
P1: NTA

Journal of Combinatorial Optimization KL560-05-ZHAO February 18, 1998 13:15

Journal of Combinatorial Optimization 2, 71–109 (1998)
c© 1998 Kluwer Academic Publishers. Manufactured in The Netherlands.

Semidefinite Programming Relaxations
for the Quadratic Assignment Problem

QING ZHAO
University of Waterloo, Department of Combinatorics and Optimization, Faculty of Mathematics, Waterloo,
Ontario, N2L 3G1 Canada

STEFAN E. KARISCH
University of Copenhagen, Department of Computer Science, Universitetsparken 1, DK-2100 Copenhagen,
Denmark

FRANZ RENDL
Graz University of Technology, Department of Mathematics, Steyrergasse 30, A-8010 Graz, Austria

HENRY WOLKOWICZ
University of Waterloo, Department of Combinatorics and Optimization, Faculty of Mathematics, Waterloo,
Ontario, N2L 3G1 Canada

Received September 1996; Accepted May 1997

Abstract. Semidefinite programming (SDP) relaxations for the quadratic assignment problem (QAP) are derived
using the dual of the (homogenized) Lagrangian dual of appropriate equivalent representations of QAP. These
relaxations result in the interesting, special, case where only the dual problem of the SDP relaxation has strict
interior, i.e., the Slater constraint qualification always fails for the primal problem. Although there is no duality
gap in theory, this indicates that the relaxation cannot be solved in a numerically stable way. By exploring the
geometrical structure of the relaxation, we are able to find projected SDP relaxations. These new relaxations,
and their duals, satisfy the Slater constraint qualification, and so can be solved numerically using primal-dual
interior-point methods.

For one of our models, a preconditioned conjugate gradient method is used for solving the large linear systems
which arise when finding the Newton direction. The preconditioner is found by exploiting the special structure of
the relaxation. See e.g., Vandenverghe and Boyd (1995) for a similar approach for solving SDP problems arising
from control applications.

Numerical results are presented which indicate that the described methods yield at least competitive lower
bounds.
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1. Introduction

Semidefinite programming (SDP) has proven to be very successful in providing tight relax-
ations for hard combinatorial problems, such as the max-cut problem. The quadratic assign-
ment problem (QAP) is a well known NP-hard combinatorial problem where problems of
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dimensionn = 16 can be considered large. We study SDP relaxations for QAP. In the pro-
cess we handle several interesting complications that arise, e.g., no constraint qualification
for the SDP relaxation and loss of sparsity when solving for the search direction.

1.1. The quadratic assignment problem

The QAP in the trace formulation is

(QAP) µ∗ := min
X∈5

traceAX B XT − 2C XT ,

whereA, B are real symmetricn × n matrices,C is a realn × n matrix, and5 denotes the
set of permutation matrices. (We assumen ≥ 4 to avoid trivialities.) QAP is used to model
the problem of allocating a set ofn facilities to a set ofn locations while minimizing the
quadratic objective arising from the distance between the locations in combination with the
flow between the facilities. The QAP is well known to be NP-hard (Sahni and Gonzales,
1976) and, in practice, problems of moderate sizes, such asn = 16, are still considered
very hard. For recent surveys on QAP, see the articles Burkard (1991), and Pardalos et al.
(1994). An annotated bibliography is given by Burkard and C¸ ela (1996).

The QAP is a classic problem that still defies all approaches for its solution and where
problems of dimensionn ≥ 16 can be considered large scale. A “Nugent type” test
problem of dimensionn = 22 (based on the problems introduced in (Nugent et al., 1968)
and obtainable from QAPLIB (Burkard et al., 1991) has only recently been solved to
optimality by Clausen et al. (1996a) using high power computing facilities and the classical
Gilmore-Lalwer bound (GLB) (Gilmore, 1962; Lawler, 1963). The failure to solve larger
problems using branch and bound techniques is due mainly to the lack of bounds which are
tight and at the same time cheap to compute. Even though GLB is cheap to compute, it is
in general not very tight. For solving the Nugent type problem of dimensionn = 22, more
than 48 billion (!) subproblems had to be solved (see Clausen et al., 1996a).

Stronger bounds based on linear programming relaxations are used by Adams and Johnson
(1994), and by Resende et al. (1995). These are quite expensive to compute and can only be
applied to problems of dimensionn ≤ 30. The latter bounds have been applied in branch
and bound for instances of dimensionn ≤ 15, see Ramakrishnan et al. (1995). More
recently, Rijal (1995), and J¨unger and Kaibel (1995) studied the QAP polytope and found
tighter linear relaxations of QAP.

Another class of lower bounds is the class of eigenvalue bounds which are based on or-
thogonal relaxations, see e.g., (Finke et al., 1987; Hadley et al., 1992; Rendl and Wolkowicz,
1992; Karisch and Rendl, 1995). Even though they are stronger for many (symmetric) prob-
lems of dimensionn ≥ 20 and are of reasonable computational cost for all instances in
QAPLIB, they are not very well suited for application in branch and bound methods, since
their quality deteriorates in lower levels of the branching tree, see Clausen et al. (1996b).

1.2. Semidefinite programming

Semidefinite programming is an extension of linear programming where the nonnegativity
constraints are replaced by positive semidefiniteness constraints on matrix variables. SDP
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has been shown to be a very powerful tool in several different areas, e.g., positive definite
completion problems, maximum entropy estimation, and bounds for hard combinatorial
problems, see e.g., the survey of Vandenberghe and Boyd (1996).

Though SDP has been studied in the past, as part of the more general cone programming
problem, see e.g., (Duffin, 1956; Wolkowicz, 1981), there has been a renewed interest
due to the successful applications to discrete optimization (Lov´asz and Schrijver, 1991;
Goemans and Williamson, 1994) and to systems theory (Boyd et al., 1994). In addition,
the relaxations are equivalent to the reformulation and linearization technique, see e.g.,
the survey discussion in (Sherali and Adams, 1996), which provides further evidence of
successful applications.

1.3. Goals

In this paper we test the efficacy of using semidefinite programming to provide strong
relaxations for QAP. We try to address the following questions:

1. How to overcome many interesting numerical and theoretical difficulties, e.g., loss of
constraint qualification and loss of sparsity in the optimality conditions?

2. Can the new bound compete with other bounding techniques in speed and quality?
3. Can we improve the bounds or solve existing tough instances of QAP, e.g., the Nugent

test problems?
4. Can we improve the bound further by adding new facet inequalities?

1.4. Main results

Motivated by the numerical and theoretical success of SDP for e.g., the max-cut problem
(Helmberg, 1994; Helmberg et al., 1996; Goemans and Williamson, 1994, 1995), we
study SDP relaxations for QAP. These relaxations also prove to be numerically successful.
In addition, the relaxation of the linear equality constraints, corresponding to the doubly
stochastic property of permutation matrices, implies that the SDP relaxation does not satisfy
the Slater constraint qualification. Although there is no duality gap in theory, since the dual
does satisfy Slater’s constraint qualification, this leads to an unbounded dual optimal solution
set. Numerical difficulties can arise when trying to implement interior-point methods, see
Example 3.1 below. However, theminimal faceof the semidefinite cone can be found using
the structure of the barycenter of the convex hull of the permutation matrices. In fact, the
minimal face is completely defined by the row and column sum property of permutation
matrices. Surprisingly, the 0,1 property does not change the minimal face. Then, the primal
problem can be projected onto the minimal face. This yields a regularized SDP of smaller
dimension.

The special structure of the minimal face can be exploited to find an inexpensive precon-
ditioner. This enables us to solve the large linear system arising from the Newton equation
in interior-point methods.

We also present numerical results which indicate that this new approach yields at least
competitive bounds.
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1.5. Outline

We complete this section with basic notation and some preliminary results. (We include
an appendix with a list of notation at the end of the paper.) In Section 2 we derive the
SDP relaxations. We initially use the dual of the homogenized Lagrangian dual to get a
preliminary relaxation. In Section 3 we study the geometry of the semidefinite relaxation
and show how to project onto the minimal face of the relaxation. This guarantees that
Slater’s constraint qualification holds. This yields a basic semidefinite relaxation which
is then tightened by adding additional constraints (in Section 4). We describe practical
aspects of applying a primal-dual interior-point method in Section 5. We conclude with our
numerical results in Section 6.

1.6. Preliminaries

We work with the space oft × t real matricesdenotedMt , and the space oft × t symmetric
matricesdenotedSt . Diag(v) denotes the diagonal matrix formed from the vectorv and
conversely, (the adjoint of Diag(v)) diag(M) is the vector of the diagonal elements of the
matrixM ;R(M),N (M) denote therange spaceandnull space, respectively;e is the vector
of ones andei is thei th unit vector;E denotes the matrix of ones andEi j := ei eT

j ; M:,t : j

refers to the columnst to j of M andMi :s,: refers to the rowsi to s of M. The set of matrices
with row and column sums one, is denoted byE := {X : Xe= XTe= e} and is called the set
of assignment constraints; the set of (0, 1)-matrices is denoted byZ := {X : Xi j ∈ {0, 1}};
the set ofnonnegative matricesis denoted byN := {X : Xi j ≥ 0}; while the set of
orthogonal matrices is denoted byO := {X : X XT = XT X = I }, whereI is the identity
matrix.

For symmetric matricesM1 ¹ M2 (M1 ≺ M2) refers to the L¨owner partial order, i.e.,
M1 − M2 is negative semidefinite (negative definite, respectively); similar definitions hold
for positive semidefinite and positive definite;V ≤ W, (V < W) refers to elementwise
ordering of the matrices. The space of symmetric matrices is considered with the trace
inner product〈M, N〉 = traceM N.

We use theKronecker product, or tensor product, of two matrices,A⊗B, when discussing
the quadratic assignment problem QAP; vec(X) denotes the vector formed from the columns
of the matrixX, while Mat(x) denotes the matrix formed from the vectorx. Note that, see
e.g., (Horn and Johnson, 1985),

1. (A ⊗ B)(U ⊗ V) = AU ⊗ BV.

2. vec(AY B) = (BT ⊗ A)vec(Y).

3. (A ⊗ B)T = AT ⊗ BT .

TheHadamard productor elementwise product of two matricesA andB is denotedA◦ B.

We partition a symmetric matrixY ∈ Sn2+1 into blocks as follows.

Y =
[

y00 YT
0

Y0 Z

]
=


y00 Y01 · · · Y0n

Y10 Y11 · · · Y1n

...
...

. . .
...

