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Abstract We present a new method for regularization of ill-conditioned problems,
such as those that arise in image restoration or mathematical processing of medical
data. The method extends the traditional trust-region subproblem, TRS, approach that
makes use of the L-curve maximum curvature criterion, a strategy recently proposed to
find a good regularization parameter. We apply a parameterized trust region approach
to estimate the region of maximum curvature of the L-curve and find the regularized
solution. This exploits the close connections between various parameters used to solve
TRS. A MATLAB code for the algorithm is tested and a comparison to the conjugate
gradient least squares, CGLS, approach is given and analysed.

Keywords Regularization · Trust region subproblem · Ill-conditioned problems ·
L-curve · Image restoration

1 Introduction

Regularization centers on finding approximate solutions for least-squares problems
such as
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194 O. Grodzevich, H. Wolkowicz

min
x

‖Gx − d‖2 , (1)

where G is an ill-conditioned n × n matrix and d is a vector of observed data. This
problem arises from mathematical models Gx = d, where the data contains noise η,

Gx = Gxtrue + η = d = dtrue + η.

It is remarkable that, for many applications, a small amount of noise η can result in
a solution x that has no relation to xtrue, i.e. we can make the size of the error ‖η‖2
arbitrarily small, while the size of the error in the solution ‖x − xtrue‖2 is arbitrarily
large. (See e.g. the survey article [30] or the book [1].) The least-squares problem (1)
typically arises from discretizations of linear equations in infinite dimensional spaces,
e.g. T x = d, where T is a compact operator and so has an unbounded inverse. This
means that x is not a continuous function of the data d. Such problems are called
ill-posed [15,16].

To obtain meaningful solutions to the mathematical model one often uses various
methods of regularization; the classical reference is [40]. The aim is to find algorithms
for constructing generalized solutions that are stable under small changes in the data
d. One method uses the solution, xε, of the constrained least-squares problem:

rε := min ‖Gx − d‖2
subject to ‖x‖2 ≤ ε.

(2)

The restriction on ‖x‖2 results in a larger residual error ‖Gx − d‖2 but reduces the
propagated data error in ‖x‖2. As ε increases we reduce ‖Gxε − d‖2 and expect xε

to approximate the best least-squares solution xtrue = G†dtrue, where G† denotes the
Moore-Penrose generalized inverse of G. However, in practice, the error propagation
in xε stays small for small ε, but then diverges (from xtrue) as ε ↓ 0. (See semiconver-
gence in [28].) Regularization depends on choosing the good (correct) parameter ε. A
Lagrange multiplier argument shows the equivalence between choosing the value for
ε in (2) and choosing the corresponding correct value for the Tikhonov regularization
parameter α in

(GT G + α2 I )xα = GT d (3)

to obtain xε = xα .
By squaring the objective and the constraint, (2) can be reformulated as the so-called

trust region subproblem, TRS , e.g. [8]:

(TRS )
µε := min q(x) := xT Ax − 2aT x

subject to ‖x‖2
2 ≤ ε2,

(4)

where A := GT G is n ×n symmetric (we assume n ≥ 2 and G is nonsingular, though
generally ill-conditioned), a := GT d is an n-vector, ε is a positive scalar, and x is the
n-vector of unknowns. All matrix and vector entries are real. For TRS , we let x∗ = xε
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Regularization using a parameterized trust region subproblem 195

denote the optimal solution and λ∗ = λε denote the corresponding optimal Lagrange
multiplier. The relation between optimal values is rε = µε + dT d. The TRS can be
used to form the so-called L-curve,

L (G, d) := {(log(ε), log ‖Gxε − d‖2) : ε > 0, xε is optimal for TRS }. (5)

A strategy introduced recently to find a good (correct) regularization parameter ε

uses the point of maximum curvature, the elbow, on the L-curve, e.g. [19]. (See e.g.
Fig. 1 for the L-curve of the deblurring problem which is described in Sect. 5.2.)

The classical algorithm for solving TRS , with a given trust region radius ε̄, is
based on solving (3) for various choices of α, and using a Cholesky factorization of
GT G +α2 I , [27]. Each choice of α yields xα that is optimal for TRS with trust region
radius ε = ‖xα‖2. Extensions of this approach to the large sparse case that avoid
the Cholesky factorization are given in [32,37]. These TRS algorithms are parametric
methods that exploit the connection between ε in TRS and α, xα in (3). Therefore,
they find points on the L-curve at each iteration.

Regularization that uses the equivalent problem to TRS

min ‖x‖2 s.t. ‖Gx − d‖2 ≤ δ,

for appropriate δ, is introduced in the classical reference [40]. Other references for
using TRS with a given parameter ε appears in e.g. [2]; and, more recently, a param-
eterized trust region approach to find the regularized solution xε, is used in [35,34].
Another approach for regularization uses the conjugate gradient method, CGLS. This
method is particularly efficient when an estimate for the norm of the error, ‖η‖2,
is known. Stopping rules for CGLS, for finding a regularized solution are given in
[29,17].
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Fig. 1 The L-curve for the deblurring problem
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1.1 Outline of main results

Each iteration of the parameterized trust region approach in [32] finds an optimal solu-
tion xε for different values of ε, i.e. it repeatedly computes points on the L-curve until
it locates the correct point corresponding to a desired ε. In this paper we dynamically
change ε and exploit the connections between ε, α and various other parameters used
in [32], to efficiently move along the L-curve and estimate the region near the point
of maximum curvature. This results in a regularized solution x = xε. In addition, we
compare our approach to the CGLS method, see e.g. [29].

