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Characterizations of optimality for the abstract convex program 

fi = inf( p(x) : g(x) E 4, x E R 1, P) 

where S is an arbitrary convex cone in a finite dimensional space, R is a convex 
set, and p and g are respectively convex and S-convex (on a), were given in [lo]. 
These characterizations hold without any constraint qualification. They use the 
“minimal cone” .S’ of (P) and the cone of directions of constancy D;(S’). In the 
faithfully convex case these cones can be used to regularize (P), i.e., transform (P) 
into an equivalent program (P,) for which Slater’s condition holds. We present an 
algorithm that finds both S’ and Db(S’). The main step of the algorithm consists in 
solving a particular complementarity problem. We also present a characterization 
of optimality for (P) in terms of the cone of directions of constancy of a convex 
functional D& rather than DB(S’). 

1. INTRODUCTION 

We consider the (abstract) convex program 

minimize p(x) subject to g(x) E -S, XEJZ, (PI 

where p is an extended convex functional on X, g is an extended S-convex 
function on X into Y, X and Y are locally convex spaces with Y being finite 
dimensional, R c X is convex, and S is a convex cone. Primal and dual 
characterizations of optimality for (P) have been given in [lo]. These 
characterizations use (i) the smallest face of S containing the image of the 
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feasible set (denoted Sf) and (ii) the cone of directions of constancy of g at 
the optimum point a (denoted D[ (Sf, a)). These characterizations generalize 
the so-called “BBZ conditions” [5] and do not require any constraint 
qualification. Applications include, for example, (i) the optimal control 
problem where the initial state and final target are given in Y [ 14, 181 and 
(ii) the linear estimation problem where we seek the best unbiased etimator 
in the cone S of positive semi-definite matrices [ 161. 

Our main purpose is to present an algorithm that finds the cones Sf and 
DB(Sf, a) and also to show how these cones can be used to regularize (P) so 
that Slater’s condition holds. 

Section 2 presents several preliminary notions and definitions. In Section 3 
we develop the necessary theory dealing with the faces of a finite dimen- 
sional convex cone. In particular we discuss exposed faces and introduce the 
notion of a projectionally exposed face. We then show (see Proposition 3.9 
and Remark 3.1) that every face E of S is the intersection of projectional 
images of S with the intersection being finite if E is polyhedral and facially 
exposed (in S). This notion allows a simplification of the optimality criteria. 

Section 4 extends the notion of the cones of directions given in [5]. We 
also extend several results for these cones which have proven useful. 
Section 5 introduces faithfully S-convex functions. We then extend the 
properties that (i) a convex function bounded on a line is constant on that 
line [22] and (ii) the cone of directions of constancy of a faithfully convex 
function is a subspace of X independent of the point x E X [4], [21]. 

In Section 6 we recall and strengthen a characterization of optimality for 
(P) given in [lo]. The new characterization is in terms of the cones of 
constancy of convex functionals rather than D;(Sf, a) and is strengthened in 
the sense that the Lagrange multiplier relation holds over a larger set. We 
then present our regularization technique. This technique essentially restricts 
the program (P) to subspaces of X and Y so that Slater’s condition holds. 

The algorithm to find Sf and D;(Sf, a) is presented in Section 7. This 
algorithm is given for weakly faithfully S-convex functions g, i.e., S-convex 
functions g for which $g(.) is faithfully convex for all 4 in the dual space for 
which #g is convex. Note that all analytic convex and all strictly convex 
functions are faithfully convex and so this algorithm can be applied to a 
wide class of functions. The non-faithfully convex case is outlined. 

We conclude with several examples in Section 8. 

2. PRELIMINARIES 

We consider the convex programming problem 

minimize p(x) subject to g(x) E -S, XER, P> 
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where p: X+RU {+a~}; g:Xt YU(+m}; X and Y are real locally 
convex (separated topological vector) spaces; Y is finite dimensional with an 
abstract maximal element + co; B c X is convex; S c Y is a convex cone; 
i.e., S + S c S and AS c S for all I > 0; p is an extended real convex 
functional (on Q) and g is S-convex (on Q); i.e., 

4T(x,> + (1 - t) &2) - &Xl + (1 - 0 x2) E s (2.1) 

for any x,, x2 (in Q) and t in [0, 11. The cone S induces in Y a transitive and 
reflexive ordering >, : 

x, 2x2 iff x,-x,ES. (2.2) 

Unless otherwise specified, it will be assumed that the order is induced by 
the cone S; e.g., x = y denotes x =s y, etc... . Moreover 

XI >x2 iff x,-x,EriS (relative interior of S). 

Further notations are as in [ 10, 131. We briefly summarize several essential 
notations and known results: 

F= g-I(-S)nR; (2.3) 

dom g is the domain of g; 

dompxF, 

X*, Yy. are the continuous duals of X and Y, respectively, equipped with the 
w*-topology; Kf is the (nonnegative) dual cone of the set K; 

K ++ = (K+)+ = cone K, (2.4) 

the closure of the convex cone generated by K; 

for any two convex cones S, and S, in Y; K’= Kt n (-K+) is the 
annihilator of K and @‘= {q5}’ for any vector 4; Vg(a; d) is the directional 
derivative of g at a and it exists for each direction d if g is convex on X, 
continuous at a and S is closed and pointed, i.e., S n -S = (O}; ag(a) is the 
subdlfferential of g at a; ag(a) is non-empty when X is a weakly compactly 
generated Banach space and g is S-convex on X and continuous at a with S 
closed and pointed. In this case, for any # in S+ and d in X [28], 

(2.6) 

When Y=R and S=R,, then (2.6) holds in any locally convex space X. 
Unless otherwise specified we will assume that (2.6) holds. J”(e) and 9(e) 
denote null space and range, respectively. The symbol 0 is used for both zero 
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element and subspace of a vector space. I denotes the identity matrix, At 
denotes the generalized inverse of the matrix A [6], A’ denotes the transpose 
of A and PN denotes the (orthogonal) projection on the subspace N. 

3. FACES OF A FINITE DIMENSIONAL CONE 

In this section we summarize several useful results on the faces of a cone. 
For more details and missing proofs see, e.g., [2, 3, 10, 12, 151. 

DEFINITION 3.1. A subcone K of S is called aface of S denoted K 4 S, 
if 

x E K, 0 ,< y < x, implies y E K. (3.1) 

PROPOSITION 3.1. K(1Sifandonlyif 

0 < y, x, x + y E K implies x, y E K. (3.2) 

PROPOSITION 3.2. (a) IfK u L Q S, then K 4 S. 

(b) If K a S and K c L c S, then K (3 L. 

DEFINITION 3.2. (a) A face of S is exposed if there exists 4 in S+ 
such that 

K= (sES:#s=O). (3.3) 

(b) The convex cone S is called facially exposed if every face of S is 
exposed. 

PROPOSITION 3.3. S is facially exposed if and only if exposed faces of 
exposed faces of S are themselves exposed faces of S. 

Note that the faces of a convex cone are convex cones and are closed 
when S is closed. Moreover, every polyhedral cone is facially exposed. An 
example of a cone which is not facially exposed is given in [lo]. 

