matrices. The space of symmetric matrices is considered with the trac
inner productM, N) =traceM N.

We use th&ronecker productor tensor product, of two matrice&® B, when discussing
the quadratic assignment problem QAP; @¢rdenotes the vector formed from the columns
of the matrixX, while Mat(x) denotes the matrix formed from the veciorNote that, see
e.g., (Horn and Johnson, 1985),

1. (A B)(U ®V)= AU BV.

2. vedAY B = (BT ® Aveq).

3. (A®B)T=AT®B".

TheHadamard producbr elementwise product of two matricésandB is denotedA o B.
We partition a symmetric matriX € S,z into blocks as follows.

y00|Y01 . YOn

10|y 11 1
v Yoy [ YT Y 11
Yz s : ’ (1)

Y.nO Ynl ... ynn
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where we use the index O for the first row and column. HeViges R Z € Snz,

YPO e ;®", andYP9 € M,. When referring to entry, s € {1,2,...,n%} of Z, we also

use the pairsi, j), (k,1) with i, j,k, I € {1, 2,...,n}. This identifies the element in row
r=_@(—-2Dn+ jandcolumns = (k—)n+1 by Y j). . This notation is going to
simplify both the modeling and the presentation of properties of the relaxations. If we
considerZ as a matrix consisting of x n blocksY'¥, thenYq j),«) is just elementj, |)

of block (i, k).

2. SDP and Lagrangian relaxation

In this section we present a “first” SDP relaxation for QAP. This comes from “lifting” the
problem into a higher dimensional space of symmetric matrices. The QAP is a quadrati
(0, 1)-problem with additional constraints prescribed by the permuation maiicedT,
which can also be represented by binary vectorgXgcThe embedding iz, ; is obtained

by

1 1, veaX)T
<Veqx)>(, ea X)),

which is due to its construction as diadic product of a symmetric and positive semidefinite
matrix.

However, it is interesting and useful to know that the relaxation comes from the dual
of the (homogenized) Lagrangian dual. Thus SDP relaxation is equivalent to Lagrangial
relaxation for an appropriately constrained problem. (See also Poljak et al., 1995.) Ir
the process we see several of the interesting operators that arise in the relaxation. Tl
structure of this SDP relaxation is then used to find the projected relaxation which is the
actual one we use for our bounds. As in (Poljak et al., 1995), we see that adding, possibl
redundant, quadratic constraints often tightens the SDP relaxation obtained through tf
Lagrangian dual.

It is well known that the set of permutation matricEscan be characterized as the
intersection of (0, 1)-matrices withandQ, i.e.,

N=ENZ=0N2Z, (2.1)
see e.g., (Hadley et al., 1992). Therefore, we can rewrite QAP as

w*:= min traceAXBX —2CXT
st. XXT=XTX=1I
Xe=XTe=¢e
X2 — X =0, ¥ij.

(QAP)

We can see that there are a lot of redundant constraints in §QARwever, as we show
below, they are not necessarily redundant in the SDP relaxations.
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Additional redundant (but useful in the relaxation) constraints will be added below, e.g.,
we can use the fact that the rank-one matrices formed from the colum¥sief X X,
are diagonal matricesif= j; while their diagonals are 0 if£ j.

2.1. The direct approach to SDP relaxation

We first show how the SDP relaxation can be obtained directly from QAP. This involves
lifting the vectorx = veq X) into the matrix spac&z. ;.

We now outline this for the quadratic constraints that arise from the facktisa (0, 1),
orthogonal matrix. LeX e IT, be a permutation matrix and, again, fet= vea'X) and
¢ = vedC). Then the objective function for QAP is

q(X) = traceAXBX' —2CXT
=x"(B® A)x —2c"x
= tracexx' (B ® A) — 2c"x

= traceL qYx,

where we define thé? + 1) x (n? + 1) matrices

Lo 0 —veqC)T 2.2)
Q7| _veaC) B®A |’ '

and

e | @ X 2.3
Tl xoxxT | 23

This shows how the objective function of QAP is transformed into a linear function in the
SDP relaxation; where we have added the constdigjioo = 1. Note that if we denote

Y = Yx, then the elemen|; j « ) corresponds ta; X .

We already have three constraints on the matrix.e., it is positive semidefinite, the
top-left componentyyo = 1, and it is rank-one. The first two constraints are tractable
constraints; while the rank-one constraint is too hard to satisfy and is discarded in the SD
relaxation.

In order to guarantee that the mat¥ixin the case that it is rank one, arises from a permu-
tation matrixX, we need to add additional constraints. For example, the (0, 1)-constraints
Xizj — Xj; = 0 are equivalent to the restriction that the diagona¥ a$ equal to its first
row (or column). This results in the arrow constraint, see (2.15) below. Similarly, the
orthogonality constraintX X" = | can be written as

n
XXT =" XuXj = 1.
k=1
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Each rank-one matrix in the sum is a diagonak n block of Y, i.e., we get the block
diagonal constraint, see (2.16). Similarly, the orthogonality constraint writtX Xs= |
results in the block off diagonal constraints, see (2.17). The SDP relaxation with thes
constraints, as well as the ones arising from the row and column sums equal 1, is give
below in (2.14). Also, we will see below that the SDP relaxation is exact if we do not relax
the rank-one constraint on. (See Theorem 2.1.)

2.2. Lagrangian relaxation

In this section we will investigate the relaxation of the constraints in (AR Lagrangian
duality. We show that the dual of the Lagrangian dual results in an SDP relaxation. Also
there is no duality gap between the Lagrangian relaxation and its dual, so solving the SD
relaxation is equivalent to solving the Lagrangian relaxation. Though SDP relaxations ca
be obtained more simply in a direct fashion, once the form of the relaxation is known, it is
important to know where the relaxation comes from in order to recover good approximate
feasible solutions. More precisely, we can use the optimal solution of the dual of the SDF
in the Lagrangian relaxation of (QAF and then find the optimal matriX where this
Lagrangian attains its minimum. Thi&is then a good approximation for the original QAP,
see (Kruk and Wolkowicz, to appear).

After changing the row and column sum constraints iiXe— e||° + | XTe—¢||> = 0,
we consider the following equivalent problem to QAP.

wo = min traceAXBX' —2CXT
st. XXT =1
(QAP,) XTX = |
IXe—el*+XTe—el>=0
X2 —Xj =0, Vij.

We first add the(0, 1) and row-column sum constraints to the objective function using
Lagrange multiplier&Vj; andug, respectively.

— i T _ T B 2 Y.
po=_ min W’ESZ( {traceAXBX 2C X +in:WIJ (X3 = Xij)

+uo(l|Xe— el + IIXTe—eHz)}. (2.4)
Interchanging min and max yields

B i T _ T [ 2 oy
wo > fp = W,%[))(XXTT;r"]le {traceAXBX 2C X +i2j:V\/., (X5 = Xij)

+Uo([[ Xe—e|l® + IIXTe—eIIZ)}. (2.5)
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We now continue with the relaxation and homogenize the objective function by multiplying
by a constrained scalgs and increasing the dimension of the problem by 1. We homogenize
the problem since that simplifies the transition to a semidefinite programming problem.

Ko = pg = Max min {trace[AXBXT + W(X o X)T
W,u, XXT=XT X=I,x3=1

+ uo([|Xell® + [ XTe]|?) — x0(2C + W) XT]
— 2X0U09T(X + XT)e+ 2nu0x§}. (26)

Introducing a Lagrange multipliaevg for the constraint oxg and Lagrange multiplier§,
for XXT = | andS, for XT X = | we get the lower boundg
po = pue > pri=_ _max min {trace[AX BX + ug(||Xell> + || X el?)
W,SJ,%,UQ,U)O X,XQ
+W(X o X)T+woxs + SXXT + $XTX]
—tracexg(2C + W) XT — 2xguge” (X + XT)e
— wp — trace§, — traceS, + 2nuoxg}.
2.7)
Both inequalities can be strict, i.e., there can be duality gaps in each of the Lagrangial

relaxations. Following is an example of a duality gap that arises from the Lagrangian
relaxation of the orthogonality constraint.