In Sect. 2 we present the basic regularization theory that we need along with the
analytic description of the L-curve. The L-curve curvature is discussed in Sect. 4.5. In
Sect. 3 we apply the parametric TRS approach for regularization and show how it can
be used to efficiently control the regularization parameter using the trust region radius
ε. The details of our algorithm for finding the good (correct) regularization parameter
are given in Sect. 4.

Numerical results are presented in Sect. 5. In Sect. 5.2 we consider an image res-
toration example. Concluding remarks are given in Sect. 6.

2 The L-curve

It is well known that the singular value decomposition (SVD) of the matrix G sim-
plifies the L-curve analysis, see e.g. [19]. We write the SVD as G = U SV T , where
matrix S is a diagonal n × n matrix consisting of singular values σ1 ≤ · · · ≤ σn , and
U , V are orthogonal matrices. It follows that

‖xα‖2
2 = ∑n

i=1 f 2
i

(
U T:i d

σi

)2

,

‖Gxα − d‖2
2 = ∑n

i=1(1 − fi )
2
(

U T:i d
)2

,

(6)

where fi = σ 2
i

σ 2
i + α2

are the so-called Tikhonov filter factors. Note that ‖xα‖2 <

‖x0‖2 , ∀α > 0, with ‖xα‖2 → 0 as α → ∞. If G is invertible, then setting α = 0
gives the unique solution x0, i.e. ‖Gx0 − d‖2 = 0 as all filter factors are equal to one.
Moreover, adding uncorrelated noise η results in

‖x0‖2
2 =

n∑

i=1

(
U T:i dtrue

σi
+ U T:i η

σi

)2

. (7)

The error contributions from η in (7) can be large when the noise vector is not orthog-
onal to the singular vectors U:i ’s corresponding to small singular values.
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Regularization using a parameterized trust region subproblem 197

The situation continues to be problematic in the case of small singular values, even

if the noise component is absent, i.e. the ratios
U T:i dtrue

σi
in (6) imply that we require:

the Fourier coefficients |U T:i dtrue| decay faster than the σi (8)

This condition, known as the Discrete Picard Condition, e.g. [22], guarantees that the
least-squares solution has a reasonable norm and thus is physically meaningful.

Example 1 (Failure of Picard condition; with no noise) We consider a Shaw problem
from the Hansen MATLAB package (see [20]) with n = 32. This is a one-dimensional
image restoration problem which is constructed via discretization of a Fredholm inte-
gral equation of the first kind (see [36]). The MATLAB shaw command produces the
matrix G and the right-hand side vector dtrue, as well as the true solution vector xtrue.

We plot the Fourier coefficients |U T:i dtrue|, the singular values σi and the ratio
|U T:i dtrue|

σi
in Fig. 2, marked with o, ×, and −, respectively. The Picard condition holds

until the singular values (line marked with ×) reach the machine epsilon level (hori-
zontal dashed line). The Picard condition fails for the larger indices due to round-off
error. The norm of the least-squares solution computed using the SVD, (6), is ∼ 105;
while the true solution has norm ∼ 10. A good approximation of the true solution is
still recoverable via a truncated SVD, i.e. by setting all the singular values less than
machine epsilon to 0.

We now study the L-curve described in (5), see e.g. [22]. The curve usually fea-
tures a strong L-shaped form with almost linear vertical and horizontal parts and a
well distinguishable elbow or corner. (In this paper we use the nonstandard L-curve
with the abscissa as log(‖xε‖2), or equivalently log(‖xα‖2).)
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Fig. 2 Picard plot; Shaw problem; Example 1
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In the presence of noise η, as in (6),

‖xα‖2
2 =

n∑

i=1

f 2
i

(
U T:i dtrue

σi
+ U T:i η

σi

)2

.

If we assume uncorrelated noise, then the expected value of the Fourier coefficients

of η is independent of i , E
(
|U T:i η|

)
≈ ‖η‖2,∀i , i.e. the Picard condition can fail if

there are small singular values.

Example 2 (Failure of Picard condition; with noise)
We consider a deblurring of a 20 × 20 image. (See Sect. 5.2 for problem details.)

1. Figure 3 shows the Picard plot for the unperturbed right-hand side. (We use the
same markings as in Fig. 2, as explained in Example 1.) On average the Fourier
coefficients corresponding to the unperturbed data vector (marked with the thick
dark line) decay faster than the singular values. Hence, the Picard condition holds
and the least-squares solution is meaningful in the absence of noise.

2. The Fourier coefficients for the noise vector η are plotted in Fig. 4. (We use the
same markings as in Item 1 above.) Now on average the Fourier coefficients and
the singular values stay on the same level and hence fail to satisfy the Picard
condition.