PROPOSITION 3.4. If K u S, then 

(a) (K-S) n S = (K-K) n S = (K-S) n K = K; 

(b) (K-S) n (S-K) = K-K. 

(3.4) 

(3.5) 

PROPOSITION 3.5. Let C be an arbitrary subset of S. Then 

(a) there is a unique minimal face Cf containing C; 

(b) there is a unique minimal exposed face Cef containing C. 
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PROPOSITION 3.6. Suppose that E is a proper face of S. Then 

Eef # S. 

Proof. By hypothesis 

Since E-E c S-S, the Hahn-Banach theorem says that there exists 
0 # 4 FE Y* such that 

4s > 0, for all s E ri S, #s < 0, for all e E E. 

Since E c S, we conclude that E is contained in the face exposed by the 
positive functional 4; i.e., 

Ec{sES: q4s=O}&S. 1 

Though not all faces are exposed, the above lemma shows that every face 
is an exposed face of some larger face of S. For, if E is a proper face of Eef, 
we then repeat the process in E ef We eventually must stop since Y is finite . 
dimensional. This allows a reduction process by means of exposed faces, see 
Section 7. 

DEFINITION 3.3. The minimal cone for (P), denoted Sf, is defined by 

Sf = (-g(F))‘, (3.6) 

where F is the feasib!e set for (P). Similarly, the minimal exposed cone for 
(P), denoted Sef, is defined by 

Se* = (-g(F)>‘< (3.7) 

The minimal cones Sf and Sef have the following properties. 

PROPOSITION 3.7. [lo]. (a) g is Sbonvex on F; (3.8) 

(b) g(F) + S’ is convex; 

(c) g(F) n - ri Sf # #, when F # #; 

(d) Sef=(g(F)+S)+%S 

(3.9) 

(3.10) 

= tJ A(g(F) + S) n s. (3.11) 
A>0 

COROLLARY 3.1. yEri{y}f,forallyES. 
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Proof Choose g constant and equal to --y in (c) above. 1 

PROPOSITION 3.8. Suppose that E is an exposedface of S. Then E is an 
exposed face of any subcone of S which contains E. 

Proof By hypothesis, there exists a supporting hyperplane H to S such 
that 

E=SnH. 

Therefore, if K is a subcone of S which contains E, 

E=KnH. 1 

Projections onto faces will play a role in our optimality conditions. The 
following lemma shows that each face can be expressed using projections. 

PROPOSITION 3.9. Suppose that E 4 S and that Ai, i E I, are all the 
points of S’ for which E is not a subset of the hyperplane A’. Let Pi be a 
projection onto E-E satisfying 

&Pi) C A ;, for all i E I, 

and let P be the orthogonal projection onto E-E. Then 

(3.12) 

E= n (P,S)nPS. (3.13) 

Proof First note that since E is not a subset of A’, we can find a 
subspace Li of A’ such that 

L, n (E-E) = 0; Li@(E-E)=R”‘, (3.14) 

where 0 denotes direct sum. Thus we can choose Pi to be the projection 
onto E-E along Li ; i.e., 

2(Pi) = E-E; &Pi) = Li. (3.15) 

This satisfies (3.12). Now since P,E = E, for all i E Z, we get that 

EcnP,SnPS. 
I 

This then implies that 

(3.16) 

(3.17) span 0 P,S n PS = E-E. 
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Thus, if e E E-E but e @ E, then the result (3.13) follows if we can show that 

e&PiS, for some i E I. (3.18) 

Now, since E c A f implies (E-E) c A f, we get 

E=Sn(E-E) by (3.4) 

= (-) A: n (E-E). 
I 

Therefore. there exists i E I such that 

e&A+. (3.19) 

Since ,,Y(PJ c A’, we get that 

e+y&A:, for all y E&Pi). (3.20) 

This yields (3.18), since SC/~,?. 1 

Remark 3.1. If E is polyhedral, then E is uniquely determined by its 
maximal proper faces [ 121 and these are finite in number. Therefore, if the 
maximal proper faces of E are exposed (in S), we may take the index set I in 
the above Proposition to be finite; i.e., 

E= ; P,SnPS. 
i=l 

(3.2 1) 

In the case that the dimension of E is 0 or 1, this gives 

E=PS. (3.22) 

Note that we have not assumed that E itself need be exposed in (3.21). 
Being able to express the minimal cone S* as a finite intersection of 

projectional images of S will simplify the optimality conditions in Section 6. 
We now introduce the following projectional notion. 

DEFINITION 3.4. The convex cone S is called projectionally exposed if 
every face of S is the image of S under some projection; i.e., 

E U S implies E = PS, for some projection P. (3.23) 

EXAMPLE 3.1. Consider the cone S of all positive semi-definite matrices 
in the space Y of all m x m real symmetric matrices. The matrices are 
represented by their distinct upper triangular parts and thusY = R(mz+m”2. In 
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] lo] it was shown .that S is both facially and projectionally exposed. In fact, 
E U S if and only if 

(3.24) 

for some projection matrix q E S, and then 

E = (I - q) S(I - q), (3.25) 

where I denotes the identity matrix in Y. That is E = PS, where the pro- 
jection 

P* = (I-q) * (I-q). (3.26) 

4. CONES OF DIRECTIONS FOR CONVEX FUNCTIONS 

We now extend the notion of the cones of directions, given in [8j for 
convex functionals, to S-convex functions. 

DEFINITION 4.1. For E u S, a E dom g and the relation 9, we denote 

Df(E, a) = (d: 36 > 0 and g(a + ad) 29, g(a), for all 0 < a < a). (4.1) 

When 9 is =, <, <, >, and > then these are the cones of directions of 
constancy, nonincrease, decrease, increase, and nondecrease, respectively. (If 
Y = R U +{ co ), i.e., g is an extended real convex functional, and if E = (0) 
and S=R,, then (4.1) reduces to the cones of directions given in [8].) For 
simplicity of notation, we will delete E in the case E = 0; e.g., 
D; (0, a) = D;(a). 

DEFINITION 4.2. Suppose that Cc X. For a E C, the set of feasible 
directions at a is 

C(a) = {d: there exists E > 0 with a + ad E C, for all 0 < a < 5). 

If we choose the face E properly, then the directions of nonincrease 
D,“(E, a) are exactly the feasible directions at a for (P). 

PROPOSITION 4.1. Suppose that g is continuous at a E Q, g(u) < 0 and 
E = {-g(a)}< Then 

F(a) = 0,” (E, a). (4.2) 
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Prooj: Suppose that d E F(a). Then there exists E > 0 such that 

g(a + ad) < 0, for all 0 < a < a. (4.3) 

Thus 

g(a + ad) <S-E g(o), for all 0 < cz & a. (4.4) 

This shows that 

F(u) c 0,” (E, a). 

Conversely, suppose that d E D,“(E, a); i.e., there exists E > 0 such that (4.4) 
holds. Since g is continuous at u and g(u) E - ri E by Corollary 3.1, we get 
that (4.3) holds, though possibly for a smaller E > 0. That a + ad E R for 
small a > 0 follows similarly. I 

The above proposition shows that D:((-g(u))f, a) is convex. We now see 
that this holds in a more general case. 