Example 2.1 Consider the the pure quadratic, orthogonally constrained problem

w*:= min traceAXBX'

2.8
st. XXT =1, (2:8)
with 2 x 2 matrices
10 30
A= , B= .
0 2 0 4
The dual problem is
wP:= max —traceS
st. BR®A+1®S9 =0 (2.9)

S=9.

Thenu* = 10. But is the dual optimal valug® also 10? We have

B® A=

O O O W
o O o O
o b~ O O
o O O O
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Then in order to satisfy dual feasibility, we must h&e > —3 andS, > —6. In order to
maximize the dual, equality must hold. ThereferraceS = 9 in the optimum. Thus we
have a duality gap for this simple example.

In (2.7), we grouped the quadratic, linear, and constant terms together. We now defin
x :=vedX), y" := (o, x") andw := (wo, veaW)T) and get

ur= max min{y"[Lg+Arrow (w) + B°Diag(S,) + O°Diag(S,) + uoD]y

w,$,S,U0 Y
— wq — trace§, — traceSy}, (2.10)

whereL g is as above and the linear operators

_1.,T
Arrow (w) = |: 1w0 _ 2% :| (2.11)
—3W1in2 Diag(win2)
B°Diag(S) := [O 0 } (2.12)
I9=10 1 S/ '
O°Diag(S) := o 0 (2.13)
9I9=10 eI/ '
and
[ n —eT®eT} [ n —eT®eT]
D= + .
-e®e l® E -e®e ExI

There is a hidden semidefinite constraint in (2.10), i.e., the inner minimization problem
is bounded below only if the Hessian of the quadratic form is positive semidefinite. In this
case the quadratic form has minimum value 0. This yields the following SDP.

max —wg — trace§, — traceS,

(Do) o O
s.t. Lo+ Arrow (w) 4+ B"Diag($,) + O°Diag(S,) + ugD > 0.

We now obtain our desired SDP relaxation of (QARs the Lagrangian dual of (£). We
introduce thgn? + 1) x (n? + 1) dual matrix variable¥ > 0 and derive the dual program
to the SDP ().

min traceLqY
st. HdiagY) =1, o%diagyY)=1
(SDRy) ov) 9v) (2.14)
arrow(Y) =g, traceDY =0

Y >0,
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where thearrow operator acting on theén? 4+ 1) x (n®+ 1) matrixY, is the adjoint operator
to Arrow (-) and is defined by

arrow(Y) := diag’Y) — (0, (Yo1r2) "), (2.15)

i.e., the arrow constraint guarantees that the diagonal and Oth row (or column) are identica
Theblock-0-diagonal operatoiandoff-O-diagonal operatoacting onY are defined by

n
b°diag(Y) == > " Y.k (2.16)
k=1
and
n
o’diag(Y) := > Y. .ho- (2.17)
k=1

These are the adjoint operators diiBag(-) and O'Diag(-), respectively. The block-0-
diagonal operator guarantees that the sum of the diagonal blocks equals the identity. Tt
off-0-diagonal operator guarantees that the trace of each diagonal block is 1, while the trac
of the off-diagonal blocks is 0. These constraints come from the orthogonality constraints
XXT =1 andXT X = |, respectively.

We have expressed the orthogonality constraints with Bo¥i =1 and X" X =1. It
is interesting to note that this redundancy adds extra constraints into the relaxation whic
are not redundant. These constraints reduce the size of the feasible set and so tighten
bounds.

Proposition 2.1. Suppose that Y is feasible for the SDP relaxatigri4). Then Y is
singular.

Proof: Note thatD # 0 is positive semidefinite. Thereforé,has to be singular in order
to satisfy the constraint tradeY = 0. a

This means that the feasible set of the primal prob{&mDP,) has no interior. It is not
difficult to find an interior-point for the dual (§), which means that Slater’s constraint
qualification (strict feasibility) holds for (B). Therefore(SDP,) is attained and there is
no duality gap in theory, for the usual primal-dual pair. However, if Slater’'s constraint
qualification fails, then this is not the proper dual, since perturbations in the right-hand side
will not result in the dual value. This is because we cannot stay exactly feasible, since th
interior is empty, see (Ramana et al., 1997). In fact we may never attain the supremum c
(Dp), which may cause instability when implementing any kind of interior-point method.
Since Slater’s constraint qualification fails for the primal, the set of optimal solutions of the
dual is an unbounded set, and an interior-point method may never converge. Therefore, v
have to express the feasible se{8DF,) in some lower dimensional space. We study this
below when we project the problem onto a face of the semidefinite cone.



SEMIDEFINITE PROGRAMMING RELAXATIONS 81

However, if we add the rank-one condition, then the relaxation is exact.

Theorem2.1. Supposethat isrestricted to be rank-on€8BR,), i.e, Y = (i) @ax"n,

for some xe R"™. Then the optimal solution ¢SDP») provides the permutation matrix
X = Mat(x) that solves the QAP.

Proof: The arrow-constraint ilSDP,) guarantees that the diagonal¥is 0 or 1. The
O-diagonal and assignment constraint now guarantee thdakMata permutation matrix.
Therefore the optimization is over the permutation matrices and so the optimum of QAP is
obtained. |

3. Geometry of the relaxation

We defineF( to be the feasible set of the semidefinite relaxati®DP,). There are two
difficulties regarding our feasible sp. Itis easy to see that there are redundant constraints
in (SDRy). The other difficulty is that» has no positive definite feasible point. Hence,
the optimal set of the dual is unbounded and we cannot apply an (feasible or infeasible
interior-point method directly. In fact, the dual can be unattained.

Example 3.1 Consider the SDP pair

min 2X12
0 max Yy
(P) sit. dlagX)=(1> © . [yl 0}§[0 1}
X >0 0 v 10

Slater’s condition holds for the dual but not for the primal. The optimal value for both is 0.
The primal is attained, but the dual is not.

3.1. The minimal face

In order to overcome the above difficulties, we need to explore the geometrical structur
of Fo. Itis easy to see that

. 1 T
Yy = <Veo(x))(1 veaX)), XeT

are feasible points dfy. Moreover, these points are rank-one matrices and are, therefore,
contained in the set of extreme pointsf, see e.g., (Pataki, 1993). We need only consider
faces ofF» which contain all of these extreme points. Therefore, we are only interested in
theminimal face which is the intersection of all these faces.

We need to take a closer look at the assignment (row and column sums) constraini
defined by€.
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Surprisingly, it is only these constraints that are needed to define the minimal face
(This is not true in general, see Example 3.2 below.) Alternatively, we can describe thes
constraints as follows. Witk = veq(X), the constraints are

e" 0 .. ... 0
T 0 e o0 0
X'e=es X=e
0 0 €'
and
Xe=e& [l | - o l]x=e

Thus, the assignment constraints are equivalent to

Tx=-¢,
where
_[1ee
[l @

We now multiply withx™ from the right and use the fact thais a binary vector. We get
Txx' = e(diagxx") T,

and also
Tdiagxx") = e.

These two conditions are equivalent to
TYx =0, (3.2)

whereT := [—e|T]; and (3.2) now corresponds to the embedding of the assignment
constraints int&,z, 1.

Before we characterize the minimal face lg§ we define the followingn? + 1) x
((n — 1)% + 1) matrix.

Vo= L 0 3.3
'_[%(e®e)V®V]’ (33)

whereV is ann x (n — 1) matrix containing a basis of the orthogonal complemerg, of
i.e.,VTe= 0. Our choice foV is

In-1 ]
V = .
e

In fact, V is a basis of the null space f i.e., TV = 0.
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The following theorem characterizes the minimal face by finding the barycenter of the
convex hull of the permutation matrices. The barycenter has a very simple and elegar
structure.