3. As expected, the Picard plot for the Fourier coefficients for the perturbed (noisy)
right-hand side dtrue +η levels off at approximately ‖η‖2; see Fig. 5, i.e. the Picard
condition fails. (We use the same markings as in Item 1 above).
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Fig. 3 Picard plot unperturbed right-hand side; Example 2, Item 1
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Fig. 4 Picard plot; noise vector; Example 2, Item 2
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Fig. 5 Picard plot; perturbed right-hand side; Example 2, Item 3

For positive values of α, the filter factors fi are approximately 1 if σi � α and
approximately 0 if σi � α. The filter factors control which terms in the summation
contribute to the norm of the residual and the solution, (6). The vertical part of the
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Fig. 6 Points on L-curve, while solving TRS

L-curve in Fig. 1 demonstrates that when the regularization parameter α is large (equiv-
alently ‖xε‖2 = ε is small), then the norm of the residual varies greatly with α; but,
the norm of the solution ‖xα‖2 is almost unaffected, since all the terms corresponding
to the small singular values are filtered out (this is also known as oversmoothing a
solution). On the other hand, when α is small (equivalently the trust region radius ε

is large), then small changes in α result in small changes in the norm of the residual;
but, the small changes in α can cause large changes in the norm of the solution. This
corresponds to the horizontal part of the L-curve.

Depending on the particular Picard plot, the smoothness of the transition between
the vertical and horizontal parts can vary in a broad range. For example, the L-curve
for the deblurring problem in Fig. 1 is not strongly L-shaped, though it is still possible
to locate a distinguishable elbow. This is in sharp contrast to the L-curve in Fig. 6,
where a distinct elbow is visible. This discussion is relevant only when the log–log
scale is used. In a linear scale the plot is always convex, see e.g. [21].

This behaviour leads to the L-curve criterion for choosing the regularization param-
eter proposed in [19,23], i.e. one chooses the value of the parameter that corresponds
to a point on the L-curve with maximum curvature (details on curvature calculation
are given in Sect. 4.5). A point of maximum curvature coincides with an elbow that
separates the regions where the solution is dominated by regularization errors (overs-
moothing) and perturbation errors.

3 Trust region subproblem, TRS

In this section, we recall some of the details in the Rendl–Wolkowicz TRS algorithm,
[32,8], denoted RW , and apply them to the regularization problem. We show that
the RW algorithm visits a point on the L-curve at each iteration. Therefore, we can
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Regularization using a parameterized trust region subproblem 201

dynamically change the trust region radius ε to steer the algorithm to the elbow of the
L-curve.

It is known ([10,37]) that x∗ = xε is a solution to TRS if and only if:

(A − λ∗ I )xε = a,

A − λ∗ I  0, λ∗ ≤ 0

}

dual feasibility

‖xε‖2
2 ≤ ε2 primal feasibility

λ∗(‖xε‖2
2 − ε2) = 0 complementary slackness

(9)

for some (Lagrange multiplier) λ∗ = λε. The above conditions connect Tikhonov reg-
ularization ([40]) with TRS , i.e. solving (3) with a particular value of the regularization
parameter α, α2 = −λε

(A − λε I )xλε = a (10)

is equivalent to solving (2) with a corresponding value of ε. Also, for our applica-
tions λ∗ ≤ 0 < λ1(A). Therefore, the optimal solution always lies on the boundary,
‖x∗‖2 = ‖xε‖2 = ε, and the so-called easy case holds for TRS . The objective value
of (2) and ε correspond to a unique point on the L-curve, and vice-versa.

3.1 Building the L-curve using TRS

Example 3 (Moving along the L-curve) Figure 6 presents an L-curve for a sample
Shaw problem created using the Hansen MATLAB package, e.g. [20]. The RW algo-
rithm was then applied with a fixed trust region radius ε = 6. (The TRS optimum
yields a point near the elbow.) It took 8 iterations to solve the TRS with a desired opti-
mality tolerance δ = 10−8. We obtained four points on the L-curve. (The other four
are located outside the interval of interest.) These four points give enough information
to approximate the vertical part of the L-curve to the left of the elbow.

By exploiting the strong Lagrangian duality of TRS (see [38]), TRS can be refor-
mulated as an unconstrained concave maximization problem, i.e.

µε = min
x

max
λ≤0

L(x, λ) = max
λ≤0

min
x

L(x, λ),

where L(x, λ) = xT Ax − 2aT x + λ(ε2 − ‖x‖2
2) denotes the Lagrangian of TRS .

Define the symmetric (n + 1) × (n + 1) matrix

D(t) =
[

t −aT

−a A

]

, (11)

and let λ1(D(t)) denote its smallest eigenvalue. Further define the concave function

k(t) = (ε2 + 1)λ1(D(t)) − t, t ∈ R. (12)
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202 O. Grodzevich, H. Wolkowicz

Then an unconstrained dual problem is given by

µε = max
t

k(t). (13)

Furthermore, under assumptions of the easy case, λ1(D(t)) is a singleton eigenvalue,
and the derivative of k(t) satisfies

k′(t) = (ε2 + 1)y2
0 − 1, (14)

where
( y0

x

)
is the normalized eigenvector for λ1(D(t)), scaled so that y0 ≥ 0. (Note

y0 > 0 indicates the easy case.)
The L-curve is formed using ε in TRS as a parameter and finding the residual for

the corresponding optimal xε. We now see that the L-curve can be formed using any
of the following parameters:

t – control parameter in k(t), D(t),
ε – trust-region radius, norm of the solution ‖xε‖2,
α – Tikhonov regularization parameter,
λε– optimal Lagrange multiplier for TRS .