PROPOSITION 4.2. Suppose that g(u) < 0 and E is a face of S. Then 

D,“(E, a) is convex. (4.5) 

Pro@ Let d,,d,ED>(E,u) and d=Ld, + (1 -L)d,, O<L< 1. Then 
there exists E > 0 such that 

g(u + adi) <s-E g(u), 

Thus, for all 0 < u < 19, 

for all 0 < a < ti. 

g(a -t ad) Gs Lg(u + ad,) + (1 - I) g(u + ad,), 

<S-E Ma) + (1 - A) g(o) = g(a)* 

Thus d E D,“(E, a). m 

since g is S-convex 

The feasible directions can be used to characterize optimality. 

LEMMA 4.1. [ 81 A feasible solution a E F of (P) is optimal ifund only if 

D;(u) n F(u) = 4. (4.5) 

Note that we can replace F(u) in (4.5) by its closure ifp is continuous at a 

I 101. 
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5. CONE-FAITHFULLY CONVEX FUNCTIONS 

DEFINITION 5.1. The S-convex function g is faithfully convex (with 
respect to the face E) if: g maps a line segment into E-E only if g maps the 
whole line containing that line segment into E-E. We then say that g is S- 
faithfully convex if it is faithfully convex with respect to every face of S. 

The following proposition extends the result by Rockafellar [22] that: a 
convex functional bounded on a line is constant on that line. 

PROPOSITION 5.1. Suppose that S is closed. Let y E Y and a, d E X. If 

da + ad) < Y, forall aER, (5.1) 

then 

s(a + ad) = g(a), for all aER. (5.2) 

Proof Since the function g(.) - y is also S-convex, we can assume 
without loss of generality that y = 0. Now (5.1) implies 

Ma + ad) < 0, for all aER, for all #ES’. (5.3) 

Rockafellar’s result for convex functionals yields 

#(Aa + 4 - g(a)> = 0, for all a E R, for all 4 E S+, (5.4) 

which in turn implies (5.2) since S is closed. 1 

COROLLARY 5.1. Under the assumptions of the proposition, 

dEDg(S,a). (5.5) 

Faithfully convex functionals introduced by Rockafellar [21] have proven 
very useful in optimization theory [5, 24, 261. Since all analytic as well as 
all strictly convex functionals are faithfully convex, applications are 
widespread. One property which has proven extremely useful in applications 
to algorithms [24, 261, is that: the cone of directions of constancy of a 
continuous faithfully convex functional is a closed subspace of X 
independent of the point x under consideration. We now extend this property 
to S-convex functions. 

THEOREM 5.1. Suppose that E is a face of S, g is continuous and S- 
faithfully convex and both S and S-E are closed. Then D;(E, a) = DB(E) is 
a closed subspace of X independent of a. 
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Prooj: First, let us show that 

D;(E, a) is a subspace (closed). (5.6) 

Letd=d,+d,andd,EDB(E,o).IfaER,then 

g(a + ad) = &a + 2ad,) + $<a + hf,)) 

Gs fg(a + 2ad,) + )g(a + 2ad,) 

Q-E g(a)* 

Thus (5.6) follows by Corollary 5.1 and Proposition 3.4. (The closure 
follows by continuity.) 

Let us now show independence of the point. Let xi, x2 E X and 
d E D;(E, xi), We need to show that d E D;(E, x2). By Corollary 5.1, it is 
sufficient to show that 

g(x2 + a4 GE z9 (5.7) 

for all a E R and some z E Y. Now choose y E Y so that 

g(x2) <S-E g(x1> + Y* (5.8) 

For example, y = g(x2) - g(xl) - s + e, for some s E S and e E E. Fix a E R 
and let 

o<t,< 1; &-‘O as k+co; Yk = l/t,; 

Zk = ad + t&, - X2). 

Since d E D;(E, x,) and g is S-faithfully convex, we get that 

&l> =S-E g(-? + l’kad) (5.9) 

which implies that 

dxl) =S-E dx2 + ykzk). (5.10) 

But 

dx2 + ‘“1 <S (l - b) dx2) + tic dxZ + ykZk), by S-convexity of g, 

&E t1 - fk) dxl> + (l - tk)Y + tk&2 + ykZk)Y by (5.Q 

=S-E dxl) + (l - tk)Yv by (5.10). (5.11) 

409/83/Z I I 
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Now 

g(x* + (4 = ?$ g(x, + Zk), by continuity of g, 

‘\..-,!I p$ dx,) + (1 - fk)Y, < by (5.11), 

= &l> + Y. 

Since both g(xi) and y are independent of a, we have proven (5.7). 1 

The condition that E-S be closed may be restrictive in applications. E-S 
is always closed in the polyhedral case. It is still an open question whether 
one can relax the closure condition. Note that, as in the case of a real convex 
functional, analytic S-convex functions are faithfully convex as are strictly 
S-convex functions. 

In the algorithm presented in Section 7, we will assume that g is weakly 
faithfully convex; i.e., g is faithfully convex for each 4 E r* for which #g is 
convex (on f2). This removes the requirement that E-S be closed and also 
shows that DB(Sf) is a subspace independent of the point x E X. 

6. CHARACTERIZATIONS OF OPTIMALITY AND REGULARIZATION 

In [lo], we presented the following characterization of optimality for (P). 

THEOREM 6.1. (a) Suppose that ,u is the finite optimal value of (P). 
Then 

P(X) + Jg(x) > 84 for all x E Ff, 

for some L in (Sf)’ and Ff = g-‘(Sf-S) n R. 

(b) Zf,u is actually attained by p(a), a E F, then in addition 

Ag(a) = 0. 

(6.1) 

(6.2) 

Remark 6.1. In certain cases the multiplier in (6.1) may be supposed to 
be in St rather than just in (Sf>’ (independent ofp and g). This situation is 
characterized by 

s+ + (sy= (sf)+, (6.3) 

or equivalently, when S is closed, by 

S+ + (Sf)’ is closed. (6.4) 
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Thus multipliers in St exist whenever S is polyhedral. In fact, this is true 
whenever Sf is polyhedral and facially exposed in S, for then Sf can be 
written as the intersection of a finite number of projectional images of S (this 
follows by Remark 3.1 and a proof similar to the proof of Theorem 6.3 
below). For the same reason, multipliers in St exist whenever S is projec- 
tionally exposed. In particular (see Example 3.1) multipliers in St exist 
whenever S is the cone of m x m psd matrices. 

The above theorem and remark characterize optimality for (P) without 
any constraint qualification. The multiplier relationship in (6.1) is restricted 
to the set Sf. For stability and related results it is of interest to get the 
“strongest” optimality conditions, i.e., to have the set Ff as large as possible 
[ 111. In fact to ensure stability for all feasible perturbations, one needs 
Ff = R. We now show that a larger Ff is possible. First we will need the 
following lemma, which will also prove useful in our algorithm in Section 7. 