Yn0 Yn1 · · · Ynn

 , (1.1)
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where we use the index 0 for the first row and column. HenceY0 ∈ <n2
, Z ∈ Sn2,

Yp0 ∈ <n, andYpq ∈ Mn. When referring to entryr, s ∈ {1, 2, . . . , n2} of Z, we also
use the pairs(i, j ), (k, l ) with i, j, k, l ∈ {1, 2, . . . , n}. This identifies the element in row
r = (i − 1)n + j and columns = (k − 1)n + l by Y(i, j ),(k,l ). This notation is going to
simplify both the modeling and the presentation of properties of the relaxations. If we
considerZ as a matrix consisting ofn × n blocksYik , thenY(i, j ),(k,l ) is just element( j, l )
of block (i, k).

2. SDP and Lagrangian relaxation

In this section we present a “first” SDP relaxation for QAP. This comes from “lifting” the
problem into a higher dimensional space of symmetric matrices. The QAP is a quadratic
(0, 1)-problem with additional constraints prescribed by the permuation matricesX ∈ 5,
which can also be represented by binary vectors vec(X). The embedding inSn2+1 is obtained
by (

1

vec(X)

)
(1, vec(X)T ),

which is due to its construction as diadic product of a symmetric and positive semidefinite
matrix.

However, it is interesting and useful to know that the relaxation comes from the dual
of the (homogenized) Lagrangian dual. Thus SDP relaxation is equivalent to Lagrangian
relaxation for an appropriately constrained problem. (See also Poljak et al., 1995.) In
the process we see several of the interesting operators that arise in the relaxation. The
structure of this SDP relaxation is then used to find the projected relaxation which is the
actual one we use for our bounds. As in (Poljak et al., 1995), we see that adding, possibly
redundant, quadratic constraints often tightens the SDP relaxation obtained through the
Lagrangian dual.

It is well known that the set of permutation matrices5 can be characterized as the
intersection of (0, 1)-matrices withE andO, i.e.,

5 = E ∩ Z = O ∩ Z, (2.1)

see e.g., (Hadley et al., 1992). Therefore, we can rewrite QAP as

(QAPE )

µ∗ := min traceAX B XT − 2C XT

s.t. X XT = XT X = I

Xe= XTe = e

X2
i j − Xi j = 0, ∀i, j .

We can see that there are a lot of redundant constraints in (QAPE ). However, as we show
below, they are not necessarily redundant in the SDP relaxations.
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Additional redundant (but useful in the relaxation) constraints will be added below, e.g.,
we can use the fact that the rank-one matrices formed from the columns ofX, i.e. X:i XT

: j ,

are diagonal matrices ifi = j ; while their diagonals are 0 ifi 6= j .

2.1. The direct approach to SDP relaxation

We first show how the SDP relaxation can be obtained directly from QAP. This involves
lifting the vectorx = vec(X) into the matrix spaceSn2+1.

We now outline this for the quadratic constraints that arise from the fact thatX is a(0, 1),
orthogonal matrix. LetX ∈ 5n be a permutation matrix and, again, letx = vec(X) and
c = vec(C). Then the objective function for QAP is

q(X) = traceAX B XT − 2C XT

= xT (B ⊗ A)x − 2cT x

= tracexxT (B ⊗ A) − 2cT x

= traceL QYX,

where we define the(n2 + 1) × (n2 + 1) matrices

L Q :=
[

0 −vec(C)T

−vec(C) B ⊗ A

]
, (2.2)

and

YX :=
[

x0 xT

x xxT

]
. (2.3)

This shows how the objective function of QAP is transformed into a linear function in the
SDP relaxation; where we have added the constraint(YX)00 = 1. Note that if we denote
Y = YX, then the elementY(i, j ),(k,l ) corresponds toxi j xkl .

We already have three constraints on the matrixY, i.e., it is positive semidefinite, the
top-left componenty00 = 1, and it is rank-one. The first two constraints are tractable
constraints; while the rank-one constraint is too hard to satisfy and is discarded in the SDP
relaxation.

In order to guarantee that the matrixY, in the case that it is rank one, arises from a permu-
tation matrixX, we need to add additional constraints. For example, the (0, 1)-constraints
X2

i j − Xi j = 0 are equivalent to the restriction that the diagonal ofY is equal to its first
row (or column). This results in the arrow constraint, see (2.15) below. Similarly, the
orthogonality constraint,X XT = I can be written as

X XT =
n∑

k=1

X:k XT
:k = I .
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Each rank-one matrix in the sum is a diagonaln × n block of Y, i.e., we get the block
diagonal constraint, see (2.16). Similarly, the orthogonality constraint written asXT X = I
results in the block off diagonal constraints, see (2.17). The SDP relaxation with these
constraints, as well as the ones arising from the row and column sums equal 1, is given
below in (2.14). Also, we will see below that the SDP relaxation is exact if we do not relax
the rank-one constraint onY. (See Theorem 2.1.)

2.2. Lagrangian relaxation

In this section we will investigate the relaxation of the constraints in (QAPE ) via Lagrangian
duality. We show that the dual of the Lagrangian dual results in an SDP relaxation. Also,
there is no duality gap between the Lagrangian relaxation and its dual, so solving the SDP
relaxation is equivalent to solving the Lagrangian relaxation. Though SDP relaxations can
be obtained more simply in a direct fashion, once the form of the relaxation is known, it is
important to know where the relaxation comes from in order to recover good approximate
feasible solutions. More precisely, we can use the optimal solution of the dual of the SDP
in the Lagrangian relaxation of (QAPE ) and then find the optimal matrixX where this
Lagrangian attains its minimum. ThisX is then a good approximation for the original QAP,
see (Kruk and Wolkowicz, to appear).

After changing the row and column sum constraints into‖Xe− e‖2 + ‖XTe− e‖2 = 0,
we consider the following equivalent problem to QAP.

(QAPO)

µO := min traceAX B XT − 2C XT

s.t. X XT = I

XT X = I

‖Xe− e‖2 + ‖XTe− e‖2 = 0

X2
i j − Xi j = 0, ∀i, j .

We first add the(0, 1) and row-column sum constraints to the objective function using
Lagrange multipliersWi j andu0, respectively.

µO = min
X XT =XT X=I

max
W,u0

{
traceAX B XT − 2C XT +

∑
i j

Wi j
(
X2

i j − Xi j
)

+ u0(‖Xe− e‖2 + ‖XTe− e‖2)

}
. (2.4)

Interchanging min and max yields

µO ≥ µL := max
W,u0

min
X XT =XT X=I

{
traceAX B XT − 2C XT +

∑
i j

Wi j
(
X2

i j − Xi j
)

+ u0(‖Xe− e‖2 + ‖XTe− e‖2)

}
. (2.5)
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We now continue with the relaxation and homogenize the objective function by multiplying
by a constrained scalarx0 and increasing the dimension of the problem by 1. We homogenize
the problem since that simplifies the transition to a semidefinite programming problem.

µO ≥ µL = max
W,u0

min
X XT =XT X=I ,x2

0=1

{
trace[AX B XT + W(X ◦ X)T

+ u0(‖Xe‖2 + ‖XTe‖2) − x0(2C + W)XT ]

− 2x0u0eT (X + XT )e+ 2nu0x2
0

}
. (2.6)

Introducing a Lagrange multiplierw0 for the constraint onx0 and Lagrange multipliersSb

for X XT = I andSo for XT X = I we get the lower boundµR

µO ≥ µL ≥ µR := max
W,Sb,So,u0,w0

min
X,x0

{
trace[AX B XT+ u0(‖Xe‖2 + ‖XTe‖2)

+ W(X ◦ X)T+ w0x2
0 + SbX XT + SoXT X]

− tracex0(2C + W)XT − 2x0u0eT (X + XT )e

− w0 − traceSb − traceSo + 2nu0x2
0

}
.

(2.7)

Both inequalities can be strict, i.e., there can be duality gaps in each of the Lagrangian
relaxations. Following is an example of a duality gap that arises from the Lagrangian
relaxation of the orthogonality constraint.

Example 2.1. Consider the the pure quadratic, orthogonally constrained problem

µ∗ := min traceAX B XT

s.t. X XT = I ,
(2.8)

with 2 × 2 matrices

A =
(

1 0

0 2

)
, B =

(
3 0

0 4

)
.

The dual problem is

µD := max −traceS

s.t. (B ⊗ A + I ⊗ S) º 0

S = ST .

(2.9)

Thenµ∗ = 10. But is the dual optimal valueµD also 10? We have

B ⊗ A =


3 0 0 0

0 6 0 0

0 0 4 0

0 0 0 8

 .



P1: NTA

Journal of Combinatorial Optimization KL560-05-ZHAO February 18, 1998 13:15

SEMIDEFINITE PROGRAMMING RELAXATIONS 79

Then in order to satisfy dual feasibility, we must haveS11 ≥ −3 andS22 ≥ −6. In order to
maximize the dual, equality must hold. Therefore−traceS = 9 in the optimum. Thus we
have a duality gap for this simple example.

In (2.7), we grouped the quadratic, linear, and constant terms together. We now define
x := vec(X), yT := (x0, xT ) andwT := (w0, vec(W)T ) and get

µR = max
w,Sb,So,u0

min
y

{ yT [L Q + Arrow (w) + B0Diag(Sb) + O0Diag(So) + u0D]y

− w0 − traceSb − traceSo}, (2.10)

whereL Q is as above and the linear operators

Arrow (w) :=
[

w0 − 1
2wT

1:n2

− 1
2w1:n2 Diag(w1:n2)

]
, (2.11)

B0Diag(S) :=
[

0 0

0 I ⊗ Sb

]
, (2.12)

O0Diag(S) :=
[

0 0

0 So ⊗ I

]
, (2.13)

and

D :=
[

n −eT ⊗ eT

−e⊗ e I ⊗ E

]
+

[
n −eT ⊗ eT

−e⊗ e E⊗ I

]
.

There is a hidden semidefinite constraint in (2.10), i.e., the inner minimization problem
is bounded below only if the Hessian of the quadratic form is positive semidefinite. In this
case the quadratic form has minimum value 0. This yields the following SDP.

(DO)
max −w0 − traceSb − traceSo

s.t. L Q + Arrow (w) + B0Diag(Sb) + O0Diag(So) + u0D º 0.

We now obtain our desired SDP relaxation of (QAPO) as the Lagrangian dual of (DO). We
introduce the(n2 + 1) × (n2 + 1) dual matrix variableY º 0 and derive the dual program
to the SDP (DO).