Theorem 3.1. Define the barycenter

” 1
Vo= > Yx. (3.4)
Xelly

Then:

1. Y has alin the (0, 0) position and n diagonal & n blocks with diagonal elemertgn.
The first row and column equal the diagonal. The rest of the matrix is made up of n
blocks with all elements equal i (n(n — 1)) except for the diagonal elements which
areO.

1 leT
v |-k n®
[%e|[n—12E® E]+ [magp —E)® (I - E)]:| '
2. The rank ofY is given by
rank(Y) = (n — 1)2 + 1.

3. The r? + 1 eigenvalues of are given in the vector

1 T
(2, me;l;—l)z’ Oegn1> :
4. The null space and range space are
NY)=R@AT) and R(Y) = R(V) (sothat\(T) = R(V)).

Proof: Fix X € IT and let

— Vo — 1 T
Y =Yy = <Vec(x)> A veaX)").

We now proceed to find the structureXofConsider the entries of the 0-th rowsf Since
Yo,i-pn+j = 1 means is assigned tg, there argn — 1)! such permutations. We conclude

that the components of the 0-th row (and column)?oire given by

~ 1 1
Yo.i-Dn+j = ﬁ(n — Dl = -

Now consider the entries of in the other rows, denotéti, q) . j)-
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(i) If p=iandg = j,thenYyq.ij = 1 means thai is assigned tg and there are
(n — 1) such permutations. Therefore the diagonal elements are

~ 1 1
Yip.ipn = g0-Dl=—

(i) Now suppose thap # i andq # |, i.e., the element is an off-diagonal element in
an off-diagonal block. Thel, g i.jy = 1 means thai is assigned tg and p is
assigned t@. Since there arén — 2)! such permutations, we get that

1
nn-1)

n 1
Yp.a.6.i) = m(n -2 =

(i) Otherwise, supposeth@t=i orq = j, butnotboth, i.e., we consider the off-diagonal
elements of the diagonal blocks and the diagonal elements of the off-diagonal blocks
By the property of permutation matrices, these elements must all be 0, i.e., they
correspond to the off-diagonal elementsXf o XT] and the diagonal elements of

X;qo)q, q#j.

This proves the representation\bﬁn 1.
Let us find the rank and eigenvaluesYafWe partition

1
\?zlﬁeT
le 7z |
n

thus defining the bloclz. We have

1 07,1 %t 10
¢ =[ ] (3.5)
P I R

whereS= Z — LE. As aresult, we have

rankY) = 1+rank(S).

From the structure of, we see that

= m(nlnfl —BE)® (nl—1 — E).

The eigenvalues dail,_; — E aren (with multiplicity n — 1) and 0. By the fact that the
eigenvalues of a Kronecker product are found from the Kronecker product of eigenvalues
we have that the eigenvalues $fare /(n — 1) (with multiplicity (n — 1)2) and 0 (with
multiplicity 2n — 1). Therefore, we have

rankY) = 1+rankS) = (n — 1)2 + 1.

This proves 2.
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By (3.5) and the rank, we see that the eigenvalueé afe I/ (n — 1) (with multiplicity
(n — 1)) and 2 and 0 (with multiplicity @ — 1). This proves 3.
Note that

ue/\/(S)@( “u )e./\/(Y). (3.6)

It is well known that ranKT) = 2n — 1 and we can verify tha®T' = 0. So we have
N = {(‘f”) ‘ue R(TT)}.

In addition, we can now verify that
\7T<_%§T“) —0 forueR().

This proves 4. ]

With the above characterization of the barycenter, we can find the minimal f&tthat
contains the feasible set of the relaxation SDP. We(let .= ”“‘T“)

Corollary 3.1. The dimension pf the minjmal face ign — 1)2 + 1). Moreover the
minimal face can be expressed\as§, 121V .

The above characterization of the barycenter yields a characterization of the minima
face. Atfirst glance it appears that there would be a simpler proof for this characterization
the proof would use only the row and column sums constraints. Finding the barycente
is the key in exploiting the geometrical structure of a given problem with an assignment
structure. However, it is not always true that the other constraints in the relaxation are

redundant, as the following shows.
Example 3.2 Consider the constraints

Xx1=1
Xt +Xo+X3+X4=1

X1, X2, X3, X4 > 0

The only solution ig1, 0, 0, 0). Hence the barycenter of the relaxation is the set with
only a rank one matrix in it. However, the null space of the above system has dimension 2
Thus the projection using the null space yields a minimal face with matrices of dimension

greater than 1.
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3.2. The projected SDP relaxation

In Theorem 3.1, we presented explicit expressions for the range and null space of th
barycenter, denote¥. It is well known, see e.g., (Barker and Carlson, 1975), that the faces
of the positive semidefinite cone are characterized by the nullspace of points in their relativ
interior, i.e.,K is a face if

K={(X>0: N(X)DS={X>0: R(X)c S},
and
relintc = {X>=0: N(X) =S} ={X>0: R(X)=S"},

whereSis a given subspace. In particular, ¥f € relintX, the matrixV is n x k, and
R(V) = R(X), then

K=VPVT.

Therefore, using/ in Theorem 3.1, we can project the SDP relaxaiiS®PR,) onto the
minimal face. The projected problem is

wrii=min  tracgVTLoV)R
(QAPg;) st.  WBdiagVRVT) =1, o’diagVRVT) = | (3.7)
arrow(VRVT) =&, R> 0.

Note that the constraint tra@@” DV)R = 0 can be dropped since it is always satisfied,
i.e., DV = 0. We are going to refer ttQAPg,) as thebasic relaxatiorof QAP.

By construction, this program satisfies the generalized Slater constraint qualification fol
both primal and dual. Therefore there will be no duality gap, the optimal solutions are
attained for both primal and dual, and both the primal and dual optimal solution sets are
bounded.

Using the fact thaff V = 0, we get the following lemma which gives some interesting
properties of matrices of the forMRVT, i.e., of matrices in the span of the minimal face.
These properties are closely related to the row and column sums equal 1 constraints. V
will see below that these properties cause some of the other constraints to be redundant
the SDP relaxation.

Lemma 3.1. Let Re S_1y241 be arbitrary and let
Y =VRV',

whereV is given in(3.3). Then, using the block notation @.1), we have
(a) yoo = TIpo, ) YOJe = Ipo, and Z?:l YOI = rooeT.

(b) YO =Tyl  fori,j=1,...,n.

(© X', Yl =eYV and Y, diagY')=YI0 forj=1,...,n
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Prvof: We can verify thato = rqoo from the definitions. Using the fact thaty = [—e]|
T]V = 0, we have

TY=TVRVT =0.
The rest of the proof follows from expandifigy = 0. i

The projection eliminates the constraifity =0. After the projection, one problem
remains. There are still redundant constraints in the relaxation. This creates unnecesse
complications when applying interior-point methods, i.e., the linear systems do not nec
essarily have unique solutions. But, using Lemma 3.1, we can observe that in the bas
relaxation (QAR;) parts of the block-0-diag and off-0-diag operators are redundant. This
is because the implicit presence of the assignment constraints in combination with the arro
operator forcegoo=1. The main diagonal elements of the images of both operators are
equal to one automatically. Part (b) of Lemma 3.1 relates the row sums of the diagona
blocks to the corresponding parts of the 0 columiY ofTherefore the sum of the diagonal
blocks has row sums equal to one, which makes one additional element per row dependel
The same can be observed for the off-0-diag operator. The dimension of the image spa
of both operators now reduces@ — 3n)/2. We assume from now on that the operators
are defined such that they cover only a setréf— 3n)/2 linearly independent equalities.

4. Tightening the relaxation
4.1. The gangster operator

The feasible set of the SDP relaxation is convex but not polyhedral. It contains the se
of matrices of the fornix corresponding to the permutation matricése I1. But the

SDP relaxations, discussed above, can contain many points that are not in the affine hull
theseYy. In particular, it can contain matrices with nonzeros in positions that are zero in
the affine hull of theyyx. We can therefore strengthen the relaxation by adding constraints
corresponding to these zeros.