LEMMA 6.1. Let H be a subspace of Y. Then 

g is (S f7 H)-convex on FH = g-‘(H) n ~2. (6.5) 

ProoJ Let 0 < t < 1, x1 = tx, + (1 - t)x, and xl,xZ,xI E Fh, i.e., g(x,), 
g(x&, g(xJ E H. Therefore 

@(Xl) + (1 -t) g(-%) - g(x,) E (SnHH), 

since g is S-convex and H is a subspace. 1 

Note that F” need not be convex in the above. Note also that 

Ff= g-‘(Sf-S9f-W (6.6) 

[ 10, Proposition 4.1(c)] and so possibly FH I Ff; i.e., FH is larger than-Ff 
with equality if H = Sf - Sf. Before presenting the strengthened optimality 
characterization, we first present the following optimality conditions which 
hold under a “generalized Slater’s condition.” 

LEMMA 6.2. Suppose that g is continuous and weakly faithfully S-convex 
(on a), R is the intersection of a polyhedral set and a closed linear manifold, 
and (P) satisfies the generalized Slater’s condition: there exists 

.fER with g(f) E - ri S. (6.7) 

Then the standard Lagrange multiplier theorem holds; i.e., Theorem 6.1 
holds with Ff replaced by 0 and (Sf) + replaced by S ‘. 
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Proof. By (6.7), we get that Sf = S. Since Y is finite dimensional, we can 
find Qi, i = l,..., t, in S such that 

s-s= h 4;. (6.8) 
i=l 

Now by Theorem 6.1 and (6.6), there exists 1 E S+ such that (P) is 
equivalent to the program 

inf{p(x)+Ag(x):xEFf= g-l(S-S)fIa} 

which, by (6.8), is itself equivalent to 

inf@(x) + J&X): (pi g)(X) < 0, i = l,..., t, X E 0). (6.9) 

Since g is S-convex and {tii) c S’ c St, we conclude that both #ig and 
-#i g are convex (on a), which in turn implies that 

qdig is atTine, i = l,..., t (on 0). 

Since x is restricted to R in (6.9), we can assume that the functions 4ig are 
afftne on all of X. Suppose that 

n=pnv, 

where V is a closed subspace and 

P = (x: yix - a, ( 0, i = l,..., k), Wi E x*9 (6.10) 

is polyhedral. Then (6.9) is equivalent to the linearly constrained convex 
program 

inf( p(x) + Ig(x): (i g(x) Q 0, i = l,..., t; 

yi g(x) < ai, i = l,..., k, x E V). (6.11) 

Since the t + k constraints for this program are all linear and finite in 
number, and any feasible point for this program is in ri V (when V is a 
closed subspace) we have satisfied the generalized Slater’s condition for the 
ordinary convex program; i.e., there exists a feasible point in the relative 
interior of the constraint set (V in our case) which satisfies with strict 
inequality all the inequality constraints which are not affrne (none in our 
case). We can now obtain Kuhn-Tucker multipliers (see, e.g., [22, 
Theorem 28.21) Ai > 0, i = l,..., t, corresponding to the constraints #i g. The 
result now follows since A + Cf=, A&, E S+. 

Rather than apply the result in [22], which is phrased in finite dimensions, 
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we can apply Pshenichnyii’s condition [ 13, p. 871 to the program (6.11) and 
get that 

a(p + Ag)(a) n ((x: $i g(x) Q 0, i = l,..., t} n R - a)+ # 0, 

which reduces to 

i?(p + Lg)(U)n ((X: $ig(X)<O, i= l,..., t} -a)+ + (0 -a)+)# 09 

by (2.5) (closure holds since the polar of a polyhedral set is finitely 
generated), or equivalently 

@P(Q) + ak(a>)n (cone{~tg~f=I + VJ - aI+) Z 0 

since g is continuous and 4, g(a) = 0, i = l,..., t, or equivalently, 

( ap(a) + @(a) + i ai#ig f-7 (0 - a)+ # 0, 
i=l 

where ui > 0, i = l,..., t, or equivalently, a solves the program 

inf{ (p + ;Zg)(x): x E a}, 

where 2 = A + xi=, ai#i is in S+. 1 

We now show that we can strengthen Theorem 6.1 when g is weakly 
faithfully S-convex, Q is polyhedral, and Sf is exposed. (See Remark 6.3 
below for Sf not necessarily exposed.) 

THEOREM 6.2. Suppose that g is continuous and weakly faithfully S- 
convex, R is polyhedral, and Sf is exposed; i.e., 

#ES+; H=@; sf=snH. (6.12) 

Let KH be any convex set which satisfies 

FfcKHcFH, (6.13) 

where Ff and FH are as in (6.1) and (6.5), respectively. Then Theorem 6.1 
holds with Ff replaced by the (larger) convex set KH. 

Proof. Let 

KL = (.f + D,=,(f)) n R, (6.14) 

where x^ E F. Let us show that KL is the largest (closed) convex set which 
satisfies (6.13). That KL is closed and convex follows from the continuity 
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and faithful convexity of g and the polyhedrality of R. Now let x E KL. Then 
x E Q and x = x^ + ad, for some a 2 0 and d E D&(a). Thus #g(x) = 0, 
which yields x E FH. Conversely suppose K is convex and satisfies (6.13), 
and x E K. Then, since Kc FH, we get that x E B and 4g(x) = 0. Moreover, 
since K is convex and contains Ff, 2 + a(x - 2) is in Kc FH, for all 
O<cz< 1; i.e., #g(i+ad)=O, for all O<a< 1 and d=x-2. Thus 

x E (2 + D,=,(i)) n D = KL; (6.15) 

i.e., this shows that Kc KH. 
Since 

FcFfcKL, 

we can rewrite (P) as 

(6.16) 

,u = inf{ p(x): g(x) E -Sf, x E KL). 

The result (for KL in (6.14)) now follows from Lemma 6.2, (3.10), the 
polyhedrality of ~2 and the faithful convexity of #g. Note that g is Sf-convex 
on KL by Lemma 6.1. Now if A is the Lagrange multiplier found in (6.1) (for 
the largest K” as given in (6.14)), then (6.1) and (6.2) clearly hold for any 
convex subset of this K* which contains the feasible set F. Thus, since 
F c Ff, we can choose any KH which satisfies (6.13). 1 

The above theorem gives us a variety of optimality conditions. First, we 
can choose the subspace H which satisfies (6.12). Then we choose the 
desired KH in (6.13). Note that if we choose H = Sf-Sf, then we recover 
Theorem 6.1. In this case we no longer require the assumptions of faithful 
convexity or of polyhedrality. These assumptions can be weakened but 
cannot be eliminated entirely. See [27] for examples in the case S = R’: . 

Remark 6.2. Corresponding to Remark 6.1, we get that the multiplier in 
(6.1), with Ff replaced by K”, may be supposed to be in St, rather than just 
Pf)+, exactly when 

s+ + H+ = (Sf)’ > (6.17) 

or equivalently, when S is closed, 

S’ + H+ is closed. (6.18) 

Proof: The proof is similar to the proof of Corollary 4.2 in [lo]. We 
include it here for completeness. Note that (6.17) and (6.18) are equivalent 
by (2.5). Now if (6.17) holds and A satisties (6.1) and (6.2) (with KH instead 
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of Ff) then one can solve 1= Q + h with 4 in S+ and h in Ht. Hence for any 
x in KtrcFH 

k(x) = &(x) + k(x) = Mx> (6.19) 

since g(F”) c H and Ht = H’. Thus $g(x) may be substituted for Ag(x) in 
(6.1) and (6.2). 