(SDPO)

min traceL QY

s.t. b0diag(Y) = I , o0diag(Y) = I

arrow(Y) = e0, traceDY = 0

Y º 0,

(2.14)



P1: NTA

Journal of Combinatorial Optimization KL560-05-ZHAO February 18, 1998 13:15

80 ZHAO ET AL.

where thearrow operator, acting on the(n2+1)× (n2+1) matrixY, is the adjoint operator
to Arrow(·) and is defined by

arrow(Y) := diag(Y) − (0, (Y0,1:n2)T ), (2.15)

i.e., the arrow constraint guarantees that the diagonal and 0th row (or column) are identical.
Theblock-0-diagonal operatorandoff-0-diagonal operatoracting onY are defined by

b0diag(Y) :=
n∑

k=1

Y(k,·),(k,·) (2.16)

and

o0diag(Y) :=
n∑

k=1

Y(·,k),(·,k). (2.17)

These are the adjoint operators of B0Diag(·) and O0Diag(·), respectively. The block-0-
diagonal operator guarantees that the sum of the diagonal blocks equals the identity. The
off-0-diagonal operator guarantees that the trace of each diagonal block is 1, while the trace
of the off-diagonal blocks is 0. These constraints come from the orthogonality constraints,
X XT = I andXT X = I , respectively.

We have expressed the orthogonality constraints with bothX XT = I and XT X = I . It
is interesting to note that this redundancy adds extra constraints into the relaxation which
are not redundant. These constraints reduce the size of the feasible set and so tighten the
bounds.

Proposition 2.1. Suppose that Y is feasible for the SDP relaxation(2.14). Then Y is
singular.

Proof: Note thatD 6= 0 is positive semidefinite. Therefore,Y has to be singular in order
to satisfy the constraint traceDY = 0. 2

This means that the feasible set of the primal problem(SDPO) has no interior. It is not
difficult to find an interior-point for the dual (DO), which means that Slater’s constraint
qualification (strict feasibility) holds for (DO). Therefore(SDPO) is attained and there is
no duality gap in theory, for the usual primal-dual pair. However, if Slater’s constraint
qualification fails, then this is not the proper dual, since perturbations in the right-hand side
will not result in the dual value. This is because we cannot stay exactly feasible, since the
interior is empty, see (Ramana et al., 1997). In fact we may never attain the supremum of
(DO), which may cause instability when implementing any kind of interior-point method.
Since Slater’s constraint qualification fails for the primal, the set of optimal solutions of the
dual is an unbounded set, and an interior-point method may never converge. Therefore, we
have to express the feasible set of(SDPO) in some lower dimensional space. We study this
below when we project the problem onto a face of the semidefinite cone.
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However, if we add the rank-one condition, then the relaxation is exact.

Theorem 2.1. Suppose that Y is restricted to be rank-one in(SDPO), i.e., Y = (
1
x ) (1xT ),

for some x∈ <n2
. Then the optimal solution of(SDPO) provides the permutation matrix

X = Mat(x) that solves the QAP.

Proof: The arrow-constraint in(SDPO) guarantees that the diagonal ofY is 0 or 1. The
0-diagonal and assignment constraint now guarantee that Mat(x) is a permutation matrix.
Therefore the optimization is over the permutation matrices and so the optimum of QAP is
obtained. 2

3. Geometry of the relaxation

We defineFO to be the feasible set of the semidefinite relaxation(SDPO). There are two
difficulties regarding our feasible setFO. It is easy to see that there are redundant constraints
in (SDPO). The other difficulty is thatFO has no positive definite feasible point. Hence,
the optimal set of the dual is unbounded and we cannot apply an (feasible or infeasible)
interior-point method directly. In fact, the dual can be unattained.

Example 3.1. Consider the SDP pair

min 2X12

(P) s.t. diag(X) =
(

0
1

)
X º 0

(D)

max y2

s.t.

[
y1 0

0 y2

]
¹

[
0 1

1 0

]

Slater’s condition holds for the dual but not for the primal. The optimal value for both is 0.
The primal is attained, but the dual is not.

3.1. The minimal face

In order to overcome the above difficulties, we need to explore the geometrical structure
of FO. It is easy to see that

YX :=
(

1
vec(X)

)
(1 vec(X)T ), X ∈ 5

are feasible points ofFO. Moreover, these points are rank-one matrices and are, therefore,
contained in the set of extreme points ofFO, see e.g., (Pataki, 1993). We need only consider
faces ofFO which contain all of these extreme points. Therefore, we are only interested in
theminimal face, which is the intersection of all these faces.

We need to take a closer look at the assignment (row and column sums) constraints
defined byE .
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Surprisingly, it is only these constraints that are needed to define the minimal face.
(This is not true in general, see Example 3.2 below.) Alternatively, we can describe these
constraints as follows. Withx = vec(X), the constraints are

XTe = e ⇔


eT 0 · · · · · · 0

0 eT 0 · · · 0

· · · · · · · · · · · · · · ·
0 · · · · · · 0 eT

 x = e

and

Xe= e ⇔ [
I I · · · · · · I

]
x = e.

Thus, the assignment constraints are equivalent to

T x = e,

where

T :=
[

I ⊗ eT

eT ⊗ I

]
. (3.1)

We now multiply withxT from the right and use the fact thatx is a binary vector. We get

T xxT = e(diag(xxT ))T ,

and also

Tdiag(xxT ) = e.

These two conditions are equivalent to

T̂ YX = 0, (3.2)

where T̂ := [−e| T ]; and (3.2) now corresponds to the embedding of the assignment
constraints intoSn2+1.

Before we characterize the minimal face ofFO we define the following(n2 + 1) ×
((n − 1)2 + 1) matrix.

V̂ :=
[

1 0
1
n (e⊗ e) V ⊗ V

]
, (3.3)

whereV is ann × (n − 1) matrix containing a basis of the orthogonal complement ofe,
i.e.,VTe = 0. Our choice forV is

V :=
[

In−1

−eT
n−1

]
.

In fact, V̂ is a basis of the null space ofT̂ , i.e., T̂ V̂ = 0.
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The following theorem characterizes the minimal face by finding the barycenter of the
convex hull of the permutation matrices. The barycenter has a very simple and elegant
structure.

Theorem 3.1. Define the barycenter

Ŷ := 1

n!

∑
X∈5n

YX. (3.4)

Then:
1. Ŷ has a1 in the(0, 0) position and n diagonal n×n blocks with diagonal elements1/n.

The first row and column equal the diagonal. The rest of the matrix is made up of n× n
blocks with all elements equal to1/(n(n − 1)) except for the diagonal elements which
are0.

Ŷ =
[

1 1
neT

1
ne

[
1
n2 E ⊗ E

] + [
1

n2(n−1)
(nI − E) ⊗ (nI − E)

]]
.

2. The rank ofŶ is given by

rank(Ŷ) = (n − 1)2 + 1.

3. The n2 + 1 eigenvalues of̂Y are given in the vector(
2,

1

n − 1
eT
(n−1)2, 0eT

2n−1

)T

.

4. The null space and range space are

N (Ŷ) = R(T̂ T ) and R(Ŷ) = R(V̂) (so thatN (T̂) = R(V̂)).

Proof: Fix X ∈ 5 and let

Y = YX =
(

1
vec(X)

)
(1 vec(X)T ).

We now proceed to find the structure ofŶ. Consider the entries of the 0-th row ofY. Since
Y0,(i −1)n+ j = 1 meansi is assigned toj, there are(n−1)! such permutations. We conclude
that the components of the 0-th row (and column) ofŶ are given by

Ŷ0,(i −1)n+ j = 1

n!
(n − 1)! = 1

n
.

Now consider the entries ofY in the other rows, denotedY(p,q),(i, j ).
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(i) If p = i andq = j , thenY(p,q),(i, j ) = 1 means thati is assigned toj and there are
(n − 1)! such permutations. Therefore the diagonal elements are

Ŷ(i, j ),(i, j ) = 1

n!
(n − 1)! = 1

n
.

(ii) Now suppose thatp 6= i andq 6= j , i.e., the element is an off-diagonal element in
an off-diagonal block. ThenY(p,q),(i, j ) = 1 means thati is assigned toj and p is
assigned toq. Since there are(n − 2)! such permutations, we get that

Ŷ(p,q),(i, j ) = 1

n!
(n − 2)! = 1

n(n − 1)
.

(iii) Otherwise, suppose thatp = i orq = j , but not both, i.e., we consider the off-diagonal
elements of the diagonal blocks and the diagonal elements of the off-diagonal blocks.
By the property of permutation matrices, these elements must all be 0, i.e., they
correspond to the off-diagonal elements ofX: j ◦ XT

: j and the diagonal elements of
X:q ◦ XT

: j , q 6= j .

This proves the representation ofŶ in 1.
Let us find the rank and eigenvalues ofŶ. We partition

Ŷ =
[

1 1
neT

1
ne Z

]
,

thus defining the blockZ. We have[
1 0

1
ne I

]
Ŷ

[
1 1

neT

0 I

]
=

[
1 0

0 S

]
, (3.5)

whereS = Z − 1
n2 E. As a result, we have

rank(Ŷ) = 1+ rank(S).

From the structure of̂Y, we see that

S = 1

n2(n − 1)
(nIn−1 − E) ⊗ (nIn−1 − E).

The eigenvalues ofnIn−1 − E aren (with multiplicity n − 1) and 0. By the fact that the
eigenvalues of a Kronecker product are found from the Kronecker product of eigenvalues,
we have that the eigenvalues ofS are 1/(n − 1) (with multiplicity (n − 1)2) and 0 (with
multiplicity 2n − 1). Therefore, we have

rank(Ŷ) = 1+ rank(S) = (n − 1)2 + 1.

This proves 2.
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By (3.5) and the rank, we see that the eigenvalues ofŶ are 1/(n − 1) (with multiplicity
(n − 1)2) and 2 and 0 (with multiplicity 2n − 1). This proves 3.

Note that

u ∈ N (S) ⇔
(− 1

neTu
u

)
∈ N (Ŷ). (3.6)

It is well known that rank(T) = 2n − 1 and we can verify thatSTT = 0. So we have

N (Ŷ) =
{(− 1

neTu
u

)
: u ∈ R(TT )

}
.

In addition, we can now verify that

V̂T

(− 1
neTu
u

)
= 0 for u ∈ R(TT ).

This proves 4. 2

With the above characterization of the barycenter, we can find the minimal face ofP that
contains the feasible set of the relaxation SDP. We lett (n) := n(n+1)

2 .

Corollary 3.1. The dimension of the minimal face is t((n − 1)2 + 1). Moreover, the
minimal face can be expressed asV̂S(n−1)2+1V̂T .

The above characterization of the barycenter yields a characterization of the minimal
face. At first glance it appears that there would be a simpler proof for this characterization,
the proof would use only the row and column sums constraints. Finding the barycenter
is the key in exploiting the geometrical structure of a given problem with an assignment
structure. However, it is not always true that the other constraints in the relaxation are
redundant, as the following shows.