From Sect. 2, we have λε = −α2. However, changing between λε, t and ε is
computationally expensive. The following lemmas describe some of the relationships.

Lemma 1 Given the parameter λε < 0, the corresponding values of t and ε are
related by

t = λε + dT G(GT G − λε I )−1GT d,

λε = λ1(D(t)),
ε2 = dT G(GT G − λε I )−2GT d.

(15)

Proof The formula for t follows from Proposition 3.1 and Corollary 3.4 in [32]. The
formula for ε follows from the optimality conditions (9), since the optimal solution x∗
to TRS , that corresponds to the Lagrange multiplier λ∗ = λε, lies on the boundary.

��
Lemma 2 Given the parameter t < dT d, the corresponding values of λε and ε are
given by

λε = λ1(D(t)),

ε2 = 1 − y0(t)2

y0(t)2 ,
(16)

where y(t) is the normalized eigenvector corresponding to λ1(D(t)) and y0(t) is its
first component.

Proof The results follow from Theorem 3.7 in [32], e.g. we use the normalized eigen-
vector

( y0(t)
x̄(t)

)
and find that

xt = 1

y0(t)
x̄(t) (17)
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is a solution for TRS . This implies

y0(t)
2 + ‖x̄(t)‖2

2 = 1, ‖x̄(t)‖2 = y0(t)ε.

��
Corollary 1 The derivatives

λ′
ε = dλε

dt
= (1 + ε2)−1 > 0, (18)

ε′ = dε

dt
= −(1 + ε2)

2ε

λ′′
ε

λ′
ε

= 1

ε

∑

j �=1

y2
j

λ j − λε

> 0, (19)

where v j = ( y j
x j

)
, denotes the normalized eigenvectors of D(t) for eigenvalues

λ j , j �= 1, and

λ′′
ε = −2

∑

j �=1

(y j )
2

(1 + ε2)(λ j − λε)
. (20)

Proof From (14) and (16), the derivative of the smallest eigenvalue (see e.g. [31])

dλε

dt
= dλ1(D(t)

dt

=
(

y0
x

)T dD(t)

dt

(
y0
x

)

=
(

y0
x

)T [
1 0
0 0

](
y0
x

)

= y2
0 .

This yields (18).
For a given ε, we have k′(t) = (ε2 + 1) dλε

dt − 1 = 0 at the optimum t . We can
differentiate both sides with respect to t and solve for dε

dt to get (19). The formula for

λ′′
ε can be found in [24,25,31], i.e. using d2 D(t)

dt2 = 0, we get

λ′′
ε = 2

∑

j �=1

(y j y0)
2

λε − λ j
= −2

∑

j �=1

(y j )
2

(1 + ε2)(λ j − λε)
. (21)

��
Lemma 3 Given the parameter ε <

∥
∥G−1d

∥
∥

2, the corresponding values of t and λε

can be obtained by solving TRS using the RW algorithm. The corresponding optimal
solution satisfies ‖xε‖2 = ε.
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204 O. Grodzevich, H. Wolkowicz

Proof The RW algorithm solves TRS with a fixed trust region radius ε producing the
optimal solution xε, the optimal Lagrange multiplier λ∗ = λε, and the correspond-
ing parameter t . And, ‖xε‖2 = ε, since the norm of the unconstrained minimum
‖x∗‖2 = ∥

∥A−1a
∥
∥

2 = ∥
∥G−1d

∥
∥

2 . ��

Combining the above lemmas we conclude that each of t , λε, ε, α can be inter-
changeably used to parameterize the regularization problem and, hence, to describe
points on the L-curve. In addition, we observe that the norm of the regularized solution
is a monotonic function of these parameters.

Lemma 4 Let ‖xt‖2 ,
∥
∥xλε

∥
∥

2 , ‖xε‖2 , ‖xα‖2 denote the norms of the solutions of
(17),(10), (4), (3), respectively. Then:

1. ‖xt‖2 is a monotonically increasing function of t ;
2.

∥
∥xλε

∥
∥

2 is a monotonically increasing function of λε;
3. ‖xε‖2 is a monotonically increasing function of ε;
4. ‖xα‖2 is a monotonically decreasing function of α.

Therefore, the four parameters t, λε, ε,−α2 are pairwise isotonic.

Proof The lemma follows from Theorem 3.7 in [32]. ��

3.2 Parameter intervals of interest

The interval of uncertainty for the Tikhonov regularization parameter is 0 ≤ α2 < ∞.
Using the results in Sect. 3.1, this corresponds to the following.

Corollary 2 The intervals of uncertainty for the parameters are:

−∞ < λε = λ1(D(t)) = −α2 ≤ 0
0 < t = λε + dT G(GT G − λε I )−1GT d ≤ ‖d‖2

2
0 < ε = ∥

∥(GT G − λε I )−1GT d
∥
∥

2 ≤ ∥
∥G−1d

∥
∥

2

The upper bounds correspond to the linear least squares solution.