Note that the barycentdftis in the relative interior of the feasible set. Therefore the null
space ofY determines the dimension of the minimal face which contains the feasible set.
However, the dimension of the feasible set can be (and is) smaller. We now take a close
look at the structure of to determine the 0 entries. The relaxation is obtained from

_( 1 T
1
X:l

Xz | (1 X1 X5 - X7

Xon
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which contains th@? blocks

(X7
We then have

diag(X; X[) = Xj o X;j =0, ifis],
and

Xi;OXj;ZO, |f|?éj,

i.e., the diagonal of the off-diagonal blocks are identically zero and the off-diagonal of the
diagonal blocks are identically zero. These are exactly the zeros of the baryéenter

The above description defines the so-called gangster operatold ef(, j) : 1 <
i,j <n?41). The operatoG; : Sp2i1 — Sn241 is called theGangsteroperator. For

matrixY, andi, j = 1, ..., n?+ 1, theij component of the image of the gangster operator
is defined as
Yij if(,j)ed
Gs(Yyyj =1 (4.2)

0 otherwise.

The subspace @h?+ 1) x (n?+ 1) symmetric matrices with nonzero index et denoted
SJ, i.e.,

From the definition of the gangster operator, we can easily see the following relationship:
for the range and null spaces@f.

R(G1) =8;
and
N(@G_y) =8_y,

where—J is denoted as the complementary sef ofTherefore, let) := {(, j) : \?ij =0},
be the zeros found above using the Hadamard product; we have

Gs(Y)=0. (4.2)

Thus the gangster operator, acting on a matrishoots holes (zeros) through the matrix
Y in the positions wher¥ is not zero. For any permutation matii < I, the matrixYx
has all its entries either 0 or 1; aidis just a convex combination of all these matridgs
for X € I1. Hence, from (4.2), we have

Gi(Yx) =0, forall X eII.
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Therefore, we can further tighten our relaxation by adding the constraint
Gi(Y)=0. (4.3)
Note that the adjoint equation
traceG)(2)Y) = traceZG;(Y)),
implies that the gangster operator is self-adjoint, i.e.,

gy =40,.

4.2. The gangster operator and redundant constraints

The addition of the gangster operator provides a tighter SDP relaxation. Moreover, it make
many of the existing constraints redundant. We now add the gangster operator and remo
all redundant constraints. We maintain the notation from Theorem 3.1.

Suppose that we have added the gangster operator constraint to the projected proble
(QAPg)), i.e. G(VRVT) = 0. From Lemma 3.1, iy = VRVT, then we have

YO =e'Yl for j=1,...,n.

Note that the off-diagonal entries for ea¥W are zero. Therefore, it follows that the
arrow operator is redundant. Furthermore, by part (a) of Lemma 3.1, we can see that tt
block-diag operator is redundant. Similarly, the off-block-diag operator is redundant.

We now define a subsétof J, of indices ofY, (a union of two sets)

J={i.:i=(p-Dn+q.j=(-Dn+r.q#r}
UG, p:i=m-Dn+0q,j=0C =Dn+q, p#Tr,(p,r #n),

These are the indices for the 0 elements of the barycenter, i.e., (up to symmetry) the of
diagonal elements of the diagonal blocks and the diagonal elements of the off-diagone
blocks. We do not include (up to symmetry) the off-diagonal blgek- 2, n — 1) or the
last column of off-diagonal blocks.

With this new index sefl we are able to remove all redundant constraints while main-
taining the SDP relaxation. First we have the following lemma.

Lemma4.1l. LetY e Spz4;1. Then

\7Tg§(v)\7 =0 = Gi(Y)=0
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Proof. First, recall that the gangster operator is self-adjoint.Z.et g’JE(Y). The matrix
Z can be written as the block matrix

0 le Zln
Z =
0 an ... Znn
We let
zZ ... oz
Z=(VeW'| : .. [(VeV.
an ... Znn

Then, fori, j € {1,...,n— 1}, the(n — 1)2 blocks ofZ := VT ZV are
7V =vT(zl —Z"—z" 4 Z'"V =0. (4.4)

Note that the definition of impliesz" = z" = 0, fori = 1,...n—1, andZ™2-00-1 =
Zz("-D."=2) — o, Therefore, with =n — 1, j = n — 2, (4.4) implies that

2(n—1),(n—2) — VT(Zn,n)V — O
As a result, we have

2 =vTZiy,
fori,je{l,...,n—1}

SinceZ'l can be either a diagonal matrix or a matrix with diagonal equal to zeros, we
have the following two cases.

Case 1 Z'l is a diagonal matrix.

Let
&y --- O
Zl = :
| 0 a
Then
EEE)
Zi=|: . |+aE=0,
0 - an

which implies thatz'l = 0.
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Case 2 Z'l is a matrix with diagonal equal to zeros.
Let

A b
yAL
bt o]

whereAis an — 1 byn — 1 matrix with diagonal equal to zeros. Thus, we have
Zi = A—eb —bé =0,
which implies thab = 0 andA = 0, i.e.,Z') = 0. Therefore, We havé = 0. ]
Note the adjoint relationship
VTGV = (G5(V - V)",
The above Lemma 4.1 states that
NVTGOV) = N(@G50).
Therefore, the adjoint operator satisfies the following.
Corollary 4.1.
R(G5(V -VT) =R(G5() = S5 (4.5)
We can now get rid of all the redundant constraints that arise from adding the gangste
operatoig,, i.e., we can have an SDP relaxation where the constraint operator is onto. Thit
requires the following.
Theorem 4.1. LetY =V RVT be written in block matrix forngl.1). Then
1. G;(Y) = Oimplies thatdiag'Y!") = 0, ..., diag(Y>("~V) = 0, anddiag(Y "~2-("-1))
2. fe?i = JU(0,0). ThenG;(V - VT) has range space equal &.

Proof: Suppose thaf;(Y) = 0, i.e.,Y has zeros in positions corresponding to thelset
From Lemma 3.1, we have, foreack=1,...,n,

n
diag(Y'l) = Y'°
j=1

l

and

diagY'") = Y'°.
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Using the zeros of the diagonals of the off-diagonal block, we get that(\dfag =
0, for i =1,...,n— 3. Therefore,

diag(Y™-2-"-D) 1 diag(Y®-2:")
diag(Y™-2--D) 1 diag(Y®-D-")
diag(Y ™-2") + diag(Y™-2-") = 0.

=0
=0

Therefore,

diag(yY"2-"1) =0

diagY"=2-") =0

diag(Y™~1-") = 0.
This completes the proof for 1.

Sincg\?oo = 1 is definitely a feasible constraint, and the (0, 0) index is not involved in
the setJ, part 2 follows from Lemma 4.1 and the observation (4.5). |

Theorem 4.1 shows that we have eliminated the redundant constraints and obtained a fi

rank constraint. We can now get a very simple projected relaxation.
wre = min  trac&VTLoV)R
(QAPgy) S.t. gj(\7 R\?T) = Eoo (4.6)
R>0.

The dimension of the range space is determined by the cardinality of tie set, there
aren® — 2n2 + 1 constraints.

The dual problem is

MRz = Max —Ygo
st. VT(Lg+Gi(Y)V > 0.

NoteR(G3) = R(Gj) = Sj. The dual problem can be expressed as follows
MRz = Max —Ygo

st. Vi(Lg+Y)V=0
Y € Sj.