Example 3.2. Consider the constraints

x1 = 1

x1 + x2 + x3 + x4 = 1

x1, x2, x3, x4 ≥ 0

The only solution is(1, 0, 0, 0). Hence the barycenter of the relaxation is the set with
only a rank one matrix in it. However, the null space of the above system has dimension 3.
Thus the projection using the null space yields a minimal face with matrices of dimension
greater than 1.
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3.2. The projected SDP relaxation

In Theorem 3.1, we presented explicit expressions for the range and null space of the
barycenter, denoted̂Y. It is well known, see e.g., (Barker and Carlson, 1975), that the faces
of the positive semidefinite cone are characterized by the nullspace of points in their relative
interior, i.e.,K is a face if

K = {X º 0 : N (X) ⊃ S} = {X º 0 : R(X) ⊂ S⊥},
and

relintK = {X º 0 : N (X) = S} = {X º 0 : R(X) = S⊥},
whereS is a given subspace. In particular, ifX̂ ∈ relintK, the matrixV is n × k, and
R(V) = R(X̂), then

K = VPkVT .

Therefore, usingV̂ in Theorem 3.1, we can project the SDP relaxation(SDPO) onto the
minimal face. The projected problem is

(QAPR1)

µR1 := min trace(V̂T L QV̂)R

s.t. b0diag(V̂ RV̂T ) = I , o0diag(V̂ RV̂T ) = I

arrow(V̂ RV̂T ) = e0, R º 0.

(3.7)

Note that the constraint trace(V̂T DV̂)R = 0 can be dropped since it is always satisfied,
i.e., DV̂ = 0. We are going to refer to(QAPR1) as thebasic relaxationof QAP.

By construction, this program satisfies the generalized Slater constraint qualification for
both primal and dual. Therefore there will be no duality gap, the optimal solutions are
attained for both primal and dual, and both the primal and dual optimal solution sets are
bounded.

Using the fact that̂TV̂ = 0, we get the following lemma which gives some interesting
properties of matrices of the form̂V RV̂T , i.e., of matrices in the span of the minimal face.
These properties are closely related to the row and column sums equal 1 constraints. We
will see below that these properties cause some of the other constraints to be redundant in
the SDP relaxation.

Lemma 3.1. Let R∈ S(n−1)2+1 be arbitrary and let

Y = V̂ RV̂T ,

whereV̂ is given in(3.3). Then, using the block notation of(1.1), we have
(a) y00 = r00, Y0 j e = r00, and

∑n
j =1 Y0 j = r00eT .

(b) Y0 j = eT Yi j , f or i, j = 1, . . . , n.

(c)
∑n

i =1 Yi j = eY0 j and
∑n

i =1 diag(Yi j ) = Y j 0, f or j = 1, . . . , n.
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Proof: We can verify thaty00 = r00 from the definitions. Using the fact thatT̂ V̂ = [−e |
T ]V̂ = 0, we have

T̂ Y = T̂ V̂ RV̂T = 0.

The rest of the proof follows from expandinĝT Y = 0. 2

The projection eliminates the constraintsT̂ Y= 0. After the projection, one problem
remains. There are still redundant constraints in the relaxation. This creates unnecessary
complications when applying interior-point methods, i.e., the linear systems do not nec-
essarily have unique solutions. But, using Lemma 3.1, we can observe that in the basic
relaxation (QAPR1) parts of the block-0-diag and off-0-diag operators are redundant. This
is because the implicit presence of the assignment constraints in combination with the arrow
operator forcesy00 = 1. The main diagonal elements of the images of both operators are
equal to one automatically. Part (b) of Lemma 3.1 relates the row sums of the diagonal
blocks to the corresponding parts of the 0 column ofY. Therefore the sum of the diagonal
blocks has row sums equal to one, which makes one additional element per row dependent.
The same can be observed for the off-0-diag operator. The dimension of the image space
of both operators now reduces to(n2 − 3n)/2. We assume from now on that the operators
are defined such that they cover only a set of(n2 − 3n)/2 linearly independent equalities.

4. Tightening the relaxation

4.1. The gangster operator

The feasible set of the SDP relaxation is convex but not polyhedral. It contains the set
of matrices of the formYX corresponding to the permutation matricesX ∈ 5. But the
SDP relaxations, discussed above, can contain many points that are not in the affine hull of
theseYX. In particular, it can contain matrices with nonzeros in positions that are zero in
the affine hull of theYX. We can therefore strengthen the relaxation by adding constraints
corresponding to these zeros.

Note that the barycenter̂Y is in the relative interior of the feasible set. Therefore the null
space ofŶ determines the dimension of the minimal face which contains the feasible set.
However, the dimension of the feasible set can be (and is) smaller. We now take a closer
look at the structure of̂Y to determine the 0 entries. The relaxation is obtained from

YX =
(

1
vec(X)

)
(1 vec(X)T )

=



1

X:1

X:2

...

X:n


(
1 XT

:1 XT
:2 · · · XT

:n

)
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which contains then2 blocks(
X:i X

T
: j

)
.

We then have

diag
(
X:i X

T
: j

) = X:i ◦ X: j = 0, if i 6= j,

and

Xi : ◦ X j : = 0, if i 6= j,

i.e., the diagonal of the off-diagonal blocks are identically zero and the off-diagonal of the
diagonal blocks are identically zero. These are exactly the zeros of the barycenterŶ.

The above description defines the so-called gangster operator. LetJ ⊂ {(i, j ) : 1 ≤
i, j ≤ n2 + 1}. The operatorGJ : Sn2+1 → Sn2+1 is called theGangsteroperator. For
matrixY, andi, j = 1, . . . , n2 + 1, thei j component of the image of the gangster operator
is defined as

(GJ(Y))i j :=
{

Yi j if (i, j ) ∈ J

0 otherwise.
(4.1)

The subspace of(n2+1)×(n2+1) symmetric matrices with nonzero index setJ is denoted
SJ , i.e.,

SJ := {X ∈ Sn2+1 : Xi j = 0 if (i, j ) 6∈ J}.

From the definition of the gangster operator, we can easily see the following relationships
for the range and null spaces ofGJ .

R(GJ) = SJ

and

N (G−J) = S−J,

where−J is denoted as the complementary set ofJ. Therefore, letJ := {(i, j ) : Ŷi j = 0},
be the zeros found above using the Hadamard product; we have

GJ(Ŷ) = 0. (4.2)

Thus the gangster operator, acting on a matrixY, shoots holes (zeros) through the matrix
Y in the positions wherêY is not zero. For any permutation matrixX ∈ 5, the matrixYX

has all its entries either 0 or 1; and̂Y is just a convex combination of all these matricesYX

for X ∈ 5. Hence, from (4.2), we have

GJ(YX) = 0, for all X ∈ 5.
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Therefore, we can further tighten our relaxation by adding the constraint

GJ(Y) = 0. (4.3)

Note that the adjoint equation

trace(G∗
J(Z)Y) = trace(ZGJ(Y)),

implies that the gangster operator is self-adjoint, i.e.,

G∗
J = GJ .

4.2. The gangster operator and redundant constraints

The addition of the gangster operator provides a tighter SDP relaxation. Moreover, it makes
many of the existing constraints redundant. We now add the gangster operator and remove
all redundant constraints. We maintain the notation from Theorem 3.1.

Suppose that we have added the gangster operator constraint to the projected problem
(QAPR1), i.e. G(V̂ RV̂T ) = 0. From Lemma 3.1, ifY = V̂ RV̂T , then we have

Y0 j = eT Y j j for j = 1, . . . , n.

Note that the off-diagonal entries for eachY j j are zero. Therefore, it follows that the
arrow operator is redundant. Furthermore, by part (a) of Lemma 3.1, we can see that the
block-diag operator is redundant. Similarly, the off-block-diag operator is redundant.

We now define a subset̂J of J, of indices ofY, (a union of two sets)

Ĵ := {(i, j ) : i = (p − 1)n + q, j = (p − 1)n + r, q 6= r }
∪ {(i, j ) : i = (p − 1)n + q, j = (r − 1)n + q, p 6= r, (p, r 6= n),

((r, p), (p, r ) 6= (n − 2, n − 1), (n − 1, n − 2))}.

These are the indices for the 0 elements of the barycenter, i.e., (up to symmetry) the off-
diagonal elements of the diagonal blocks and the diagonal elements of the off-diagonal
blocks. We do not include (up to symmetry) the off-diagonal block(n − 2, n − 1) or the
last column of off-diagonal blocks.

With this new index set̂J we are able to remove all redundant constraints while main-
taining the SDP relaxation. First we have the following lemma.

Lemma 4.1. Let Y ∈ Sn2+1. Then

V̂TG∗
Ĵ
(Y)V̂ = 0 ⇒ G∗

Ĵ
(Y) = 0.
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Proof: First, recall that the gangster operator is self-adjoint. LetZ = G∗
Ĵ
(Y). The matrix

Z can be written as the block matrix

Z =


0 0 · · · 0

0 Z11 · · · Z1n

...
...

. . .
...

0 Zn1 · · · Znn

 .

We let

Ẑ = (V ⊗ V)t


Z11 · · · Z1n

...
. . .

...

Zn1 · · · Znn

 (V ⊗ V).

Then, fori, j ∈ {1, . . . , n − 1}, the(n − 1)2 blocks of Ẑ := V̂T ZV̂ are

Ẑi j = VT (Zi j − Zin − Znj + Znn)V = 0. (4.4)

Note that the definition of̂J impliesZni = Zin = 0, for i = 1, . . . n−1, andZ(n−2),(n−1) =
Z(n−1),(n−2) = 0. Therefore, withi = n − 1, j = n − 2, (4.4) implies that

Ẑ(n−1),(n−2) = VT (Zn,n)V = 0.

As a result, we have

Ẑi j = VT Zi j V,

for i, j ∈ {1, . . . , n − 1}.
SinceZi j can be either a diagonal matrix or a matrix with diagonal equal to zeros, we

have the following two cases.

Case 1: Zi j is a diagonal matrix.
Let

Zi j =


a1 · · · 0
...

. . .
...

0 · · · an

 .

Then

Ẑi j =


a1 · · · 0
...

. . .
...

0 · · · an−1

 + anE = 0,

which implies thatZi j = 0.
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Case 2: Zi j is a matrix with diagonal equal to zeros.
Let

Zi j =
[

A b

bt 0

]
,

whereA is an − 1 byn − 1 matrix with diagonal equal to zeros. Thus, we have

Ẑi j = A − ebt − bet = 0,

which implies thatb = 0 andA = 0, i.e.,Zi j = 0. Therefore, We haveZ = 0. 2

Note the adjoint relationship

V̂TG∗
Ĵ
(·)V̂ = (G Ĵ(V̂ · V̂T ))∗.