Proof Follows directly from Lemmas 1 and 2. ��

Note that if the largest singular value σn = σn(G) is known, then the results of
Sect. 2 imply that −σ 2

n is a lower bound on λε. The regularization algorithm keeps the
values of the parameters within the described intervals.
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4 Regularization algorithm

4.1 Flowchart

Algorithm 1: Trust-Region Based Regularization

� Initialization:1

λ = λlow = −σ 2
n (G), λup = 02

find corresponding (t, xλ, k(t)), for λ using (15), (10), (12)3

ε2 = xT
λ xλ4

[κ previous
low , κ

previous
up ] = [κlow, κup] = curvature(ε, k + dT d, λ)5

iteration = 16

� Find three appropriate points on the L-curve:7

while not (i teration ≥ 3 and κlow > κ
previous
up ) (max curv. region not yet8

defined)
do9

t = t − (ε2 + 1)λ (triangle interpolation (22))10

� Updates:11

find corresponding (λ = λ1(D(t)), xt , k(t)), for t , using (16),(17),(12)12

ε2 = xT
t xt13

[κlow, κup] = curvature(ε, k + dT d, λ)14

if necessary, update bidiagonalization of G to improve precision15

κ
previous
up = κup16

iteration = iteration + 117

end18

� Use simple interval bisection and the convex region defined by the last three19

generated points on the L-curve, to estimate the point of maximum curvature.

The interval used to estimate the curvature [κlow, κup] = curvature (ε, r2, λ) is
found by computing the lower and upper bounds (28), (29) using the current Lanczos
bidiagonalized approximation of the matrix G, Sect. 4.5.

4.2 Initial L-curve point

Each iteration of our algorithm increases the value of t , i.e. subsequent points are
located to the right of previous ones. Hence, the initialization involves finding a value
of λ (or t) located to the left of the elbow of the L-curve. One option is to start with
the point corresponding to λ = −σ 2

max(G) = −σ 2
n (G), see Sect. 3.2.

If the largest singular value σn(G) of the matrix G is not available, then the algo-

rithm can be started with a point associated with a small enough value of t , e.g t = dT d
2 .

As discussed in Sect. 2, a well-shaped L-curve plot can be viewed as a linear horizon-
tal plateau to the right of the elbow and a linear vertical part to the left of the elbow.
For well shaped L-curve plots, small changes in t would result in large changes in
ε when we are on the horizontal part. Conversely, large changes in t result in small
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t

k(
t)

t
+

t
c

t
up

dTd

Fig. 7 k(t) and triangle interpolation

changes in ε when we are on the vertical part. This is explained by the structure of
the singular value decomposition of the matrix G. The behaviour remains true for less
well-behaved L-shaped plots. This tells us that points that lie on the plateau region
correspond to the values of t that are very close to dT d. Thus, taking half of this value
will put us onto the vertical part to the left of the elbow.

4.3 Computation of the step length

As Lemma 4 suggests, we can generate a point on the L-curve strictly to the right
of the current point by increasing any of the parameters t , λε, or ε. Our algorithm
explicitly increases t by employing the relation between t , λε and ε.

The key idea lies in the properties of the function k(t) = kε(t). Recall (Sect. 3.1)
that for each ε > 0, k(t) = (ε2+1)λ−t and µε = maxt k(t). Also, the function k(t) is
concave. Given the current iterate tc < tup and the corresponding εc, we consider the
current function k(t) with ε = εc, which attains its maximum at the point t = tc. Con-
sider also the point tup = dT d. From Sect. 3.2 we know that k(tup) = −tup = −dT d.
Moreover, the derivative k′(tup) = −1 does not depend on ε.

Figure 7 depicts what happens at the main step of the algorithm. The intersection
of the tangent lines to the curve k(t) at the current point tc and at the upper bound
point tup yields a new point t+, i.e. we exploit the slope k′(tup) = −1 to get

tup − t+ = k(tc) − k(tup)

t+ = tup − k(tc) + k(tup)

t+ = −k(tc).

This gives the explicit expression for the new t ,

t+ = tc − (ε2 + 1)λ1(D(tc)). (22)
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Suppose that we have convergence in t . If we take the limit on both sides of (22), then
t cancels on both sides and we get 0 = (ε2 + 1)λ1(D(t∗)), i.e. the only limit point
t∗ satisfies λ1(D(t∗)) = 0 yielding t∗ = tup = dT d. Therefore, the iteration cannot
terminate prematurely and t+ > tc at each iteration. So we only have to worry about
stepping too far, in which case we backtrack appropriately. Moreover, as λε gets closer
to λ1(A), the curve k(t) becomes linear to the right of tc with slope −1. The geometry
indicates that the step length gradually decreases as we go along the L-curve, allowing
for exploring of the elbow.

With the new t we can compute the corresponding λε and ε as Lemma 2 suggests.
Particular details on the eigenvalue computation of λ1(D(tc)) are given in Sect. 5.1.

4.4 Termination and elbow estimation

The termination condition is based on the L-curve maximum curvature criterion dis-
cussed in Sect. 3.1. The algorithm looks for a point on the L-curve that has the max-
imum (negative) curvature. Since the L-curve has a convex profile near the elbow, it
is possible to isolate a region with the maximum curvature by keeping track of the
curvature as the algorithm goes along the L-curve. The region of interest is defined
by three points such that the middle one has a larger curvature value than the other
two. After this profile is obtained, a simple bisection procedure is then performed to
estimate the elbow location.