4.3. Inequality constraints

We now consider generic inequality constraints to further tighten the derived relaxations
These constraints come from the relaxation of the (0, 1)-constraints of the original problem
ForY = Yx, with X € I, the simplest inequalities are of the type

Yij.kh >0,  sincexijxy > 0.
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Helmberg et al. (1995) show that the so called triangle inequalities of the general intege
guadratic programming problem in the 1, +1)-model are also generic inequalities for
the (0, 1)-formulation. Nevertheless, we are going to restrict ourselves to the simples
type of inequalities, which are facet defining for the QAP polytope, as showminmgés”

and Kaibel, 1995; Rijal, 1995). Beside the nonnegativity constraints one can also impos
nonpositivity constraints on the zero element&/ofTogether with the gangster operator,
these inequalities and the corresponding nonnegativity constraints are clearly redundar
But for the basic relaxation (QAR) we can use both nonnegativity and nonpositivity
constraints to approximate the gangster operator. This leads to the following semidefinit
relaxation of QAP.

wrs = min tracéVTLoV)R

st. BdiagVRVT) =1, o°diagVRVT) = I
(QAPRB) To\T To\T (47)
arrow(VRV')=¢, VRV' >0
G;(VRVT) <0, R>0

Note that this relaxation is stronger than (Q&Pbecause nonnegativity constraints are

also imposed on elements which are not covered by the gangster operator. The advanta
of this formulation is that the number of inequalities can be adapted so that the model is nc
too large. The larger the model is the better it approximates the original gangster operato

4.4. A comparison with linear relaxations

We now look at how our relaxations of QAP compare to relaxations based on linear pro-
gramming. Adams and Johnson (1994) derive a linear relaxation providing bounds whicl
are at least as good as other lower bounds based on linear relaxations or reformulations
QAP. Using our notation, their continuous linear program can be written as

(QAPc p)  cLp := minftraceL Z : Z € F¢Lp} (4.8)

where the feasible set is
Fop = {Z €N Zijwh = Zanip, 1=k =ni <k j#I

Z Zely, (k) = Z Zihkh =1
k [

D Zigwh = Zun.why L ik <n, j#L
ik

Zz(i,j),(k,l) =Zxh.kh, L=<i k1 <n, i#Kk¢.

j#
We now compare the feasible sets of relaxations (RARNd (QAR p). It is easy to
see that the elements @fwhich are not considered ific p are just the elements covered
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by the gangster operator, i.e., for whigh(Y) = 0. In (QAPg3) the gangster operator is
replaced by nonnegative and nonpositive constraints. The linear constraif¢gdrare

just the lifted assignment constraints, but they are taken care of by the projection and th
arrow operator in (QARs). The nonnegativity of the elements is enforced in both feasible
sets. Hence the only difference is that we impose the additional constrairf?. We can
summarize these observations in the following theorem.

Theorem 4.2. Let urs be the bound obtained by the semidefinite relaxatiQAPs)
defined in(4.7), and letuc | p be the bound obtained BPAP: | p), the linear relaxation
of QAP defined in4.8). Then

UR3 = UCLP-

5. Primal-dual interior-point algorithm

We now outline how to apply the primal-dual interior-point method of Helmberg et al.
(Helmberg, 1994; Helmberg et al., 1996) to our semidefinite relaxations. First, we conside
a generic SDP model. In Section 5.2 we discuss its application to gARhich we also

call thegangster modelnd in Section 5.3 we apply it to (QAE), which we call theblock
model We also address practical and computational aspects for their solution.

5.1. Generic SDP model

Let A(-) andB(-) be (symmetric) linear operators defined&ja, 1, a € " andb € R,
wheren, andny, are of appropriate size. Then, by identifying the equality constraints of the
relaxations byA(-) anda, and the inequality constraints i(-) andb, we get the following
general (primal) semidefinite programming problem in the varigbte S,z ;.

u* :=min traceLR
st. AR\ +a=0
B(Ry+b>0
R>0.

P

The dual problem is

vii=max w'a—t'b
st L+A*w)—B(t)—Z=0
t>0
Z >0,

(D)

where A* andB* denote the adjoint operators toand, respectively, and» € )R" and
t € M™. Since, as we will prove in Section 5.4 that the Slater constraint qualification holds
for our primal (and dual) projected SDP relaxations, there is no duality gaps1.es,v*.
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The Karush-Kuhn-Tucker optimality conditions for the primal-dual pair are

Fp:=AR) +a=0
Fo:=L+A"w)—B(t)—Z=0
Fir:= —t o [B(R) +b] + ne =0
Fori= ZR— ul =0.

(KKT)

The first and second equation are the primal and dual feasibility equations. The remainin
equations take care of complementary slackness for the @ajt3(R) + b]), and(Z, R),
respectively.

We solve this system of equations with a Newton-type method, which means we have t
solve the following linearization for a search direction.

A@R) = —Fp

A*(Sw) — B*(8t) — 8Z = —Fp

—(8t) o [B(R) + b] —t 0 BGR) = —Fr
(8Z)R+ Z(SR) = —Fzg.

(5KKT)

We first solve fors Z and eliminate the second equation(&KKT)
§Z = A*(sw) — B*(8t) + Fp.
By definingt™ as the vector having elements§V); = tl we get

AGBR) = —Fp
—tV o (8t) o [B(R) + b] — B(SR) = —t™ o Fr (5.1)
A*(Sw)R — B*(st)R+ Z(SR) = —Fzr — FpR

Now solve for§ R and eliminate the third equation of (5.1), i.e.,
SR=—-Z"tA*(Sw)R+ Z71B*(st)R— Z7*Fzr — Z71FpR.
The system becomes

—AZ A Bw)R) + A(Z7B*(51)R) = A(Z *Fzr+ Z7'FpR) — Fp
+B(Z7LA*(Sw)R) — B(Z~1B*(81)R) — t™ o (8t) o [B(R) + b] (5.2)
= —B(Z'Fzr+ Z7'FpR) —t™ o Fyg.

We can observe that thiinal system(5.2) is of size(m + my), wherem, denotes by
definition the number of inequality constraints. This final system is solved with respect to
Sdw andst and back substitution yieldsR andsZ. Note that sincé R cannot be assumed

to be symmetric it is symmetrized; but, as shown in (Kojima et al., 1994), this still yields
polynomial time convergence of the interior-point method.
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We point out that solving the final system is the most expensive part of the primal-dual
algorithm. We are using two approaches for this purpose: a preconditioned conjugat
gradient method for the gangster model; and a Cholesky factorization for the block model

5.2. Application to the gangster model

Now we apply the above generic model to the SDP relaxation (@APThe primal-dual
pair is

min tracéVTLoV)R

P sit. G;(VRVT) = Ego
R>0
and
max —Ygo
st Vi(Lo+Y)V-Z=0
(D) °
Z>0
Y e Sj.

The Karush-Kuhn-Tucker conditions of the dual log-barrier problem are
Fp:=G;(VRVT) — Egp =0
Fo :=VT(Lo+Y)V—-2=0 (5.3)
Fzr i =ZR—pul =0,

whereR > 0, Z > 0 andY € S;. The first equation is primal feasibility conditions, while
the second is the dual feasibility conditions and the third takes care of complementar
slackness foR and Z. After substituting for§Z and §R we obtain the following final
system.

Gs(VZWTSYVRVT) = Fp — G5(V(Z*Fp R+ Z71Fzp) V). (5.4)

The size of the above problemris= n® —2n? + 1. Therefore, to solve such a huge system
of equations we use a conjugate gradient method. It is worthwhile to note that even if the
above system of equations can be solved directly, it is very time consuming to create a
explicit matrix representation.

5.2.1. The preconditioned conjugate gradient methodiVe uselC(dy) = b to denote the
above system (5.4). We solve the system inexactly by the conjugate gradient method. W
use the square root of the size of the above linear system as a limit on the number of iteratiol
of the conjugate gradient method. We choose the diagonal of the matrix representation :
the preconditioner. We approximate the argjleetweentC(sy) andb by

BT —1)]
bl - o —r°
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wherer is the residual of the linear system. We then chanse 0.001 and terminate the
conjugate gradient algorithm when

1-cosh <o.

(See e.g., Portugal et al., 1994.)