The above Lemma 4.1 states that

N (V̂TG∗
Ĵ
(·)V̂) = N (G∗

Ĵ
(·)).

Therefore, the adjoint operator satisfies the following.

Corollary 4.1.

R(G Ĵ(V̂ · V̂T )) = R(G Ĵ(·)) = S Ĵ . (4.5)

We can now get rid of all the redundant constraints that arise from adding the gangster
operatorGJ, i.e., we can have an SDP relaxation where the constraint operator is onto. This
requires the following.

Theorem 4.1. Let Y = V̂ RV̂T be written in block matrix form(1.1). Then
1. G Ĵ(Y) = 0 implies thatdiag(Y1n) = 0, . . . , diag(Y1,(n−1)) = 0, anddiag(Y(n−2),(n−1))

= 0.
2. Let J̄ = Ĵ ∪ (0, 0). ThenG J̄(V̂ · V̂T ) has range space equal toS J̄ .

Proof: Suppose thatG Ĵ(Y) = 0, i.e.,Y has zeros in positions corresponding to the setĴ.

From Lemma 3.1, we have, for eachi = 1, . . . , n,

n∑
j =1

diag(Yi j ) = Yi 0

and

diag(Yii ) = Yi 0.
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Using the zeros of the diagonals of the off-diagonal block, we get that diag(Yin) =
0, for i = 1, . . . , n − 3. Therefore,

diag
(
Y(n−2),(n−1)

) + diag
(
Y(n−2),n

) = 0

diag
(
Y(n−2),(n−1)

) + diag
(
Y(n−1),n

) = 0

diag
(
Y(n−2),n

) + diag
(
Y(n−1),n

) = 0.

Therefore,
diag

(
Y(n−2),(n−1)

) = 0

diag
(
Y(n−2),n

) = 0

diag
(
Y(n−1),n

) = 0.

This completes the proof for 1.
SinceŶ00 = 1 is definitely a feasible constraint, and the (0, 0) index is not involved in

the setĴ, part 2 follows from Lemma 4.1 and the observation (4.5). 2

Theorem 4.1 shows that we have eliminated the redundant constraints and obtained a full
rank constraint. We can now get a very simple projected relaxation.

(QAPR2)

µR2 = min trace(V̂T L QV̂)R

s.t. G J̄(V̂ RV̂T ) = E00

R º 0.

(4.6)

The dimension of the range space is determined by the cardinality of the setJ̄, i.e., there
aren3 − 2n2 + 1 constraints.

The dual problem is

µR2 = max −Y00

s.t. V̂T (L Q + G∗
J̄
(Y))V̂ º 0.

NoteR(G∗
J̄
) = R(G J̄) = S J̄ . The dual problem can be expressed as follows

µR2 = max −Y00

s.t. V̂T (L Q + Y)V̂ º 0

Y ∈ S J̄ .

4.3. Inequality constraints

We now consider generic inequality constraints to further tighten the derived relaxations.
These constraints come from the relaxation of the (0, 1)-constraints of the original problem.
ForY = YX, with X ∈ 5, the simplest inequalities are of the type

Y(i, j ),(k,l ) ≥ 0, sincexi j xkl ≥ 0.
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Helmberg et al. (1995) show that the so called triangle inequalities of the general integer
quadratic programming problem in the (−1, +1)-model are also generic inequalities for
the (0, 1)-formulation. Nevertheless, we are going to restrict ourselves to the simplest
type of inequalities, which are facet defining for the QAP polytope, as shown in (J¨unger
and Kaibel, 1995; Rijal, 1995). Beside the nonnegativity constraints one can also impose
nonpositivity constraints on the zero elements ofŶ. Together with the gangster operator,
these inequalities and the corresponding nonnegativity constraints are clearly redundant.
But for the basic relaxation (QAPR1) we can use both nonnegativity and nonpositivity
constraints to approximate the gangster operator. This leads to the following semidefinite
relaxation of QAP.

(QAPR3)

µR3 := min trace(V̂T L QV̂)R

s.t. b0diag(V̂ RV̂T ) = I , o0diag(V̂ RV̂T ) = I

arrow(V̂ RV̂T ) = e0, V̂ RV̂T ≥ 0

GJ(V̂ RV̂T ) ≤ 0, R º 0

(4.7)

Note that this relaxation is stronger than (QAPR2) because nonnegativity constraints are
also imposed on elements which are not covered by the gangster operator. The advantage
of this formulation is that the number of inequalities can be adapted so that the model is not
too large. The larger the model is the better it approximates the original gangster operator.

4.4. A comparison with linear relaxations

We now look at how our relaxations of QAP compare to relaxations based on linear pro-
gramming. Adams and Johnson (1994) derive a linear relaxation providing bounds which
are at least as good as other lower bounds based on linear relaxations or reformulations of
QAP. Using our notation, their continuous linear program can be written as

(QAPCLP) µCLP := min{traceL Z : Z ∈ FCLP} (4.8)

where the feasible set is

FCLP :=
{

Z ∈ N ; Z(i, j ),(k,l ) = Z(k,l ),(i, j ), 1 ≤ i, j, k, l ≤ n, i < k, j 6= l ;∑
k

Z(k,l ),(k,l ) =
∑

l

Z(k,l ),(k,l ) = 1;∑
i 6=k

Z(i, j ),(k,l ) = Z(k,l ),(k,l ), 1 ≤ j, k, l ≤ n, j 6= l ;

∑
j 6=l

Z(i, j ),(k,l ) = Z(k,l ),(k,l ), 1 ≤ i, k, l ≤ n, i 6= k

}
.

We now compare the feasible sets of relaxations (QAPR3) and (QAPCLP). It is easy to
see that the elements ofZ which are not considered inFCLP are just the elements covered
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by the gangster operator, i.e., for whichGJ(Y) = 0. In (QAPR3) the gangster operator is
replaced by nonnegative and nonpositive constraints. The linear constraints inFCLP are
just the lifted assignment constraints, but they are taken care of by the projection and the
arrow operator in (QAPR3). The nonnegativity of the elements is enforced in both feasible
sets. Hence the only difference is that we impose the additional constraintY ∈ P. We can
summarize these observations in the following theorem.

Theorem 4.2. Let µR3 be the bound obtained by the semidefinite relaxation(QAPR3)

defined in(4.7), and letµC L P be the bound obtained by(QAPC L P), the linear relaxation
of QAP defined in(4.8). Then

µR3 ≥ µC L P.

5. Primal-dual interior-point algorithm

We now outline how to apply the primal-dual interior-point method of Helmberg et al.
(Helmberg, 1994; Helmberg et al., 1996) to our semidefinite relaxations. First, we consider
a generic SDP model. In Section 5.2 we discuss its application to (QAPR2), which we also
call thegangster model; and in Section 5.3 we apply it to (QAPR3), which we call theblock
model. We also address practical and computational aspects for their solution.

5.1. Generic SDP model

LetA(·) andB(·) be (symmetric) linear operators defined onSn2+1, a ∈ <na andb ∈ <nb,
wherena andnb are of appropriate size. Then, by identifying the equality constraints of the
relaxations byA(·) anda, and the inequality constraints byB(·) andb, we get the following
general (primal) semidefinite programming problem in the variableR ∈ Sn2+1.

(P)

µ∗ := min traceL R

s.t. A(R) + a = 0

B(R) + b ≥ 0

R º 0.

The dual problem is

(D)

ν∗ := max wTa − t Tb

s.t. L +A∗(w) − B∗(t) − Z = 0

t ≥ 0

Z º 0,

whereA∗ andB∗ denote the adjoint operators toA andB, respectively, andw ∈ <na and
t ∈ <nb. Since, as we will prove in Section 5.4 that the Slater constraint qualification holds
for our primal (and dual) projected SDP relaxations, there is no duality gap, i.e.,µ∗ = ν∗.
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The Karush-Kuhn-Tucker optimality conditions for the primal-dual pair are

(KKT)

FP := A(R) + a = 0

FD := L +A∗(w) − B∗(t) − Z = 0

Ft R := −t ◦ [B(R) + b] + µe = 0

FZ R := Z R− µI = 0.

The first and second equation are the primal and dual feasibility equations. The remaining
equations take care of complementary slackness for the pairs(t, [B(R) + b]), and(Z, R),
respectively.

We solve this system of equations with a Newton-type method, which means we have to
solve the following linearization for a search direction.

(δKKT)

A(δR) = −FP

A∗(δw) − B∗(δt) − δZ = −FD

−(δt) ◦ [B(R) + b] − t ◦ B(δR) = −Ft R

(δZ)R + Z(δR) = −FZ R.

We first solve forδZ and eliminate the second equation of(δKKT)

δZ = A∗(δw) − B∗(δt) + FD.

By definingt inv as the vector having elements(t inv)i = 1
ti

we get

A(δR) = −FP

−t inv ◦ (δt) ◦ [B(R) + b] − B(δR) = −t inv ◦ Ft R

A∗(δw)R − B∗(δt)R + Z(δR) = −FZ R − FD R
(5.1)

Now solve forδR and eliminate the third equation of (5.1), i.e.,

δR = −Z−1A∗(δw)R + Z−1B∗(δt)R − Z−1FZ R − Z−1FD R.

The system becomes

−A(Z−1A∗(δw)R) +A(Z−1B∗(δt)R) = A(Z−1FZ R + Z−1FD R) − FP

+B(Z−1A∗(δw)R) − B(Z−1B∗(δt)R) − t inv ◦ (δt) ◦ [B(R) + b]

= −B(Z−1FZ R + Z−1FD R) − t inv ◦ Ft R.

(5.2)

We can observe that thefinal system(5.2) is of size(m + mb), wheremb denotes by
definition the number of inequality constraints. This final system is solved with respect to
δw andδt and back substitution yieldsδR andδZ. Note that sinceδR cannot be assumed
to be symmetric it is symmetrized; but, as shown in (Kojima et al., 1994), this still yields
polynomial time convergence of the interior-point method.
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We point out that solving the final system is the most expensive part of the primal-dual
algorithm. We are using two approaches for this purpose: a preconditioned conjugate
gradient method for the gangster model; and a Cholesky factorization for the block model.

5.2. Application to the gangster model

Now we apply the above generic model to the SDP relaxation (QAPR2). The primal-dual
pair is

(P)

min trace(V̂T L QV̂)R

s.t. G J̄(V̂ RV̂T ) = E00

R º 0

and

(D)

max −Y00

s.t. V̂T (L Q + Y)V̂ − Z = 0

Z º 0

Y ∈ S J̄ .