4.5 Curvature of the L-curve

Following [22], see also [18,19,23], let

ζ := ‖xε‖2
2 , ζ̂ := log ζ ; ρ := ‖Gxε − d‖2

2 = µε + dT d, ρ̂ := log ρ.

And, recall the λ∗ = λε is the optimal Lagrange multiplier for TRS . The L-curve is
a plot of ζ̂ /2 versus ρ̂/2. Then the curvature κ of the L-curve, as a function of ε, is
given by

κε = 2
ρ̂′ζ̂ ′′ − ρ̂′′ζ̂ ′

(
(ρ̂′)2 + (ζ̂ ′)2

)3/2 . (23)

From Sect. 3, ζ = ε2, and therefore,

ζ̂ ′ = ζ ′

ζ
= 2

ε
and ζ̂ ′′ = − 2

ε2 .

Furthermore,

ρ̂′ = ρ′

ρ
= µ′

ε

µε

and ρ̂′′ = µ′′
εµε − (µ′

ε)
2

µ2
ε

.
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Substituting these expressions into (23) we get

κε = 2
(
−µ′

ε

µε

2
ε2 − µ′′

εµε−(µ′
ε)

2

µ2
ε

2
ε

)((µ′
ε

µε

)2 + ( 2
ε

)2
)−3/2

= 4εµε

(
ε(µ′

ε)
2 − µεµ

′
ε − εµεµ

′′
ε

)(
ε2(µ′

ε)
2 + 4µ2

ε

)−3/2

= ε2µε

(
2ε2λ∗2 − 2µελ

∗ − εµε

(
∂λ∗
∂ε

))(
ε4λ∗2 + µ2

ε

)−3/2
.

(24)

The last equality follows from (26) and (27) derived below.
The derivative ∂λε

∂ε
can be found using implicit differentiation on the equation

∥
∥
∥(A − λε I )−1a

∥
∥
∥

2

2
− ε2 = 0,

obtained after the substitution xε = (A − λε I )−1a. We get

∂λε

∂ε
= ε

aT (A − λε I )−3a
. (25)

Moreover, the optimal value

µε = (xε)
T Axε − 2aT xε

= (xε)
T Axε − 2aT xε − λε(‖xε‖2

2 − ε2)

= −aT (A − λε I )−1a + λεε
2.

Then, using aT (A − λε I )−2a − ε2 = ‖xε‖2
2 − ε2 = 0, we get

∂µε

∂ε
= aT (A − λε I )−2a

(
− ∂λε

∂ε

)
+

(
∂λε

∂ε

)
ε2 + 2λεε

=
(
− ∂λε

∂ε

)
(aT (A − λε I )−2a − ε2) + 2λεε

= 2λεε

(26)

and

∂2µε

∂ε2 = 2

(

λε + ε
∂λε

∂ε

)

. (27)

More details on these and other perturbation results can be found in e.g. [39].

4.5.1 Curvature estimation and Gauss quadrature

The numerical evaluation of the curvature (24) requires the (expensive) derivative
∂λε

∂ε
= ε/

(
aT (A − λε I )−3a

)
, see (25). This issue is addressed in [3,12–14]. One

approach lies in obtaining both the upper and lower bounds

l p(α) ≤ νp(α) = dT G(GT G + α I )pGT d ≤ u p(α),
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where α = −λε is a positive scalar, p is a negative integer (p = −3, GT G = A
and GT d = a in (25)). These bounds are obtained using an iterative procedure and
become tighter as the number of iterations, k, increases. We briefly outline the idea.

After k iterations applied to G, the Lanczos Bidiagonalization algorithm (e.g. [11])
produces a (k + 1)-by-k lower bidiagonal matrix

Bk =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

γ1

δ1
. . .

. . .
. . .

. . . γk

δk

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, with GV = V Bk, V = [
v1 . . . vk

]
,

such that the Gauss and Gauss–Radau quadrature rules for νp(α) are defined as

l p(α) =
∥
∥
∥GT d

∥
∥
∥

2

2
eT

1 (BT
k Bk + α I )pe1 = ‖d‖2

2 eT
1 Bk(BT

k Bk + α I )p BT
k e1, (28)

u p(α) =
∥
∥
∥GT d

∥
∥
∥

2

2
eT

1 (Ũk
T

Ũk + α I )pe1. (29)

Here Ũk is (k + 1)-by-k upper bidiagonal matrix obtained from Bk by a sequence of
Givens rotations and by setting the main diagonal to zero.

Our implementation of the Lanczos Bidiagonalization algorithm allows restarting
from the specified iteration (with vk) if optional parameters are supplied. This enables
one to increase the precision when necessary. This feature is exploited by the main
algorithm that iterates by gradually decreasing α. Since for p < 0 and nonsingular Bk

we have that:

lim
α↘0

l p(α) < ∞, lim
α↘0

u p(α) = ∞,

it is natural that the bounds weaken as α ↘ 0, which means that the precision has to
be increased in order to compare two curvature intervals for the consecutive points on
the L-curve.

Note that evaluating the expressions G p(α) and Rp(α) implies solving linear sys-
tems:

(Ũk
T

Ũk + α I )x = e1,

(BT
k Bk + α I )x = BT

k e1.