Conversely, suppose 4 lies in (S’)+. Let P be the orthogonal projection on 
H. Consider 

p = inf{#P(x): -Px E 4, x E X). 07 

Then PP-‘(S) = PP-‘(H n S) c H and so p = 0. Also -P-‘(H) = X so that 
(6.1) (with Ku the largest convex set satisfying (6.12) replacing Ff) yields 

$Px + A(-Px) > 0, for all x E X. (6.20) 

Since we now assume that I E St we derive that 

d=#-(W--W 
=@-A)(&P)+IEH’+S+. 1 

As above, we note that multipliers in S+ exist whenever S is polyhedral. 
Furthermore, since Ff c KH, we get that (6.17) o (6.3), or equivalently, 
when S is closed, that (6.18) o (6.4). N ow if S is closed and Sf is exposed, 
i.e., Sf = S n #I, then (6.18) becomes 

S + + span(#) is closed. (6.21) 

Remark 6.3. Primal and dual characterizations of optimality, using 
directional derivatives and subdifferentials, were given in [lo]. These follow 
directly from Theorem 6.1, by applying Pshenichnyii’s condition [ 13, p. 871, 
and employ the cones of directions D;(S’, a) and D,“(#, a). We now see 
that Theorem 6.2 allows us to replace the above mentioned cones by cones of 
directions of constancy of convex functionals. In particular, by repeated 
application of Proposition 3.6, we get the following equivalent programs to 
(P) (with S, = S, ST’ denotes the smallest exposed face of Si containing S’ 
and 2E F): 

inf{p(x): g(x)E- SZ,~Ef22=(.?+Do,,)nf2}, 

4, E s:9 s,=sp=(S,n#:), 

inf p(x): g(x)E- S,,xEQ,= 
I ( 

x+ fi D& 
i=l 

6*EG7 s, = s;f = (s, n &>, 

Pd 

(PA 
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inf p(x): g(x) E - S,, x E Q, = 
I 

s,=sf, #i E sil si+ * = (Sf n (?$>. 

(Pt> 

Thus we can choose 

H=i)#; 
i=l 

(6.22) 

in (6.12) and 

i=l 

in (6.13). (For more details see the proof of Lemma 7.2 below.) Therefore, 
by Pshenichnyii’s condition, we can replace D;(S*, a) by (-)i=, Dzg. 
Moreover, if S* is exposed, i.e., S* = $‘n S, 4 E S*, then the charac- 
terizations and duality results are in terms of the cone of directions of 
constancy of the single convex functional #g; e.g., if a is feasible and we 
define the restricted Lagrangian by 

L”(I) = inf{ p(x) + Ig(x): x E 2 + D&), (6.24) 

where .? is any feasible point, then 

(u = P(Q) (i.e., a is optimal for (P)) 

if and only if 

0 E @(a) + h+g(a) - (D&n cone@ - a))+ 

for some s+ E (Sf)’ with s’s(a) = 0 

if and only if 

y = sup{IV(J): L E (Sf)‘){. 

Again (S*)+ may be replaced by S+ if (6.3) holds. Note that if S is a 
polyhedral cone, then (6.3) always holds and Sf is always exposed. For 
example, suppose that S is RT, the nonnegative orthant in Rm, g = ( gk) and 
4 = @J is in R’J with #k = 0 if k & 9’=, #k > 0 if k E ,P’, where 9’= is the 
set of “equality constraints,” i.e., the set of constraints gk which are iden- 
tically zero on the feasible set [ 11. Then S* is exposed by ( and the above 
characterization of optimality simplifies and strengthens the result in [ 1, 41. 
One can also allow #k = 0 if k E 9’= and gk is at-line (see [27]). 
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Now suppose that the cone of constancy DH(S’) is a subspace of X 
independent of the point a E X. We then get the following regularization 
technique. Recall that Slater’s condition for (P) is 

there exists x^ E R such that g(X) E - int S. 

THEOREM 6.3. Let a E F and D;(Sf) be a subspace independent of 
x f F. Suppose that B: Z + X is a linear operator satisfying 

D; (Sf) = 9(B), 

where Z is a locally convex space, and that Q is a full row rank matrix 
satisfying 

Sf-Sf = .9(Q’). 

Consider the program, in the variable z E Z, 

minimize p(a + Br) subject to Qg(a + Bz) f -QSf, and 

zEd= {z:BzEl2-a}. (Pr) 

Then Slater’s condition is satisfied for (P,) and z = 0 is a feasible point of 
(P,). Moreover, ifz* solves (P,), then a t Bz* solves (P). 

In addition, if Sf is projectionally exposed, i.e., if Sf = PS for some 
projection P, then we can replace QSf in the definition of (P,) by QS as long 
as we choose Q so that Q’Q = P. 

Proof: We write the following equivalent programs to (P): 

minimize p(x) subject to g(x) E -Sf, xER,g(x)ESf-sf; PI) 

minimize p(x) subject to Qg(x) E -QSf, x E R, g(x) E sf-sf; P2) 

minimize p(x) subject to Qg(x) E -QSf, xER,x-aE.qB); (PA 

minimize p(a t Bz) subject to Qg(a t Bz) E -QSf, BzEl2-a. Pr) 

Thus (P,) is equivalent to the original program (P). That Slater’s condition 
holds for (P,) follows from (3.10) and from the fact that Q is onto. 

That we can replace QSf by QS if Sf is projectionally exposed follows 
from the relation [6] 

QQ+Q= Q- 1 

In the polyhedral case, the above regularization reduces to the one in [25]. 
It is now of interest to be able to calculate the cones Sf and D;(Sf). Note 
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that even if g is not faithfully S-convex and if b = R n (0; (S’, a) + a), then 
the program 

minimize p(x) subject to Qg(x) E -QS*, x E A (Pr.,) 

is equivalent to (P) and regular at a. In fact it satisfies Slater’s condition 
at a. 

7. FACIAL REDUCTION TO FIND Sf, D;(Sf) 

We now present an algorithm to find the cones S’ and Dr(S’). The 
algorithm is a finite iterative method. The basic step involves reducing the 
problem to an equivalent problem on an exposed face of S containing S’. It 
is interesting to note that Sf is found even though we might have S* Z Sef, 
i.e., even though Sf may not be exposed. In the case that S is polyhedral, the 
algorithm is equivalent to the one in [26] which itself was a modification of 
the one originally given in [ 11. 

The reduction step is based on the following lemma. (We assume that g is 
continuous in the sequel.) 

LEMMA 7.1. Suppose that a E F. Then the system 

(Q - a)+ n @g(a) z 0, 

$ES+, &(a) = 0, 
(7.1) 

is consistent only if 

sfcqws. (7.2) 

Proof Suppose that (7.1) holds. Then a is a global minimum for the 
convex function @g(e) on the convex set R, which implies that #g(x) = 0, for 
all x E F. Thus the exposed face $‘n S contains -g(F) and therefore also 
contains S. I 

We will also need the following theorem of the alternative. 