The Karush-Kuhn-Tucker conditions of the dual log-barrier problem are

FP := G J̄(V̂ RV̂T ) − E00 = 0

FD := V̂T (L Q + Y)V̂ − Z = 0

FZ R := Z R− µI = 0,

(5.3)

whereR Â 0, Z Â 0 andY ∈ S J̄ . The first equation is primal feasibility conditions, while
the second is the dual feasibility conditions and the third takes care of complementary
slackness forR and Z. After substituting forδZ andδR we obtain the following final
system.

G J̄(V̂ Z−1V̂TδYV̂ RV̂T ) = FP − G J̄(V̂(Z−1FD R + Z−1FZ R)V̂T ). (5.4)

The size of the above problem ism = n3 −2n2 +1. Therefore, to solve such a huge system
of equations we use a conjugate gradient method. It is worthwhile to note that even if the
above system of equations can be solved directly, it is very time consuming to create an
explicit matrix representation.

5.2.1. The preconditioned conjugate gradient method.We useK(δy) = b to denote the
above system (5.4). We solve the system inexactly by the conjugate gradient method. We
use the square root of the size of the above linear system as a limit on the number of iterations
of the conjugate gradient method. We choose the diagonal of the matrix representation as
the preconditioner. We approximate the angleθ betweenK(δy) andb by

cosθ ≈ |bT (b − r )|
‖b‖ · ‖b − r ‖ ,
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wherer is the residual of the linear system. We then chooseσ = 0.001 and terminate the
conjugate gradient algorithm when

1 − cosθ ≤ σ.

(See e.g., Portugal et al., 1994.)
The special structure of the gangster operator makes it relatively cheap to construct a

preconditioner. Let̃R = V̂ RV̂T andZ̃ = V̂ Z−1V̂T . Then the linear operator system (5.4)
becomes

G J̄(Z̃δYR̃) = F1
P − G J̄(V̂(Z−1FD R + Z−1FZ R)V̂T ).

For 1≤ k, l ≤ m, let us calculateKkl , the(k, l ) entry ofK. Note that we can always order
the index setJ̄. Let (ki , kj ) and(l i , l j ) be the index pairs from̄J corresponding tok andl ,
respectively. Thel th column ofK isK(el ), i.e.,(

G J̄

(
Z̃
(
0.5eli e

T
l j

+ 0.5el j e
T
li

)
R̃
))

.

Therefore,

Kkl = (
Z̃ki l j R̃l i k j + Z̃ki l i R̃l j k j + Z̃kj l i R̃l j ki + Z̃kj l j R̃l i ki

)/
2.

The above formula allows for efficient calculation of the diagonal elements.

5.2.2. Stopping criterion for the interior-point method.Because of the primal infeasibi-
lity, we use the increasing rate of the dual objective value for the stopping criteria (instead
of using the duality gap). The rate is defined as follows.

δtk := tk+1 − tk
tk+1

,

wheretk is the dual objective value at the iterationk. At each iteration the dual objective
value gives a lower-bound and the lower-bound increases ask increases. We terminate the
algorithm when

δtk < ε,

whereε := 0.001. In other words, when the gain for increasing the lower-bound is not worth
the computation expense, we stop the algorithm. Since our goal is to find a lower-bound
this stopping criterion is quite reasonable.

5.3. Application to the block model

In the case of the block model, i.e., (QAPR3) and its special case (QAPR1), we apply the
following primal-dual interior-point approach.
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The linear operatorB(·) acting on(n2 + 1) × (n2 + 1) matrices is used to model the
nonnegativity and nonpositivity constraints. Since the constraints used to approximate
the gangster operator do not allow for a primal interior-point to exist, they are relaxed to
yi j + ε ≥ 0 and−yi j + ε ≥ 0 with ε > 0. For these relaxed constraints the barycenter
as given in Theorem 3.1 is strictly feasible. Now setb = εe and obtain as (relaxed)
inequality constraintsB(V̂ RV̂T ) + b ≥ 0 in (QAPR3). In practice we setε = 10−3. Due
to practicality, all nonnegativity constraints are relaxed as well. The primal program of the
primal-dual pair for (QAPR3) is now

(P)

min traceL R

s.t. arrow(V̂ RV̂T ) − e0 = 0

b0diag(V̂ RV̂T ) − I = 0

o0diag(V̂ RV̂T ) − I = 0

B(V̂ RV̂T ) + b ≥ 0

R º 0.

and the dual program is

(D)

max −w0 − bT t

s.t. L + V̂T (Arrow (w) + B0Diag(Sb) + O0Diag(So)

−B∗(t))V̂ − Z = 0

Z º 0, t ≥ 0.

Note that the dual variablesSb andSo do not get into the objective function of (D), since the
main diagonal elements are not covered by the block-0-diag and off-0-diag operators. This
follows from the considerations about the redundancies of certain parts of the operators in
Section 3.2.

The left hand side of the final system corresponding to the solution of (KKT) is now a
4 × 4 block. The remaining variables areδw, δSb, δSo, andδt and the left-hand side is

K (·) :=
[

−A(Z̃A∗(·)R̃) A(Z̃B∗(·)R̃)

B(Z̃A∗(·)R̃) −B(Z̃B∗(·)R̃) − t inv ◦ (·) ◦ [B(R) + b]

]
, (5.5)

where we havẽZ := V Z−1VT andR̃ := V RVT , and the operatorA(·) covers the equality
constraints. Thus

A(·) =

 arrow(·)
b0diag(·)
o0diag(·)


makes up a 3× 3 block in the left upper corner ofK (·). This block is of sizema × ma,

wherema = 2n2 − 3n + 1. Recall that the dimension of the image space of the arrow
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operator isn2 +1 while the block-0-diag and off-0-diag operators both contain(n2 −3n)/2
linearly independent equalities.

In the block model we assume primal and dual feasibility from the beginning, and hence
the right-hand side of the final system is just[ A(R − µZ−1)

b + µ(Z−1 − t inv)

]
. (5.5)

For solving the final system we construct an(ma + mb) × (ma + mb) matrix which
corresponds toK (·). A way for doing this is described in (Karisch, 1995). Building this
matrix for the basic relaxation (QAPR1) requiresO(n6) operations and its factorization is
of the same complexity. Note that a conjugate gradient approach to solve the final system
of the block model would require the same order of work in each iteration. Hence, solving
(QAPR1) employing a conjugate gradient method would be of similar expense as for solving
(QAPR2).

It should also be pointed out that the projectionsV̂T YV̂ andV̂ RV̂T can be performed
in orderO(n4) operations instead ofO(n6) steps if the special structure ofV̂ is exploited,
see (Karisch, 1995).

5.3.1. Predictor corrector approach.We are now going to look at the change in the right-
hand side of the final system when we apply a predictor-corrector approach to the block
model.

Predictor-corrector approaches prove to be very successful for linear programming, see
e.g., (Lustig et al., 1992; Carpenter et al., 1993), and the concept can also be applied
to semidefinite programming, see (Alizadeh et al., 1994; Helmberg, 1994). As shown
in (Helmberg, 1994) the application of a predictor-corrector approach only changes the
right-hand side of the final system (5.2).

The main observation is that splitting up the search directionδs = δsp + δsc yields an
improved solution since it better solves the nonlinear complementarity conditions. Here,
we denote byδs the vector containing our search direction(δw, δt, δR, δZ).

The predictor stepδsp is also called the affine scaling step (µ = 0). It is just the solution
of the final system (5.2) with right-hand side[

A(R)

b

]
. (5.6)

The result is the predictor stepδsp = (δwp, δt p, δRp, δZ p). In the corrector stepδsc we
solve for the correction to the central path. This results in the same final system (5.2) where
the right hand side is now[

A[Z−1(δZ p)(δRp)] − µA[Z−1]

−B[Z−1(δZ p)(δRp)] + t inv ◦ (δt p) ◦ B(δRp) + µB[Z−1 − t inv]

]
. (5.7)

We now solve forδsc = (δwc, δtc, δRc, δZc) and finally obtainδs = δsp + δsc.



P1: NTA

Journal of Combinatorial Optimization KL560-05-ZHAO February 18, 1998 13:15

100 ZHAO ET AL.

5.3.2. A cutting plane approach. The number of possibly violated inequalities can be
of orderO(n4). In order to find a good approximation of the QAP with relatively few
inequalities in the model we use a cutting plane approach.

We first solve the basic relaxation (QAPR1) to optimality. Then we add them = min{n2,

200} most violated inequalities to the model and solve the new relaxation (QAPR3). Before
adding additional violated inequalities we check whether all inequality constraints are tight
and remove those that have positive slack whose dual costs are close to zero. Here, we
remove an inequality if its dual cost is smaller than 5∗ 10−5 ∗ tmax wheretmax is the largest
dual variable. We repeat this process of removing and adding inequalities until one of the
following stopping criterions for the cutting plane approach is met: we can prove optimality
for the given instance, i.e., the lower bound is tight; there are no more violated inequalities;
or a given upper bound for the number of inequalities that can be used, heremb ≤ 2000, is
reached.

5.4. Strictly feasible points for both models

We still have to address the existence of strictly feasible points for our relaxations in order
to satisfy Slater’s constraint qualification. The following lemma gives interior points for
the primal problems.

Lemma 5.1. Define the((n − 1)2 + 1) × ((n − 1)2 + 1) matrix

R̂ :=
[

1 0

0 1
n2(n−1)

(nIn−1 − En−1) ⊗ (nIn−1 − En−1)

]

ThenR̂ is positive definite and feasible for(QAPR1), (QAPR2), and(QAPR3).

Proof: First it is easy to check that̂R is strictly positive definite sincenIn−1 − En−1 is
strictly positive definite.

We complete the proof by showing that

V̂ R̂V̂T = Ŷ,

whereŶ is the barycenter.

V̂T R̂V̂ =
[

1 0
1
ne⊗ e V ⊗ V

][
1 0

0 1
n−1(nI − E) ⊗ (nI − E)

][
1 1

neT ⊗ eT

0 VT ⊗ VT

]

=
[

1 0
1
ne⊗ e V ⊗ V

][
1 1

neT ⊗ eT

0 1
n−1(nI − E) ⊗ (nI − E)(VT ⊗ VT )

]

=
[

1 1
neT ⊗ eT

1
ne⊗ e 1

n2 E ⊗ E + 1
n2(n−1)

(nV VT − V EVT ) ⊗ (nV VT − V EVT )

]
.
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Now it remains to show thatnV VT − V En−1VT = nIn − En. We have

nV VT − V EVT =
[

nIn−1 −neT
n−1

−nen−1 n(n − 1)

]
−

[
En−1 −(n − 1)eT

n−1

−(n − 1)en−1 (n − 1)2

]
=

[
nIn−1 − En−1 −eT

n−1
−en−1 n − 1

]
= nIn − En. 2

The next lemma provides strictly dual-feasible points.