The special structure of the gangster operator makes it relatively cheap to construct
preconditioner. LeR = VRVT andZ = V Z-1VT. Then the linear operator system (5.4)
becomes

G5(Z8YR) = FE — G5(V(Z*FpR+ Z 7 Fzp)VT).

For1<Kk,| <m,letus calculatdy, the(k, |) entry of . Note that we can always order
the index set). Let (k;, kj) and(l;, I;) be the index pairs frord corresponding t& andl,
respectively. Théth column ofC is K(q), i.e.,

. T .
(95(2(0.5,6] +0.58,6])R)).

Therefore,
K = (Zig, R + Zi, Rk + Zigh Ry + Zigi, Ruk) /2.

The above formula allows for efficient calculation of the diagonal elements.

5.2.2. Stopping criterion for the interior-point method. Because of the primal infeasibi-
lity, we use the increasing rate of the dual objective value for the stopping criteria (insteac
of using the duality gap). The rate is defined as follows.

t — 1
st 1= Kt~
s

wherety is the dual objective value at the iteratikn At each iteration the dual objective
value gives a lower-bound and the lower-bound increasksraseases. We terminate the
algorithm when

Sty < €,
wheree := 0.001 In other words, when the gain for increasing the lower-bound is not worth

the computation expense, we stop the algorithm. Since our goal is to find a lower-bount
this stopping criterion is quite reasonable.

5.3. Application to the block model

In the case of the block model, i.e., (QAd} and its special case (QAD), we apply the
following primal-dual interior-point approach.
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The linear operatoB(-) acting on(n? + 1) x (n? 4+ 1) matrices is used to model the
nonnegativity and nonpositivity constraints. Since the constraints used to approximat
the gangster operator do not allow for a primal interior-point to exist, they are relaxed to
Vij + ¢ = 0and—-y;; + ¢ > 0 withe > 0. For these relaxed constraints the barycenter
as given in Theorem 3.1 is strictly feasible. Now bet= ¢e and obtain as (relaxed)
inequality constraint®(V RVT) +b > 0 in (QAPgs). In practice we set: = 10-3. Due
to practicality, all nonnegativity constraints are relaxed as well. The primal program of the
primal-dual pair for (QARs) is now

min traceLR
st. aromVRVT) —g =0

® b°diag(\:/ R\ZT) —1=0
odiagVRVT) — 1 =0
BIVRVT)+b>0

R > 0.

and the dual program is

max —wo—Db't
st. L+ VT (Arrow (w) + B°Diag(S,) + O°Diag(S)
—B*t)V —Z2=0
Z>01t=>0.

(D)

Note that the dual variable&} andS, do not get into the objective function of (D), since the
main diagonal elements are not covered by the block-0-diag and off-0-diag operators. Thi
follows from the considerations about the redundancies of certain parts of the operators i
Section 3.2.

The left hand side of the final system corresponding to the solution of (KKT) is now a
4 x 4 block. The remaining variables a¥e, §S,, S, andst and the left-hand side is

(5.5)

K e | TAZAOR) AZB* ()R
C | B(ZA*(O)R)  —B(ZB*()R) —t™o () o[B(R) +b] |

where we hav& := VZ-1VT andR := V RV, and the operatod(-) covers the equality
constraints. Thus
arrow(-)
A()) = | bPdiag(-)
odiag(-)
makes up a X 3 block in the left upper corner df (-). This block is of sizen, x m,,
wherem, = 2n? — 3n 4+ 1. Recall that the dimension of the image space of the arrow
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operator is? 4 1 while the block-0-diag and off-0-diag operators both contafn- 3n) /2
linearly independent equalities.
In the block model we assume primal and dual feasibility from the beginning, and hence
the right-hand side of the final system is just
-1
[ AR ffz ) } (5.5)
b+ pu(Z=5 —t")

For solving the final system we construct @n, + my) x (m, + M) matrix which
corresponds t& (-). A way for doing this is described in (Karisch, 1995). Building this
matrix for the basic relaxation (QA#) requires®(n®) operations and its factorization is
of the same complexity. Note that a conjugate gradient approach to solve the final systel
of the block model would require the same order of work in each iteration. Hence, solving
(QAPR;) employing a conjugate gradient method would be of similar expense as for solving
(QAPR2). . o

It should also be pointed out that the projectiahSYV andV RVT can be performed
in orderO(n*) operations instead @ (n®) steps if the special structure Wfis exploited,
see (Karisch, 1995).

5.3.1. Predictor corrector approach. We are now going to look at the change in the right-
hand side of the final system when we apply a predictor-corrector approach to the bloc
model.

Predictor-corrector approaches prove to be very successful for linear programming, se
e.g., (Lustig et al., 1992; Carpenter et al., 1993), and the concept can also be applie
to semidefinite programming, see (Alizadeh et al., 1994; Helmberg, 1994). As shown
in (Helmberg, 1994) the application of a predictor-corrector approach only changes the
right-hand side of the final system (5.2).

The main observation is that splitting up the search dired®s §sP + §s° yields an
improved solution since it better solves the nonlinear complementarity conditions. Here
we denote bys the vector containing our search directi@w, st, §R, §Z).

The predictor stepsP is also called the affine scaling step £ 0). Itis just the solution
of the final system (5.2) with right-hand side

A(R)
4] 56

The result is the predictor stégP = (SwP, §tP, §RP, §ZP). In the corrector steps® we
solve for the correction to the central path. This results in the same final system (5.2) wher
the right hand side is now

[ A[ZLGEZP)(BRP)] — nA[Z 7Y ] 5.7)

—B[Z7Y(8ZP)(8RP)] +t™ o (5tP) 0 BBRP) + uB[Z~1 —t'™]

We now solve fols® = (Sw®, §t°, §R®, §Z°€) and finally obtainSs = §sP + §s°.
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5.3.2. A cutting plane approach. The number of possibly violated inequalities can be
of order O(n%). In order to find a good approximation of the QAP with relatively few
inequalities in the model we use a cutting plane approach.

We first solve the basic relaxation (QAB to optimality. Then we add the = min{n?,
200} most violated inequalities to the model and solve the new relaxation gg)ABefore
adding additional violated inequalities we check whether all inequality constraints are tight
and remove those that have positive slack whose dual costs are close to zero. Here, \
remove an inequality if its dual cost is smaller thanB) > x t. Wheretyay is the largest
dual variable. We repeat this process of removing and adding inequalities until one of the
following stopping criterions for the cutting plane approach is met: we can prove optimality
for the given instance, i.e., the lower bound is tight; there are no more violated inequalities
or a given upper bound for the number of inequalities that can be usednhere2000, is
reached.

5.4. Strictly feasible points for both models

We still have to address the existence of strictly feasible points for our relaxations in orde!
to satisfy Slater’s constraint qualification. The following lemma gives interior points for
the primal problems.

Lemma5.1. Define the((n — 1)% + 1) x ((n — 1)% 4+ 1) matrix

A 1 | 0
0 ‘m(n lh-1— En-1) ® (Nlh-1 — En-1)
ThenR is positive definite and feasible f{@APR1), (QAPR2), and (QAPR3).
Proof. First it is easy to check thak is strictly positive definite sincal,_1 — Eq_1 IS
strictly positive definite.
We complete the proof by showing that
VRVT =Y,

whereY is the barycenter.

e B 1 0 1 0 1 leT®eT
VTRV = | I :
| ;e®eVeV || 0|z —B)yeml -E) ||o|VI®VT

1 0 1 %eT®eT
~Lre@eVeV o[ Ln-Eenl -E)VT V)
(1 e’ @el
_%e@en—le(g)E—i—Wl_l)(nVVT—VEVT)®(nVVT—VEVT) ’
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Now it remains to show thatV V" — VE,_;VT = nl, — E,. We have

nln—l | _ne;1r_1 :| _ |: En—l |_(n — 1)611]

nva—VEsz[

—ng_onn—1 | [-(n-De,_,| (n—-17?
_ |:n|nl — En1|_el_1j|
€1 |n-1
=nl, — E,. O

The next lemma provides strictly dual-feasible points.