THEOREM 7.1. Suppose that a E F. Then exactly one of the following 
two systems is consistent. 

(0 - a)+ n @g(a) z 0, o#gEs+, Ma) = 0. 
g(Z) E - int S, 2 E R (Slater’s condition). 

(7.3) 

(7.4) 



REGULARIZINGTHE ABSTRACTCONVEX PROGRAM 515 

ProoJ Suppose that (7.3) holds. Then 0 = #g(a) is a global minimum of 
the convex function #g(.) on the convex set 8. Thus the system 

$w) < 07 XEL?, (7.5) 

is inconsistent, which implies that (7.4) fails. 
Conversely, suppose that (7.4) fails. We can assume int S # 0. Otherwise 

choose 4 E (S-S)’ to satisfy (7.3). Thus 

0 $ g(0) + int S (open, convex set), (7.6) 

which implies that there exists 0 # 0 E F such that 

4( g(O) + int S) > 0. 

But then 

#ES+; am) 2 0. (7.7) 

Since g(0) c -S, we get 4g(u)= 0. Thus 0 = #g(a) is again a global 
minimum of q5g(.) on 0 and (7.3) follows by Pshenichnyii’s condition 
[13, p. 871. I 

COROLLARY 7.1. Suppose that a E F and the system (7.3) is incon- 
sistent. Then 

Sf=S; Dg= (Sq = X. 

Remark 7.1. If f: R” + R is a faithfully convex functional, then the cone 
of directions of constancy off, DT, can be found using the algorithm in [24] 
(f differentiable) or in [26] df nondifferentiable). Let us refer to this 
algorithm as algorithm A. 

We now present the algorithm that finds Sf and DT(S’). 

Algorithm B 

Initialization. Let a E F; Q, = R - a; m, = dim Y; Q, = Z,Oxmo; S, = S; 
n, = dimX; P, = I,,,,0; i = 0. 

i-th step (0 < i < t). If m, > 0 and the system 

(7.8) 

Oi Qi g(a) = 0, O#4i=S: 
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is consistent, then use algorithm A to find the ni x n,, 1 matrix Aj+, 
satisfying 

s(Ai+ 1) = DtiQigopi- (7.9) 

Then set 

mi+l =mi- 1 =dim&; 

Bi+ , : qji= R”““; 

M(Bi+ 1) = sPan{9il (with Bi+, = [l] if mi+, = 0); 

pi+l =PiAi+l 

Qi+,=Bi+IQi; 

Ei=Sif7@f; 

Si+l =Bi+,Ei; 

Ri+l =A~+,{R~n~@i+1>1* 

Now proceed to step i + 1. 
If the system (7.8) is inconsistent or m,. = 0, then STOP. 

Conclusion. 
Sf = BtBt 

1 2 - -. B;S,, 

Dg= (Sf) = 9(Pi). 

LEMMA 7.2. Let 

P"(Y) = P@ + PkY) 

g"(v) = Qk da + P, v) 

Fk = { y E R’? gck’(J’) E -Sk, .J’ E n,} 

and consider the programs 

inf{ p”(y): y E Fk}. 

(7.10) 

cPk) 

Then, for k = 0, l,..., t (or t - 1 depending on the context): 

(a) gk+‘(y)=Bk+lgk(Ak+,y); 
(b) 0 E Fk; 

(c) gk is Sk-convex and D;dk,,k = Dikgk ; 

(d) FkcAk+,Fk+‘; 

69 S/=B~+,Sf+, and Dg=k(S$=AkDT)g=K+,(S~+,), where S{ is the 
minimal cone of (Pk). 
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START 

a l F;RO In-a; mO= dim Y; 90 = I 
%"mo ; so = s ; 

I consistent g& is Illi T O? 

yes 

n.xn. 
Find Ai+, l R ' '+' 

such that R(AI+,) = D;,Q,goPi 

I 

Sf = B;B;...B;$ 

D=(Sf) = R(Pi) 

7 
” 

mi+l 
= mi-1 = dim ei' 

N(Bi+,) = span{$i), with Bi = [l] if mi+,= 

n i+1 
= A;+,{ninR(Ai+,)I 

P i+l 
= PiAi+, 

Qi+l = Bi+,Qi 

Ei = Si n $' 

'i+l 
= Bi+,Ei 

?I STOP 

(7.11) 
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(b) The result holds for k = 0 by hypothesis. So let us assume that the 
result holds for gk and prove it for gkt’. By Lemma 7.1, we get that 

Note that 

S’,c#, f-T&Sk. (7.12) 

while 

a#, gk(0) = 84, Qk da + Pk Y> at y=O 

= mk Qk g(a)1 pm by the chain rule, 

h gkP) = h Qk g(a). 

(7.13) 

(7.14) 

Thus gk(0) E -S{ c E, and 

gk+‘(0)=Bk+lgk(Ak+lO) by (4 

=B k t 1 gkto) 

E -B k+lEk=-Sk+Iu 

That 0 E ok+, is clear. 

(c) We prove the result by (finite) induction. By hypothesis, the result 
holds for k = 0. So let us assume that the result holds for gk and prove it for 
g kt ‘. Let X, y E Rnk+’ and 0 < t ( 1. To show that gk+’ is Sk+ ,-convex we 
need to show that 

tgk+‘(x)+(l-t)gk+l(~)-gk+‘(tX+(l-f)~)-k+~r 

or equivalently, by (a), that 

Bk+,kk(A kt1X)+(1--t)gk(Ak+1Y)-gk(Ak+I(tx+(1--t)y))EBkt,Ek. 

But this follows since 

gk(O> E -sf = 4,” 3 by (b) and (7.12); 

s(Ak+ I> = GaksoPr = DTkgk, by the induction step; 

gk is Sk-convex, by the induction step; 

and 

Moreover 

E,=S,n&. 

d E D;k+,gk+, 
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if!7 
~k+lgk+‘(~)=9k+lgk+*(0)~ by faithful convexity, 

l@- 

dk+l~k+l~(“+Pk+,d)=~kt,~k+,~(a) 

iff 

~k+,Qk+,g(Pk+,d)=~k+,Qk+,g(o), by faithful convexity, 

sff 

d E D~k+IQk+,B.Pk+I* 

(d) Now y E Fkf * implies 

YEQk+l, gk+ l(Y) E -$+ l 

implies, since A At - P ktl ktl - A'(At+,)~ 

A k+lYERk, Bk+,&'k(Ak+,Y)~ -%+I 

implies, since B: + , B, + , = P*;, 

A k+lYEnk, gk(Ak+,J’)~-B:t,%, 
=-- 

Eke 

ThusAk+,yEFk. 
(e) Consider program (P,, I). By Proposition 3.7(c), we know that 

there exists 

?Eak+l with gktl(j)E-riSf+,. 