Lemma 5.2.
1. Let

Ŷ = M

[
n 0

0 In ⊗ (In − En)

]
.

Then for M large enough,̂Y Â 0 and it is in the feasible set of the dual of(QAPR2).
2. Letŵ = α(n2/4+ ε, en2)T with ε > 0 andα large enough, Ŝo = 0, Ŝb = 0, and lett̂ be

arbitrary. Then the quartuple(ŵ, Ŝo, Ŝb, t̂ ) is strictly feasible for the duals of(QAPR3),

and of(QAPR1) if t̂ ≡ 0.

Proof:

1. It is obvious that we only need to show thatV̂(G∗
Ĵ
(Ŷ) + Ŷ00e0eT

0 )V̂ is positive definite.

V̂
(
G∗

Ĵ
(Ŷ) + Ŷ00e0eT

0

)
V̂ =

[
1 0

0 (V ⊗ V)T (In ⊗ (In − En))V ⊗ V

]

=
[

1 0

0 (VT InV) ⊗ (VT (In − En)V)

]

=
[

1 0

0 VT V ⊗ VT V

]

=
[

1 0

0 (In−1 + En−1) ⊗ (In−1 + En−1)

]
.

SinceIn−1 + En−1 is positive definite, we have that[
1 0

0 (In−1 + En−1) ⊗ (In−1 + En−1)

]

is positive definite.
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2. Fixing Ŝo, Ŝb andt̂ , we only need to show that Arrow(ŵ/α) Â 0. Using Schur comple-
ments this is equivalent to showing that(n2 + ε)/4 > 0 andIn2 Â − 1

2en2( 4
n2+ε

) 1
2eT

n2 =
1

n2+ε
E2

n. The first inequality is obvious and for the second we only need to observe that
the largest eigenvalue of the right-hand side is smaller than 1. Makingα large enough
provides an interior point for the dual of (QAPR3) and also for (QAPR1) for which t̂ ≡ 0.

2

6. Numerical results

In this Section we present the results of our numerical experiments. The experiments are
divided into two parts. First we investigate the quality of the new bounds compared to
bounds from the literature. Then, we also look at their quality and growth rate in the first
level of the branching tree, see Table 5.

The results of the comparisons are summarized in the following tables. Tables 1 and 2
contain instances from the current version of QAPLIB (Burkard et al., 1991) while Table 3
consists of data of a previous version of the library. Note that all considered instances are
pure quadratic, i.e., have no linear term, except the problems Carxx. The tables read as
follows. The first column indicates the problem instance and its size, e.g., Nugxx refers
to the Nugent example of sizexx. For references of the problem instances we refer to
QAPLIB (Burkard et al., 1991). The following columns contain the best known feasible
solution (which is optimal for alln ≤ 24); the Gilmore-Lawler bound GLB (Gilmore, 1962;
Lawler, 1963) the projection or elimination bound ELI of (Hadley et al., 1992); the linear
programming bound RRD obtained in (Resende et al., 1995); and an improved eigenvalue
bound EVB3 from (Rendl and Wolkowicz, 1992). For EVB3 we performed 100 iterations
of the underlying bundle trust code. The last three columns contain the bounds obtained in
this paper,µR1, µR2 andµR3. An ‘n.a.’ means that the value of the bound is not available.

The implementation of our bounds was done in MATLAB using CMEX interfaces.
Even though there is still room for improvement with respect to implementational aspects,
our running times are comparable to the ones for RRD (Resende et al., 1995). For the
Nug20 problem instance, Resende et al. needed 60.19 minutes of CPU-time to obtain their
bound on a Silicon Graphics Challenge computer (150 MHz with 1.5 Gbytes of RAM). The
implementation of their bounding technique was done in FORTRAN and C. The calculation
of µR1 andµR2 on DEC 3000-900 Alpha AXP computers (275 MHz with 256 Mbytes and
64 Mbytes of RAM) took 19.93 and 316.17 minutes of CPU-time, respectively.

We do not reportµR2 andµR3 for instances larger thann = 22 (except for one instance of
sizen = 30 whereµR2 is given). The reasons therefore are the large running times for the
gangster model (QAPR2) and the restriction on the number of inequalities in the cutting plane
approach tomb ≤ 2000 for (QAPR3). Furthermore, this work is primarily concerned with
the theoretical aspects of the application of semidefinite relaxations to the QAP. The issue
of better and more efficient implementations will be part of subsequent work. Regarding
(QAPR3), one can observe that the restriction on the size of the model does not allow for
large improvements within the cutting plane approach for instances of sizen ≥ 15. In this
case the gangster model (QAPR2) provides stronger bounds than (QAPR3). But the block
model provides at least a primal feasible approach from the beginning and the less expensive
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Table 1. QAPLIB instances 1.

Sol. GLB ELI RRD EVB3 µR1 µR2 µR3

Esc16a 68 38 47 68 50 47 50 47

Esc16b 292 220 250 278 276 250 276 277

Esc16c 160 83 95 118 113 95 113 110

Esc16d 16 3 −19 4 −12 −19 −12 −6

Esc16e 28 12 6 14 13 6 13 9

Esc16g 26 12 9 14 11 9 11 10

Esc16h 996 625 708 704 708 708 909 806

Esc16i 14 0 −25 0 −21 −25 −21 −6

Esc16j 8 1 −6 2 −4 −6 −4 −4

Had12 1652 1536 1573 n.a. 1595 1604 1640 1648

Had14 2724 2492 2609 n.a. 2643 2651 2709 2703

Had16 3720 3358 3560 n.a. 3601 3612 3678 3648

Had18 5358 4776 5104 n.a. 5176 5174 5286 5226

Had20 6922 6166 6625 n.a. 6702 6713 6847 6758

Kra30a 88900 68360 63717 76003 n.a. 69736 — —

Kra30b 91420 69065 63818 76752 n.a. 70324 — —

Nug12 578 493 472 523 498 486 530 547

Nug14 1014 852 871 n.a. 898 903 959 967

Nug15 1150 963 973 1041 1001 1009 1060 1075

Nug16a 1610 1314 1403 n.a. 1455 1461 1527 1520

Nug16b 1240 1022 1046 n.a. 1081 1082 1138 1132

Nug17 1732 1388 1487 n.a. 1521 1548 1621 1604

Nug18 1930 1554 1663 n.a. 1707 1723 1801 1776

Nug20 2570 2057 2196 2182 2290 2281 2385 2326

Nug21 2438 1833 1979 n.a. 2116 2090 2252 2157

Nug22 3596 2483 2966 n.a. 3174 3140 3394 3234

Nug24 3488 2676 2960 n.a. 3074 3068 — —

Nug25 3744 2869 3190 n.a. 3287 3305 — —

Nug30 6124 4539 5266 4805 5448 5413 — —

basic relaxation (QAPR1) is competitive with respect to RRD for the Nugxx instances of
dimensionn ≥ 20.

The comparison with bounds from the literature shows that our bounds compare favorable
on instances Hadxx, Nugxx, Rouxx, and Taixx. These instances have in common that their
matrices are rather dense. On the other hand, for sparse instances as most of Escxx and
Scrxx are, RRD dominates the bounds based on semidefinite relaxation. ELI seems to be a
good indicator of when to expect the semidefinite bounds to be stronger than the ones based
on linear relaxation. It seems as if the nonnegativity constraints are more important than
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Table 2. QAPLIB instances 2.

Sol. GLB ELI RRD EVB3 µR1 µR2 µR3

Rou12 235528 202272 200024 224278 201337 208685 220991 227986

Rou15 354210 298548 296705 324869 297958 306833 323141 324900

Rou20 725522 599948 597045 643346 n.a. 615549 642448 631680

Scr12 31410 27858 4727 29872 n.a. 11117 24230 27183

Scr15 51140 44737 10355 49264 n.a. 17046 42094 40821

Scr20 110030 86766 16113 95113 n.a. 28535 83026 59780

Tai12a 224416 195918 193124 n.a. 195673 203595 215377 220938

Tai15a 388214 327501 325019 n.a. 327289 333437 349476 347908

Tai17a 491812 412722 408910 n.a. 410076 419619 441238 435675

Tai20a 703482 580674 575831 n.a. n.a. 591994 618720 606228

Tai25a 1167256 962417 956657 n.a. n.a. 974004 — —

Tai30a 1818146 1504688 1500407 n.a. n.a. 1529135 — —

Tho30 149936 90578 119254 100784 n.a. 125972 — —

Table 3. Numerical results for old instances.

Sol. GLB ELI RRD EVB3 µR1 µR2 µR3

Car10ga 4954 3586 4079 n.a. 4541 4435 4853 4919

Car10gb 8082 6139 7211 n.a. 7617 7600 7960 8035

Car10gc 8649 7030 7837 n.a. 8233 8208 8561 8612

Car10gd 8843 6840 8006 n.a. 8364 8319 8666 8780

Car10ge 9571 7627 8672 n.a. 8987 8910 9349 9473

Car10pa 32835 28722 −4813 n.a. n.a. 1583 12492 30359

Car10pb 14282 12546 −14944 n.a. n.a. −5782 9934 13361

Car10pc 14919 12296 −17140 n.a. n.a. −8040 2473 13655

Esc08a 2 0 −2 0 n.a. −2 0 2

Esc08b 8 1 −2 2 n.a. −2 3 6

Esc08c 32 13 8 22 n.a. 9 18 30

Esc08d 6 2 −2 2 n.a. −2 2 6

Esc08e 2 0 −6 0 n.a. −6 −4 1

Esc08f 18 9 8 18 n.a. 9 13 18

Nug05 50 50 47 50 50 49 50 50

Nug06 86 84 69 86 70 74 85 86

Nug07 148 137 125 148 130 132 144 148

Nug08 214 186 167 204 174 179 197 210
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Table 4. Instances for which symmetry is destroyed.

Sol. µR1 µR2 µR3

Nug12C 578 492 534 545

Nug15C 1150 1012 1075 1081

Nug20C 2570 2292 2396 2335

Nug30C 6124 5424 5648 —

the semidefinite ones on sparse instances. On these instances ELI,µR1 andµR2 become
even negative. Note that on the Esc16x problems ELI andµR1 coincide.