The above equations are the normal equations for the linear least-squares problem,
LLS ,

min
∥
∥
∥
[ Ũk√

α I

]
x − [ 0

e1/
√

α

]∥∥
∥

2

min
∥
∥
∥
[ Bk√

α I

]
x − [ e1

0

]∥∥
∥

2
.
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This means that the solution x for the linear least-squares problem satisfies the original
linear system as well. We may, however, exploit the structure of LLS problems and
solve them efficiently by a sequence of Givens rotations that produces the Q R factor-
ization. This approach is described in [7,9,26].

5 Numerics

5.1 Eigensolver issues

As shown in Sect. 3.1, obtaining a new L-curve point for a corresponding value of t
requires solving for the smallest eigenpair of the matrix D(t). In the case G is large
and sparse, the same is true for D(t), so one should use matrix-free iterative algorithms
to compute the eigenpairs, e.g. Lanczos methods. As t increases, the gap between the
first two smallest eigenvalues may become numerically zero. This can slow down the
eigensolver substantially.

Under such numerical degeneracy a computation may converge to a wrong eigen-
pair, giving an incorrect eigenvector and an incorrect regularized solution. One way
to control the eigensolution is to start with an initial eigenvalue smaller than the esti-
mated one and, at the same time, relatively close to it. For iterative algorithms, it is
possible to store a previous eigenpair and re-use it on the next step as an initial guess.
This works only if the eigenvalue is about to increase at every subsequent iteration. We
have employed this method in our Regularization Algorithm and it proved to be very
efficient. For the eigenpair computation we used the MATLAB eigs routine which
implements a Lanczos-type matrix-free algorithm.

A different approach is to apply a spectral transformation to separate the first eigen-
value from the rest of the spectrum, i.e. preconditioning. In particular, a Tchebyshev
polynomial transformation is discussed in [33] and [34].

5.2 Image deblurring example

We demonstrate how the algorithm works by considering a sample problem of deblur-
ring an image. Problems of this nature occur often. For instance, one might need to de-
blur a photo taken by a space telescope or a satellite, see e.g. the forthcoming book [41].

For this particular example we take an image generated by the Hansen MATLAB
package ([20]). Figure 8 shows the image generated by the blur command. This com-
mand also produces the blurring matrix G and the right-hand side d, i.e. observed
data, computed as d = Gxtrue + η. Where η represents the noise. Figure 9 shows the
observed image.

The generated image is a 40-by-40 grayscale picture, which is stored as a vector xtrue
of size 1,600. The matrix G stands for the operator that represents degradation of the
image caused by atmospheric turbulence blur, modelled by a Gaussian point-spread
function,

h(x, y) = 1

2πσ 2 exp

(

− x2 + y2

2σ 2

)

.
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Fig. 8 Image deblurring example: original picture
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Fig. 9 Image deblurring example: observed data, blurred with added noise

Here the parameter σ controls the smoothness (by defining the shape of the Gaussian
point spread), and b stands for the bandwidth. It also follows that matrix G is sparse
leading to a large sparse problem.

For our example we fix the parameters to be σ = 1, b = 5. Noise η has a normal
distribution with the mean of 0 and the standard deviation of 0.05.

By computing the SVD we construct the true L-curve to get an idea where the
solution is located. We can see that the curve is not strongly L-shaped, but both ver-
tical and horizontal parts are still distinguishable (See Fig. 10). We also build a plot
(dashed line) that shows how well the points on the L-curve approximates the true
solution, i.e. for every point x we determine the quantity ‖xtrue−x‖2‖xtrue‖2

which we treat as
the relative accuracy; the smaller the value, the better the approximation we obtain.
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Fig. 10 Image deblurring example: corresponding L-curve

The minimum corresponds to the best possible solution that can be obtained using the
Tikhonov regularization approach.

Figure 11 shows points visited by the RPTRS Algorithm. For each point we present
an associated solution image. See Figs. 12, 13, 14, 15, 16, 17. We can follow how the
solution transforms as we go along the curve. For smaller values of the parameter t
the solution appears to be very smooth. The noise components are almost eliminated
for these solutions. However, as we increase the regularization parameter, the noise
starts to evolve. At the same time, pictures become sharper and represent a better
approximation to the true solution. This behaviour continues until we hit the point
#5 (see Fig. 16). Suddenly, the noise components overcome the real signal and the
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Fig. 11 Image deblurring example: corresponding L-curve with RPTRS points
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Fig. 12 Image deblurring example: point #1, t = 652.166, rel. acc. = 65.39%
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Fig. 13 Image deblurring example: point #2, t = 994.155, rel. acc. = 49.63%

solution becomes less distinguishable. The situation becomes even worse at the last
point. The least-squares solution consists mostly of the noise components and contains
practically no signal information.

The algorithm observes the changes in the curvature value and backtracks locating
the elbow. Figure 11 demonstrates the undertaken steps. Points marked with a cross
are visited during the main loop, and stars denote the final refinement steps. Note the
proximity of the regularized solution to the best possible Tikhonov solution. The final
RPTRS solution is shown on Fig. 18.