This implies that 

y”=A;+,z^, for some PELIk~5?(A,+,), 

with 

Bk+,gk(Ak+,i)E -‘i%+,v by (a>, 

equivalently 

.?Ean, with Bk+,gk(f)E--ri.!j$+,, since Ak+1A:+l=P9tAk+,j, 

equivalently 

iEfik, B~+,Bk+,gk(~)E--riB~+,~~+,, since Bk+, is onto, 
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z^EO,, gk(z^)E--riB:+,Si+,, 

since B:+,Bk+l=P1~ and ?=A,+,jED& by (c), yields tikgk(i)=O. 
NowB:+,Si+, is a face of E, and thus a face of S,. Therefore 

Sf,lBt Sf k+l k+l’ 

The converse inclusion follows since 

gk(Fk)Cgk(Ak+lFk+‘+ 

=B:+,Bk+lgk(Ak+lFktl), since Bt B -P kfl k+l- 4; 

= B;, , gk+‘(Fk+‘), by GG 

-B:+Ji+,. 

Moreover 

d E Dg=k+,(Lg+ 1,O) 

gk+'(awS~+,-Sf+,, O<a(& 

Bk+lgk(Ak+lad)ESf+l-S~+l, O<a<E, 

B:t,Bk+lgk(Ak+lad)EB:+,(S::+,-Sf+,), O<a<ti, 

gk(A kt~ad)~B:t,(Sf+,-S~+,), O<a,<& 

sk(A k+l@d)ESi-Si7 O<a<Ci, 

Akt,d-,=,(s{, 0). 1 

THEOREM 1.2. Suppose that a E F and g is weakly faithfully S-convex 
(on 0); i.e., #g is faithfully convex for all / E r* for which #g is convex 
(on 0). Then the above algorithm finds Sf and DB(S’) in at most 
t = dim Y - dim Sf + 1 steps. Moreover, the program (Pl) (see Lemma 7.2) 
yields the regularized program of Theorem 6.3. 
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ProoJ There are two cases to consider. 

(i) (7.8) is inconsistent at step t and m, > 0. Now by (7.13), (7.14), 
Theorem 7.1, and Corollary 7.1, we get that Slater’s condition is satisfied for 
R) and 

ST= S,; D;(S;) = R”‘. 

Therefore Lemma 7.2(e) yields the conclusion (7.10). Furthermore, 
Theorem 6.3 shows that (P,) is the regularized program for (P). 

(ii ) m,=O. 

By Lemma 7.1 and step t - 1, we get that 
s;-, =o. 

As above the result still follows from Lemma 7.2(d). 1 

Remark 7.1. The algorithm will still work if g is not weakly faithfully S- 
convex. In this case we no longer can substitute the matrices Pi to get the 
equivalent programs and must modify the system (7.8) to read 

41 Qi g(a) = 0, 0 # 9i E S+. 

We restrict ourselves to the faithfully convex case as it seems preferable for 
applications. Recall that all analytic convex and strictly convex functions are 
faithfully convex. The algorithm may also be modified to use the notion of 
faithfully S-convex introduced in Section 5. In this case we find Ai+ I so that 
2i(Ai+ 1) = DGigopi(Ei)* 0 ne may also choose Bi+ I so that Jy-(Bi+ 1) = 
(Ei - Ei)‘. Both these changes speed up the algorithm. 

Remark 7.2. Once S* and D;(S*) are found, we can apply Theorem 6.3 
to get an equivalent program for which Slater’s condition is satisfied. In fact, 
as seen above, (P,) is the regularized program. Known methods for this case 
can now be applied (see, e.g., [ 141). However, if the original optimal point 
was not a Kuhn-Tucker point, then stability problems may arise. Note that 
solving the complementarity problem (7.8) may also pose a problem. 
Robinson [ 19, 201 discusses an extension of Newton’s method for cone 
constraints, while Tuy [23] presents an algorithm for the complementarity 
problem with nonpolyhedral constraints. 

Remark 7.3. The above algorithm regularizes program (P) once a 
feasible starting point a E F is found. Finding a feasible starting point is 
itself a problem when Slater’s condition fails. The case when S = Ry was 
treated in [26]. The method there involves starting with all the constraints in 

409/83/2 12 
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the objective function and iterating while simultaneously removing any 
constraints which are satisfied from the objective function, using them as 
constraints again and regularizing. This is a modification of the standard 
(phase I) process of finding a feasible point. One can also modify the 
technique in [ 171 which takes the objective function into account while 
finding the feasible point. The algorithm in [26] seems intuitively clear 
though the proof was long and technical. In our case S is not polyhedral. 
Finding a feasible starting point then appears to be equivalent to discretizing 
the dual cone while applying the above mentioned technique in [26]. 

8. EXAMPLES 

EXAMPLE 8.1. Let us consider the polyhedral case with S = R’: and 
R = R”. In this case the algorithm is a modification of the one given in [26] 
which was a modification of the one in [l] for the faithfully convex case. 
The algorithm is also a modification of the one given in [4]. The following 
set of constraints are taken from [4]. 

Let S=Rl andg=(g,): R’*R’, where 

g*(x) = exn +x: -1 

gz(x) = 4 + xg + e-x3 -1 

g3(x) = XI +x: +x: -1 

&L(x) = e-x2 -1 

g5(x) = (x1 - l)Z +x; -1 

gs(x) = Xl + edx4 -1 

g’(x) = x2 + eAx5 - 1. 

Initialization. Let 
a=(O,O, l,ifi,ifi)f. 

By the complementary slackness condition in (7.8), we will only have to 
consider the binding constraints g, , g,, g,, g, whose gradients are 

Vg,(a) = (LO, O,O, 0) 

Vg&) = (LO, 0, I/Z fi) 

Vg,(a) = (0, -LO, O,O) 

Vi&) = (--Z O, O, O, 0). 

WealsohaveR,=R5,m,,=7,n,,=5,andS,=Ri. 
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Step 0. The vector 

#I) = (f, 0, 0, 0, f, 0, 0) 

solves (7.8). Now 

h,Q,goR,=~g, +b 

Then 

i 

0 0 0 
0 0 0 

P,=A,= 1 0 0 
0 1 0 
0 0 1 I 

0100000 
0010000 

Q,=B,= 0001000 
-1 0 0 0 2 0 0 

0000010 
0000001 

E,={s=(sJER; :sI=s5=O) 

s,= {s=(s*)ER6, :s,=O) 

R,=R3. 

Step 1. The vector 

4, = (0, 0, 1, 0, 0, 0) 

solves (7.8). Now 

Then 

A2 =13x3 
P, = P, 

100000 
010000 

B 

2= 

i 0 0 0 10 0 
000010 
000001 I 
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0100000 
0010000 

Q2= 1 -1 0 0 0 2 0 0 
0000010 
0000001 

E, = {s = (si) E R6, : s3 = s, = O} 

S, = (s = (si) E R: : s3 = 0) 

L’, = R3. 

Step 2. The vector 

solves (7.8). Now 

Then 
A3 =13x3 

P,=P, 

1 0 0 0 0 

00010 
0 0 0 0 1 

0100000 

Q3= L 0010000 
0 0 0 0 0 1 0 
0000001 I 

E, = S, 

S,=R4, 

0, = R’. 