Table 4 contains instances whose inherent symmetry was destroyed by introducing a
linear term. For instance, the distance matrices of the Nugxx problems contain the distances
of rectangular grids. The grid on which the locations of Nug12 are placed is given by

G =
1 2 3 4
5 6 7 8
9 10 11 12

In this case, an assignment of any facility, say facility 1, to other locations but 1, 2, 5 and 6,
can not result in a solution which is not obtained by a restricted solution, say 1→ {1, 2, 5, 6}.
For restricting the solution set to such a subset, we introduce a linear cost matrixC whose
elements are all 0 expectc1 j , j ∈ {3, 4, 7, 8, 9, 10, 11, 12}. These nonzero entries ofC are
sufficiently large numbers. The resulting instances are marked with a ‘C’, e.g., Nug12C,
and are equivalent to the originals. Table 4 shows that our bounds improve when this is
done. We point out that symmetries can also be found in the other instances but we do not
specify this here.

We also investigate whether the new bounds satisfy a necessary condition for their appli-
cability within a branch and bound algorithm. Eigenvalue bounds show a relatively small
growth rate in the branching tree and, therefore computationally more expensive variants
are not well suited for branch and bound, see (Clausen et al., 1996b). Here, we look at the
quality of the new bounds in the first level of the branching tree, i.e., we want to see how
fast the lower bounds increase after branching. Table 5 gives the results for the first level,
when one partial assignment is made. As pointed out above, the Nugxx examples posses
inherent symmetries due to their distance matrices, e.g., there are only four subproblems to
be considered in the first level of Nug12. The partial assignments of facility 1 are indicated
by the entry after the dot in the name of the instance. To measure the increasing rate (ir )
of the lower bound (lbd) by branching, we define the rate in percent as follows.

ir := lbdchild − lbdparent

lbdparent
∗ 100%

In Table 5, the increasing rates are shown by the numbers in the brackets. The results of this
table show that the lower bounds given by the SDP relaxations increase much faster than the
Gilmore-Lawler bounds in the first level of the branching tree. Even though this does not
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Table 5. Results for first level in branching tree.

n Sol. GLB (ir ) µR1 (ir ) µR2 (ir ) µR3 (ir )

Nug12 12 578 493 486 530 547

Nug12.1 11 586 496 (0.6) 514 (5.4) 551 (3.9) 574 (4.9)

Nug12.2 11 578 495 (0.4) 514 (5.4) 553 (4.3) 571 (4.3)

Nug12.5 11 578 494 (0.2) 524 (7.8) 552 (4.1) 570 (4.2)

Nug12.6 11 586 499 (1.2) 530 (9.0) 561 (5.8) 578 (5.6)

Nug15 15 1150 963 1009 1060 1075

Nug15.1 14 1150 967 (0.4) 1049 (4.0) 1104 (4.2) 1114 (3.6)

Nug15.2 14 1166 974 (1.1) 1076 (6.6) 1124 (6.0) 1135 (5.6)

Nug15.3 14 1200 987 (2.5) 1075 (6.5) 1133 (6.9) 1145 (6.5)

Nug15.6 14 1152 968 (0.5) 1056 (4.7) 1106 (4.3) 1118 (4.0)

Nug15.7 14 1166 979 (1.7) 1052 (4.3) 1112 (5.2) 1125 (4.7)

Nug15.8 14 1168 983 (2.1) 1063 (5.4) 1118 (5.5) 1133 (5.4)

Nug20 20 2570 2057 2281 2385 2326

Nug20.1 19 2628 2082 (1.2) 2358 (3.4) 2449 (2.7) 2414 (3.8)

Nug20.2 19 2600 2130 (3.6) 2401 (5.3) 2489 (4.4) 2464 (6.0)

Nug20.3 19 2588 2067 (0.5) 2331 (2.2) 2428 (1.8) 2392 (2.8)

Nug20.6 19 2570 2064 (0.3) 2341 (2.6) 2431 (1.9) 2403 (3.3)

Nug20.7 19 2634 2105 (2.3) 2387 (4.6) 2479 (3.9) 2436 (4.7)

Nug20.8 19 2636 2127 (3.4) 2381 (4.4) 2485 (4.2) 2438 (4.8)

allow a general conclusion on the applicability of the new bounds to exact solution methods,
it does also not rule out the possibility that bounds based on semidefinite relaxations are
good candidates for branch and bound methods.

Finally, the tests in the first level of the search tree, where the subproblems contain linear
parts, and the results for the Carxx data also show that the semidefinite bounds perform
well for instances with linear terms.

Appendix

A. Notation

Mt the space oft × t real matrices
St the space oft × t symmetric matrices
t (n) n(n+1)

2 , the dimension ofSt

Pt orP the cone of positive semidefinite matrices inSt

M1 º M2 M1 − M2 is positive semidefinite
A∗ the adjoint of the linear operatorA
K + the polar cone ofK , K + = {φ : (φ, k) ≥, ∀k ∈ K }
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A ◦ B the Hadamard product ofA andB
A ⊗ B the Kronecker product ofA andB
vec(X) the vector formed from the columns of the matrixX
Mat(x) the matrix formed, columnwise, from the vectorX
Diag(v) the diagonal matrix formed from the vectorv

diag(M) the vector of the diagonal elements of the matrixM
E the matrix of ones
e the vector of ones
ei the i th unit vector
Ei j the matrixEi j := ei eT

j

R(M) the range space of the matrixM
N (M) the null space of the matrixM
E the set of matrices with row and column sums one,E := {X : Xe= XTe = e}
Z the set of (0, 1)-matrices,Z := {

X : Xi j ∈ {0, 1}}
N the set of nonnegative matrices,N := {

X : Xi j ≥ 0
}

O the set of orthogonal matrices,O := {X : X XT = XT X = I }
YX the lifting of the matrixX, with x = vec(X),

YX :=
[

1 xT

x xxT

]

GJ(Y) Gangster operator, an operator that “shoots” holes or zeros in the matrixY,
(4.1)

PG(Y) Gangster operator projected onto its range space, (4.6)
Arrow (·) the Arrow operator, (2.11)
B0Diag(·) the Block Diag operator, (2.12)
O0Diag(·) the Off Diag operator, (2.13)
arrow(·) the arrow operator, (2.15)
b0diag(·) the block diag operator, (2.16)
o0diag(·) the off diag operator, (2.17)
QAPE an equivalent formulation of QAP, Section 2
QAPO an equivalent formulation of QAP, Section 2.2
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S.E. Karisch, “Nonlinear Approaches for Quadratic Assignment and Graph Partition Problems,” Ph.D. thesis,

University of Graz, Graz, Austria, 1995.
S.E. Karisch and F. Rendl, “Lower bounds for the quadratic assignment problem via triangle decompositions,”

Mathematical Programming, vol. 71, no. 2, pp. 137–152, 1995.
M. Kojima, S. Shindoh, and S. Hara, “Interior-point methods for the monotone linear complementarity problem in

symmetric matrices,” Technical report, Dept. of Information Sciences, Tokyo Institute of Technology, Tokyo,
Japan, 1994.



P1: NTA

Journal of Combinatorial Optimization KL560-05-ZHAO February 18, 1998 13:15

SEMIDEFINITE PROGRAMMING RELAXATIONS 109

S. Kruk and H. Wolkowicz, “SQ2P, sequential quadratic constrained quadratic programming,” to appear inPro-
ceedings of Nonlinear Programming Conference in Beijing in honour of Professor M.J.D. Powell.

E. Lawler, “The quadratic assignment problem,”Management Science, vol. 9, pp. 586–599, 1963.
L. Lovász and A. Schrijver, “Cones of matrices and set-functions and 0-1 optimization,”SIAM Journal on Opti-

mization, vol. 1, no. 2, pp. 166–190, 1991.
I.J. Lustig, R.E. Marsten, and D.F. Shanno, “On implementing Mehrotra’s predictor—Corrector interior point

method for linear programming,”SIAM Journal on Optimization, vol. 2, no. 3, pp. 435–449, 1992.
C.E. Nugent, T.E. Vollman, and J. Ruml, “An experimental comparison of techniques for the assignment of

facilities to locations,”Operations Research, vol. 16, pp. 150–173, 1968.
P. Pardalos, F. Rendl, and H. Wolkowicz, “The quadratic assignment problem: A survey and recent developments,”

in Proceedings of the DIMACS Workshop on Quadratic Assignment Problems, volume 16 ofDIMACS Series
in Discrete Mathematics and Theoretical Computer Science, American Mathematical Society, 1994, pp. 1–41.

G. Pataki, “Algorithms for cone-optimization problems and semi-definite programming,” Technical report, GSIA
Carnegie Mellon University, Pittsburgh, PA, 1993.

S. Poljak, F. Rendl, and H. Wolkowicz, “A recipe for semidefinite relaxation for (0, 1)-quadratic programming,”
Journal of Global Optimization, vol. 7, pp. 51–73, 1995.

L. Portugal, M.G.C. Resende, G. Veiga, and J. Judice, “A truncated primal-infeasible dual-fesible network interior
point method,” Technical report, Universidade de Coimbra, Coimbra, Portugal, 1994.

K.G. Ramakrishnan, M.G.C. Resende, and P.M. Pardalos, “A branch and bound algorithm for the quadratic assign-
ment problem using a lower bound based on linear programming,” inState of the Art in Global Optimization:
Computational Methods and Applications, C. Floudas and P.M. Pardalos (Eds.), Kluwer Academic Publishers,
1995.

M. Ramana, L. Tuncel, and H. Wolkowicz, “Strong duality for semidefinite programming,”SIAM Journal on
Optimization, to appear, 1997. URL: ftp://orion.uwaterloo.ca/pub/henry/reports/strongdual.ps.gz.

F. Rendl and H. Wolkowicz, “Applications of parametric programming and eigenvalue maximization to the
quadratic assignment problem,”Mathematical Programming, vol. 53, pp. 63–78, 1992.

M.G.C. Resende, K.G. Ramakrishnan, and Z. Drezner, “Computing lower bounds for the quadratic assignment
problem with an interior point algorithm for linear programming,”Operations Research, vol. 43, no. 5, pp. 781–
791, 1995.

M. Rijal, “Scheduling, design and assignment problems with quadratic costs,” Ph.D. thesis, New York University,
New York, USA, 1995.

S. Sahni and T. Gonzales, “P-complete approximation problems,”Journal of ACM, vol. 23, pp. 555–565, 1976.
H.D. Sherali and W.P. Adams, “Computational advances using the reformulation-linearlization technique (rlt) to

solve discrete and continuous nonconvex problems,”Optima, vol. 49, pp. 1–6, 1996.
L. Vandenberghe and S. Boyd, “Primal-dual potential reduction method for problems involving matrix inequalities,”

Math. Programming, vol. 69, no. 1, pp. 205–236, 1995.
L. Vandenberghe and S. Boyd, “Semidefinite programming,”SIAM Review, vol. 38, pp. 49–95, 1996.
H. Wolkowicz, “Some applications of optimization in matrix theory,”Linear Algebra and its Applicationsvol. 40,

pp. 101–118, 1981.