Lemmab5.2.
1. Let

N n 0
Y=M )
[0 |n®(|n_En)i|

Then for M large enough{ > 0 and it is in the feasible set of the dual @APg,).

2. Let) = a(n?/4+¢, e)T withe > Oand« large enough$ = 0, § = 0, and letf be
arbitrary. Then the quartupléb, §,5.0)is strictly feasible for the duals @QAPR3),
and Of(QAPRl) iff =0.

Proof:

1. Itis obvious that we only need to show thfe(tg}(\?) + Yooo&])V is positive definite.

V(6% (Y) + Yooeoe] )V 1 0
J 0 VeV (U ®(y—E))VRV

1 0
__p(me®NWm—aW)

1 0
10 VIVeVTV

B 1 0
B |0 (na+ En1) ® (In-1+ En-) '

Sinceln_1 + En—_1 is positive definite, we have that

1 0
0 (In—l + En—l) ® (In—l + En—l)

is positive definite.
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2. Fixing &, § andf, we only need to show that Arrob /o) > 0. Using Schur comple-
ments this is equivalent to showing thaf + )/4 > 0 andle > —Jer (7)€l =
nZie E2. The first inequality is obvious and for the second we only need to observe that
the largest eigenvalue of the right-hand side is smaller than 1. Maklagge enough
provides an interior point for the dual of (QAB and also for (QAR;) for whichf = 0.

O

6. Numerical results

In this Section we present the results of our numerical experiments. The experiments al
divided into two parts. First we investigate the quality of the new bounds compared to
bounds from the literature. Then, we also look at their quality and growth rate in the first
level of the branching tree, see Table 5.

The results of the comparisons are summarized in the following tables. Tables 1 and
contain instances from the current version of QAPLIB (Burkard et al., 1991) while Table 3
consists of data of a previous version of the library. Note that all considered instances ar
pure quadratic, i.e., have no linear term, except the problemsxCarhe tables read as
follows. The first column indicates the problem instance and its size, e.gxxX\afers
to the Nugent example of sizex. For references of the problem instances we refer to
QAPLIB (Burkard et al., 1991). The following columns contain the best known feasible
solution (which is optimal for alh < 24); the Gilmore-Lawler bound GLB (Gilmore, 1962;
Lawler, 1963) the projection or elimination bound ELI of (Hadley et al., 1992); the linear
programming bound RRD obtained in (Resende et al., 1995); and an improved eigenvalu
bound EVB3 from (Rendl and Wolkowicz, 1992). For EVB3 we performed 100 iterations
of the underlying bundle trust code. The last three columns contain the bounds obtained i
this paperuri, ure andurs. An ‘n.a’ means that the value of the bound is not available.

The implementation of our bounds was done in MATLAB using CMEX interfaces.
Even though there is still room for improvement with respect to implementational aspects
our running times are comparable to the ones for RRD (Resende et al., 1995). For th
Nug20 problem instance, Resende et al. needed 60.19 minutes of CPU-time to obtain the
bound on a Silicon Graphics Challenge computer (150 MHz with 1.5 Gbytes of RAM). The
implementation of their bounding technique was done in FORTRAN and C. The calculation
of ur1 anduge on DEC 3000-900 Alpha AXP computers (275 MHz with 256 Mbytes and
64 Mbytes of RAM) took 19.93 and 316.17 minutes of CPU-time, respectively.

We do not reportr2 andugs for instances larger tham= 22 (except for one instance of
sizen =30 whereur; is given). The reasons therefore are the large running times for the
gangster model (QAR?) and the restriction on the number of inequalities in the cutting plane
approach tan, < 2000 for (QARk3). Furthermore, this work is primarily concerned with
the theoretical aspects of the application of semidefinite relaxations to the QAP. The issu
of better and more efficient implementations will be part of subsequent work. Regarding
(QAPR3), one can observe that the restriction on the size of the model does not allow for
large improvements within the cutting plane approach for instances ofi siz&5. In this
case the gangster model (QAJp provides stronger bounds than (Q&dp. But the block
model provides at least a primal feasible approach from the beginning and the less expensi
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Table 1 QAPLIB instances 1.

Sol. GLB ELI RRD EVB3 (R [R2 [R3
Escl6a 68 38 47 68 50 47 50 47
Escl16b 292 220 250 278 276 250 276 277
Escl6c 160 83 95 118 113 95 113 110
Escl6d 16 3 ~19 4 ~12 ~19 ~12 -6
Escl6e 28 12 6 14 13 6 13 9
Escl6g 26 12 9 14 11 9 11 10
Esc16h 996 625 708 704 708 708 909 806
Esci6i 14 0 —25 0 -21 —25 —21 -6
Esc16j 8 1 -6 2 -4 -6 -4 -4
Had12 1652 1536 1573 n.a. 1595 1604 1640 1648
Had14 2724 2492 2609 n.a. 2643 2651 2709 2703
Had16 3720 3358 3560 n.a. 3601 3612 3678 3648
Had18 5358 4776 5104 n.a. 5176 5174 5286 5226
Had20 6922 6166 6625 n.a. 6702 6713 6847 6758
Kra30a 88900 68360 63717 76003 n.a. 69736 — —
Kra30b ~ 91420 69065 63818 76752 n.a. 70324 — —
Nug12 578 493 472 523 498 486 530 547
Nug14 1014 852 871 n.a. 898 903 959 967
Nug15 1150 963 973 1041 1001 1009 1060 1075
Nug16a 1610 1314 1403 n.a. 1455 1461 1527 1520
Nug16b 1240 1022 1046 n.a. 1081 1082 1138 1132
Nug17 1732 1388 1487 n.a. 1521 1548 1621 1604
Nug18 1930 1554 1663 n.a. 1707 1723 1801 1776
Nug20 2570 2057 2196 2182 2290 2281 2385 2326
Nug21 2438 1833 1979 n.a. 2116 2090 2252 2157
Nug22 3596 2483 2966 n.a. 3174 3140 3394 3234
Nug24 3488 2676 2960 n.a. 3074 3068 — —
Nug25 3744 2869 3190 n.a. 3287 3305 — —
Nug30 6124 4539 5266 4805 5448 5413 — —

basic relaxation (QAR.) is competitive with respect to RRD for the Nxiginstances of
dimensiom > 20.

The comparison with bounds from the literature shows that our bounds compare favorabil
on instances Hadx, Nugx X, Roux x, and Takx. These instances have in common that their
matrices are rather dense. On the other hand, for sparse instances as mosgixadritsc
Scixx are, RRD dominates the bounds based on semidefinite relaxation. ELI seems to be
good indicator of when to expect the semidefinite bounds to be stronger than the ones bas
on linear relaxation. It seems as if the nonnegativity constraints are more important tha
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Table 2 QAPLIB instances 2.

Sol. GLB ELI RRD EVB3 LR LR ILRs

Roul2 235528 202272 200024 224278 201337 208685 220991 227986
Roul5 354210 298548 296705 324869 297958 306833 323141 324900

Rou20 725522 599948 597045 643346 n.a. 615549 642448 631680
Scrl2 31410 27858 4727 29872 n.a. 11117 24230 27183
Scrl5 51140 44737 10355 49264 n.a. 17046 42094 40821
Scr20 110030 86766 16113 95113 n.a. 28535 83026 59780
Tail2a 224416 195918 193124 n.a. 195673 203595 215377 220938
Tailb5a 388214 327501 325019 n.a. 327289 333437 349476 347908
Tail7a 491812 412722 408910 n.a. 410076 419619 441238 435675
Tai20a 703482 580674 575831 n.a. n.a. 591994 618720 606228
Tai25a 1167256 962417 956657 n.a. n.a. 974004 — —
Tai30a 1818146 1504688 1500407 n.a. n.a. 1529135 — —
Tho30 149936 90578 119254 100784 n.a. 125972 — —

Table 3 Numerical results for old instances.