For more information and techniques on image de-blurring problems, we note the
ongoing research based on wavelets (see e.g. [4–6]). We do not perform any compar-
ison with these techniques in this paper.
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Fig. 14 Image deblurring example: point #3, t = 1271.46, rel. acc. = 38.07%
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Fig. 15 Image deblurring example: point #4, t = 1378.38, rel. acc. = 31.82%

5.3 Comparison with CGLS

We compare our approach to the conjugate gradients based method for solving the
least-squares problems CGLS. CGLS is one of the most robust regularization tech-
niques that can handle very large problem instances. This method, described in [29]
(see also [18]), applies conjugate gradients (CG) to the normal equations GT Gx =
GT d along with an early termination criteria to obtain the regularized solution. The
stopping condition is based on the discrepancy principle, i.e. the method terminates
once the residual is smaller than some prescribed bound δ. Typically, the value of δ is
based on the norm of the noise.
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Fig. 16 Image deblurring example: point #5, t = 1392.12, rel. acc. = 57.14%
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Fig. 17 Image deblurring example: point #6, t = 1393.45, rel. acc. = 116.29%

We applied the CGLS algorithm on the data from the previous example supplying
δ to be precisely the norm of the noise, i.e. δ = ‖η‖2. In some sense this corresponds
to the best case for CGLS. The results are presented in Tables 1 and 2 and Fig. 19. The
CGLS points are shown as circles above the L-curve. The CGLS solution is almost
as good as the best Tikhonov solution. This result is not unusual and emphasizes the
fact that the method was applied with exact knowledge of the noise. However, com-
paring both CGLS and RPTRS solutions to the true one (see Fig. 20), we see that both
methods achieve practically the same accuracy.

The RPTRS algorithm, though, does not require a specific value of the norm of
the noise. This is a big advantage in a sense that CGLS might perform very poorly
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Fig. 18 Image deblurring example: RPTRS solution picture

Table 1 Data for points visited
by the CGLS algorithm with
δ = ‖η‖2

## ‖x‖2 ‖Gx − d‖2 Accuracy [%]

1 3.8162e+001 6.9804e+000 47.59

2 3.9849e+001 3.9256e+000 41.83

3 4.0593e+001 2.8676e+000 38.99

4 4.1045e+001 2.3920e+000 36.97

5 4.1406e+001 2.1105e+000 35.51

6 4.1706e+001 1.9309e+000 34.41

Table 2 Data for points visited by the RPTRS algorithm

## ‖x‖2 ‖Gx − d‖2 Accuracy [%] Time t λ

1 1.8573e+001 2.0010e+001 65.39 2.794 652.166 −9.8851e−001

2 2.8472e+001 1.1095e+001 49.63 3.054 994.155 −3.4166e−001

3 3.7079e+001 4.0222e+000 38.07 3.014 1271.46 −7.7717e−002

4 4.1957e+001 1.5642e+000 31.82 3.695 1378.38 −7.7959e−003

5 4.9732e+001 1.0570e+000 57.14 6.509 1392.12 −5.3731e−004

6 6.8218e+001 7.9497e−001 116.29 5.558 1393.45 −1.0426e−004

+1 4.2910e+001 1.4078e+000 32.63 2.834 1384.90 −4.1666e−003

+2 5.3732e+001 9.7305e−001 71.49 2.794 1392.69 −3.2078e−004

+3 4.3991e+001 1.2993e+000 35.36 2.824 1388.32 −2.3520e−003

if supplied with slightly smaller (or larger) value of δ. Figure 21 illustrates this situ-
ation. Running CGLS with δ = 0.6 ‖η‖2 results in a larger number of iterations (31
comparing to 6 with δ = ‖η‖2) and the computed solution is much worse now. This
shows the importance of a robust stopping criteria that does not rely on the possibly
uncertain data.

123



Regularization using a parameterized trust region subproblem 217

10
1.3

10
1.4

10
1.5

10
1.6

10
1.7

10
1.8

10
0

10
1

solution, log( ) = log(||x||)

re
si

du
al

, l
og

(|
|G

x
 d

||)

1

2

3

4

5

6

RPTRS solution 

CGLS solution 

Fig. 19 Image deblurring example: corresponding L-curve with CGLS points
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Fig. 20 Image deblurring example: CGLS, RPTRS, xtrue, best Tikhonov solutions

The main advantage of the CGLS method is its speed. Each iteration of the algorithm
requires only several matrix-vector multiplications, where only the original matrix G
is used. This allows for solutions of problems that involve large sparse matrices which
are never formed explicitly. At the same time, the RPTRS Algorithm can be viewed as
a matrix-free iterative algorithm based on the Lanczos method that features conjugate
gradients steps as well. This leads to a conclusion that combining both approaches
may result in a better algorithm that can provide a reliable and a fast way to locate a
regularized solution in the absence of any certain knowledge about the noise.
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Fig. 21 Image deblurring example: CGLS with δ = 0.6 ‖η‖2, rel. acc. = 52%

6 Conclusion

We have applied ideas from the RW algorithm for TRS to efficiently find the point
of maximum curvature on the L-curve. This provides a regularization procedure for
ill-conditioned problems Gx = d. We have taken advantage of the fact that each
iteration of the RW algorithm corresponds to a point on the L-curve. We implicitly
change the trust region radius while applying the RW algorithm. The changes drive
the algorithm to the good (correct) radius that corresponds to the elbow, the point of
maximum curvature on the L-curve.
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