Step 3. Let 
43 = (Ai) E St. 

Then (7.8) becomes 

4 > 0, not all zero, 

0 = 03 Q3 k’(a) = (A, gz + A, L?, + 13 g, + 1, g,)(a) 

0 E 1843 Q3 &>I p, = [@I vb’, + AZ vg, + A3 ‘g, + A, Vg,)@)] p,. 
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since g?, g,, and g, are not binding, the above is equivalent to 

i,=13=124=o, A,> 0 

0 = [A Vg,(a)l p, 
which is inconsistent. We now conclude by (7.10) that the minimal cone 

Sf = B;B;B;B$, 

= B;B;B:R4, 

000100 
100000 
010000 
001000 
000100 
000010 

-0 0 0 0 0 1 

= (s = (si) E R; : s, = s4 

(s = (s,.) R6, : sj = s, = 0) 

= s5 = O}, 

while the cone of directions of constancy 

II; (of) = Lz(Pj) 

= {d = (di) E RS : d, = pz = O}. 

This coincides with the results found in [4]. Note that though Q: # B:BiB: 
here, we still get that Q:S, = Sf. Moreover the constraint (mapping R3 to 
R4) in the regularized program (P,) is 

Remark 8.1. Even though S is polyhedral, the above application of our 
algorithm differs from that in [ 1,4, 261. It is interesting to note that after 
solving (7.8) we find the cone of directions of constancy of the single convex 
functional #iQig 0 Pi, which is a linear combination of the convex 
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functionals (Qig o PJj. This differs from [ 1,4, 261 where the intersection of 
the cones of directions of constancy are needed. In particular, if q& = (Aj) 
solves (7.8) at step 0, the above argument suggests that 

D;og = ? DTjgj. (8.1) 

However, this is not true in general as can be seen by considering the two 
linear functionals g,(x) =x, + x2 nd g, = -g, with 1, = 1, = 1. Let us see 
what happens for this example. (For more details see [27].) 

EXAMPLE 8.2. Let S = R: and g(x) = (gi(x)), where g,(x) = xi +x2 
and g, = -g,. 

Initialization. Let 

a = (0,O)‘; 

then 

gl(a) = -Vg,(a) = (1, 1). 

Step 0. The vector 

solves (7.8). Now 

Then 

Step 1. The vector 

hQ,gOPo=O. 

P, =A, =zzx* 

Q,=B,=[l-l] 

E,=O (in R’) 

s, =o (in R ‘). 

solves (7.8). Now 

0, Q, g 0 P,(x) = 2x,+ h- 
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Then 

P, =A, = 

B, = [II 
Q,=[l -11 
E,=O (in R ‘). 

Step 2. Since m, = 0, we conclude that the minimal cone 

sf=o (in R’), 

while the cone of directions of constancy 

D;(Sf)={d=(d,)ERZ:d,=-d,}. 

The constraint (R ’ -+ R ‘) in the regularized program (P,) is 

Q, duo + P,z) = gl((zlv -zd’) - gz((zly -4’) 

= 0. 

Thus the program (P,) is the unconstrained program 

minimize p((z, , -z J), z,ER. 

9. CONCLUSION 

In this paper we have studied the abstract convex program (P) with the 
cone constraint g(x) E -S and set constraint x E R, where S c Y is finite 
dimensional. We have presented several results on the faces of the convex 
cone S and have generalized known results on cones of directions and 
faithful convexity to the case of S-convex functions. We have then shown 
how to use these results to characterize optimality for (P). This follows 
similar results in [lo]. In particular, in the case that g is weakly faithfully S- 
convex and Q is polyhedral, we have seen that we can strengthen the charac- 
terization presented in [lo] in the sense that the multiplier relationship holds 
on the larger sets K“ (see Theorem 6.2 and Remark 6.3). 

In the faithfully S-convex case, the (generalized) cone of directions of 
constancy D;(Sf) is a subspace independent of x in X. In this case, we can 
regularize program (P) so that Slater’s condition holds (see Theorem 6.3). 
The algorithm presented in Section 7 reduces program (P) to obtain this 
regularized program (P,). This algorithm is presented in the case that g is 
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weakly faithfully S-convex; i.e., dg is a faithfully convex functional for each 
d E P such that #g is convex (on 0). This hypothesis holds for example 
whenever g is weakly analytic. 

Many open questions still remain to be studied. Several known results for 
the cones of directions and for faithfully convex functions remain to be 
extended. It is hoped that these extensions will lead to new optimality criteria 
as well as stability results. For the strengthened characterization of 
optimality presented in Theorem 6.2, the question arises of finding H so that 
GH is as large as possible. If S* is exposed and g is weakly faithfully S- 
convex, this reduces to the question of finding 4 E (S*)+ with S n @A = Sf 
such that the subspace D& has the largest dimension possible. In the case of 
the ordinary convex program with S = Ry, we want to find positive scalars 
ak such that the subspace 

has the largest dimension possible (271 (9’= is the set of equality constraints 
[ 11.). Another question which arises is that: if the multiplier relationship in 
Theorem 6.1 holds with Ff replaced by 0, can one always find H in 
Theorem 6.2 with KH = 9; i.e., is the optimality criteria the strongest 
possible? 

The examples given in Section 8 treat only the polyhedral case. In this 
case our algorithm simplifies the algorithm presented in [ 1 ] for finding >Y’=, 
the equality set of constraints. This simplification is due to the fact that at 
each step we find only DTg, which is the cone of directions of constancy of a 
single convex functional, rather than the intersection of cones of directions of 
constancy of several convex functionals. Substituting the matrices Pi, Qi, 
thus reducing the dimensions of the image and domain spaces, also speeds 
up the algorithm. It still remains to study the algorithm in the nonpolyhedral 
case. The main question which arises is how to treat the complementarity 
problem (7.8) in the nonpolyhedral case. Tuy (231 discusses a fixed point 
algorithm that can be applied to the complementarity problem in this case. 
Stability of the algorithm with respect to round off and truncation errors 
may also pose a serious problem, especially when calculating A: and Bf 
when Ai is not chosen to be of full column rank or Ai and B, are ill- 
conditioned. 

As mentioned in the introduction, applications for this theory include 
finding the unbiased nonnegative estimator in the “ice-cream” cone of 
nonnegative matrices and also the optimal control problem where the target 
is a finite dimensional convex set with empty interior. Further applications 
include the semi-infinite programming problem or polynomial approximation 
problem where the constraint g is a linear operator on a finite dimensional 
domain. In this case, though the range space and the cone S may not be 
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finite dimensional, the image of the linear operator g and so also the minimal 
cone S’ are finite dimensional. This allows one to formulate such problems 
with Y chosen to be the (self-dual) Hilbert space of square integrable 
functions on the interval [a, b] (denoted L,[a, b]), where the nonnegative 
cone S has empty interior, rather than being restricted to choose Y as the 
space of continuous functions C[a, b] so that S has nonempty interior. The 
Lagrange multipliers are then functions in ,!,,[a, b] rather than measures in 
qa, b]*. 
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