Sol. GLB ELI RRD EVB3 URL UR2 UR3
Carl0ga 4954 3586 4079 n.a. 4541 4435 4853 4919
Carl0gb 8082 6139 7211 n.a. 7617 7600 7960 8035
Carl0gc 8649 7030 7837 n.a. 8233 8208 8561 8612
Carl0gd 8843 6840 8006 n.a. 8364 8319 8666 8780
Carl0ge 9571 7627 8672 n.a. 8987 8910 9349 9473
CarlOpa 32835 28722 —4813 n.a. n.a. 1583 12492 30359
CarlOpb 14282 12546  —14944 n.a. n.a. —5782 9934 13361
CarlOpc 14919 12296 —17140 n.a. n.a. —8040 2473 13655
EscO8a 2 0 -2 0 n.a. -2 0 2
Esc08b 8 1 -2 2 n.a. -2 3 6
Esc08c 32 13 8 22 n.a. 9 18 30
Esc08d 6 2 -2 2 n.a. -2 2 6
EscO8e 2 0 —6 0 n.a. -6 -4
Esc08f 18 9 8 18 n.a. 9 13 18
Nug05 50 50 a7 50 50 49 50 50
Nug06 86 84 69 86 70 74 85 86
Nug07 148 137 125 148 130 132 144 148

Nug08 214 186 167 204 174 179 197 210
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Table 4 Instances for which symmetry is destroyed.

Sol. UR1 MR2 UR3

Nug12C 578 492 534 545
Nug15C 1150 1012 1075 1081
Nug20C 2570 2292 2396 2335
Nug30C 6124 5424 5648 —

the semidefinite ones on sparse instances. On these instancesgElaind g, become
even negative. Note that on the EsgX8oblems ELI andtr; coincide.

Table 4 contains instances whose inherent symmetry was destroyed by introducing
linear term. Forinstance, the distance matrices of thedxygoblems contain the distances
of rectangular grids. The grid on which the locations of Nug12 are placed is given by

12| 3| 4
G=|5| 6| 7| 8
9110 11| 12

In this case, an assignment of any facility, say facility 1, to other locations but 1, 2, 5 and 6
can notresultina solution which is not obtained by a restricted solution, say{1, 2, 5, 6}.

For restricting the solution set to such a subset, we introduce a linear cost @athinse
elements are all 0 expect;, j € {3,4,7,8,9,10, 11, 12}. These nonzero entries Gfare
sufficiently large numbers. The resulting instances are marked with a ‘C’, e.g., Nug12C
and are equivalent to the originals. Table 4 shows that our bounds improve when this i
done. We point out that symmetries can also be found in the other instances but we do n
specify this here.

We also investigate whether the new bounds satisfy a necessary condition for their appl
cability within a branch and bound algorithm. Eigenvalue bounds show a relatively small
growth rate in the branching tree and, therefore computationally more expensive variant
are not well suited for branch and bound, see (Clausen et al., 1996b). Here, we look at tf
quality of the new bounds in the first level of the branching tree, i.e., we want to see how
fast the lower bounds increase after branching. Table 5 gives the results for the first leve
when one partial assignment is made. As pointed out above, thex\ax@mples posses
inherent symmetries due to their distance matrices, e.g., there are only four subproblems
be considered in the first level of Nug12. The partial assignments of facility 1 are indicatec
by the entry after the dot in the name of the instance. To measure the increasing)rate (
of the lower boundlpd) by branching, we define the rate in percent as follows.

. 10Gctita — [Ddparent

* 100%
| bdparent

In Table 5, the increasing rates are shown by the numbers in the brackets. The results of t
table show that the lower bounds given by the SDP relaxations increase much faster than tl
Gilmore-Lawler bounds in the first level of the branching tree. Even though this does not
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Table 5 Results for first level in branching tree.

n Sol. GLB @ir) HRL (ir) HUR2 (ir) KR3 (ir)
Nug12 12 578 493 486 530 547
Nugl2.l 11 586 496  (0.6) 514 (5.4) 551 (3.9) 574  (4.9)
Nugl22 11 578 495  (0.4) 514  (5.4) 553 (4.3) 571 (4.3)
Nugl25 11 578 494  (0.2) 524 (7.8) 552 (4.1) 570  (4.2)
Nugl2.6 11 586 499  (1.2) 530  (9.0) 561 (5.8) 578  (5.6)
Nug15 15 1150 963 1009 1060 1075

Nugls5.1 14 1150 967  (0.4) 1049  (4.0) 1104 (4.2) 1114  (3.6)
Nugls.2 14 1166 974  (1.1) 1076  (6.6) 1124  (6.0) 1135  (5.6)
Nugl5.3 14 1200 987  (25) 1075  (65) 1133  (6.9) 1145  (6.5)
Nugls.6 14 1152 968  (0.5) 1056  (4.7) 1106  (4.3) 1118  (4.0)
Nugls.7 14 1166 979  (L7) 1052  (43) 1112  (5.2) 1125  (4.7)
Nugl5.8 14 1168 983  (2.1) 1063  (54) 1118  (55) 1133  (5.4)
Nug20 20 2570 2057 2281 2385 2326

Nug20.1 19 2628 2082  (12) 2358  (3.4) 2449 (27) 2414  (3.8)
Nug20.2 19 2600 2130  (3.6) 2401  (5.3) 2489  (4.4) 2464  (6.0)
Nug20.3 19 2588 2067  (0.5) 2331  (22) 2428  (1.8) 2392  (2.8)
Nug20.6 19 2570 2064  (0.3) 2341  (2.6) 2431  (1.9) 2403  (3.3)
Nug20.7 19 2634 2105  (2.3) 2387  (4.6) 2479  (3.9) 2436  (4.7)
Nug20.8 19 2636 2127  (3.4) 2381  (4.4) 2485  (42) 2438  (4.8)

allow a general conclusion on the applicability of the new bounds to exact solution methods
it does also not rule out the possibility that bounds based on semidefinite relaxations ar
good candidates for branch and bound methods.

Finally, the tests in the first level of the search tree, where the subproblems contain linee
parts, and the results for the Qardata also show that the semidefinite bounds perform
well for instances with linear terms.

Appendix

A. Notation

M the space of x t real matrices

St the space of x t symmetric matrices
t(n) 20ED  the dimension of;

P or P the cone of positive semidefinite matricesSn
M1 > My  Mj; — My is positive semidefinite

A* the adjoint of the linear operatdx

K+ the polar cone oK, K* = {¢ : (¢, k) >, Yk € K}
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Ao B the Hadamard product & andB

A®B the Kronecker product oA andB

vedq X) the vector formed from the columns of the matKx
Mat(x) the matrix formed, columnwise, from the vectér

Diag(v) the diagonal matrix formed from the vector
diag(M) the vector of the diagonal elements of the malvix

E the matrix of ones
e the vector of ones
€ theith unit vector
Ej the matrixEg;; = aejT
R(M) the range space of the matifix
N(M) the null space of the matrik
& the set of matrices with row and column sums afie= {X : Xe= XTe= ¢}
z the set of (0, 1)-matrices := {X : Xj; € {0, 1}}
N the set of nonnegative matrice¥,:= { X : X;; > 0}
@ the set of orthogonal matrice®, := {X : XX" = XTX =1}
Yx the lifting of the matrixX, with x = vedX),

v |1 xT

Tl x xx
Ggi(Y) Gangster operator, an operator that “shoots” holes or zeros in the Matrix
(4.1)

PGY) Gangster operator projected onto its range space, (4.6)

Arrow (-)  the Arrow operator, (2.11)
B®Diag(-) the Block Diag operator, (2.12)
OPDiag(-) the Off Diag operator, (2.13)
arrow(-) the arrow operator, (2.15)
bPdiag(-)  the block diag operator, (2.16)
o’diag(-)  the off diag operator, (2.17)

QAP: an equivalent formulation of QAP, Section 2
QAPy» an equivalent formulation of QAP, Section 2.2
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